summaryrefslogtreecommitdiffstats
path: root/runtime/gc/heap.h
blob: 9788064a2c0207b104f333f4ebae00410c6814a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_GC_HEAP_H_
#define ART_RUNTIME_GC_HEAP_H_

#include <iosfwd>
#include <string>
#include <vector>

#include "atomic_integer.h"
#include "base/timing_logger.h"
#include "gc/accounting/atomic_stack.h"
#include "gc/accounting/card_table.h"
#include "gc/collector/gc_type.h"
#include "gc/collector_type.h"
#include "globals.h"
#include "gtest/gtest.h"
#include "jni.h"
#include "locks.h"
#include "offsets.h"
#include "reference_queue.h"
#include "root_visitor.h"
#include "safe_map.h"
#include "thread_pool.h"

namespace art {

class ConditionVariable;
class Mutex;
class StackVisitor;
class Thread;
class TimingLogger;

namespace mirror {
  class Class;
  class Object;
}  // namespace mirror

namespace gc {
namespace accounting {
  class HeapBitmap;
  class ModUnionTable;
  class SpaceSetMap;
}  // namespace accounting

namespace collector {
  class GarbageCollector;
  class MarkSweep;
  class SemiSpace;
}  // namespace collector

namespace space {
  class AllocSpace;
  class BumpPointerSpace;
  class DiscontinuousSpace;
  class DlMallocSpace;
  class ImageSpace;
  class LargeObjectSpace;
  class MallocSpace;
  class RosAllocSpace;
  class Space;
  class SpaceTest;
  class ContinuousMemMapAllocSpace;
}  // namespace space

class AgeCardVisitor {
 public:
  byte operator()(byte card) const {
    if (card == accounting::CardTable::kCardDirty) {
      return card - 1;
    } else {
      return 0;
    }
  }
};

// Different types of allocators.
enum AllocatorType {
  kAllocatorTypeBumpPointer,
  kAllocatorTypeFreeList,  // ROSAlloc / dlmalloc
  kAllocatorTypeLOS,  // Large object space.
};

// What caused the GC?
enum GcCause {
  // GC triggered by a failed allocation. Thread doing allocation is blocked waiting for GC before
  // retrying allocation.
  kGcCauseForAlloc,
  // A background GC trying to ensure there is free memory ahead of allocations.
  kGcCauseBackground,
  // An explicit System.gc() call.
  kGcCauseExplicit,
};
std::ostream& operator<<(std::ostream& os, const GcCause& policy);

// How we want to sanity check the heap's correctness.
enum HeapVerificationMode {
  kHeapVerificationNotPermitted,  // Too early in runtime start-up for heap to be verified.
  kNoHeapVerification,  // Production default.
  kVerifyAllFast,  // Sanity check all heap accesses with quick(er) tests.
  kVerifyAll  // Sanity check all heap accesses.
};
static constexpr HeapVerificationMode kDesiredHeapVerification = kNoHeapVerification;

// If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
static constexpr bool kUseRosAlloc = true;

// The process state passed in from the activity manager, used to determine when to do trimming
// and compaction.
enum ProcessState {
  kProcessStateJankPerceptible = 0,
  kProcessStateJankImperceptible = 1,
};

class Heap {
 public:
  // If true, measure the total allocation time.
  static constexpr bool kMeasureAllocationTime = false;
  // Primitive arrays larger than this size are put in the large object space.
  static constexpr size_t kLargeObjectThreshold = 3 * kPageSize;

  static constexpr size_t kDefaultInitialSize = 2 * MB;
  static constexpr size_t kDefaultMaximumSize = 32 * MB;
  static constexpr size_t kDefaultMaxFree = 2 * MB;
  static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
  static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
  static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);

  // Default target utilization.
  static constexpr double kDefaultTargetUtilization = 0.5;

  // Used so that we don't overflow the allocation time atomic integer.
  static constexpr size_t kTimeAdjust = 1024;

  // Create a heap with the requested sizes. The possible empty
  // image_file_names names specify Spaces to load based on
  // ImageWriter output.
  explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free,
                size_t max_free, double target_utilization, size_t capacity,
                const std::string& original_image_file_name, CollectorType collector_type_,
                size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
                size_t long_pause_threshold, size_t long_gc_threshold,
                bool ignore_max_footprint);

  ~Heap();

  // Allocates and initializes storage for an object instance.
  template <const bool kInstrumented>
  inline mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    return AllocObjectWithAllocator<kInstrumented>(self, klass, num_bytes, GetCurrentAllocator());
  }
  template <const bool kInstrumented>
  inline mirror::Object* AllocNonMovableObject(Thread* self, mirror::Class* klass,
                                               size_t num_bytes)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    return AllocObjectWithAllocator<kInstrumented>(self, klass, num_bytes,
                                                   GetCurrentNonMovingAllocator());
  }
  template <bool kInstrumented, typename PreFenceVisitor = VoidFunctor>
  ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(
      Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator,
      const PreFenceVisitor& pre_fence_visitor = VoidFunctor())
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  AllocatorType GetCurrentAllocator() const {
    return current_allocator_;
  }

  AllocatorType GetCurrentNonMovingAllocator() const {
    return current_non_moving_allocator_;
  }

  // Visit all of the live objects in the heap.
  void VisitObjects(ObjectVisitorCallback callback, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);

  void SwapSemiSpaces() EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);

  void DebugCheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  void ThrowOutOfMemoryError(size_t byte_count, bool large_object_allocation);

  void RegisterNativeAllocation(JNIEnv* env, int bytes);
  void RegisterNativeFree(JNIEnv* env, int bytes);

  // Change the allocator, updates entrypoints.
  void ChangeAllocator(AllocatorType allocator);

  // Change the collector to be one of the possible options (MS, CMS, SS).
  void ChangeCollector(CollectorType collector_type);

  // The given reference is believed to be to an object in the Java heap, check the soundness of it.
  void VerifyObjectImpl(const mirror::Object* o);
  void VerifyObject(const mirror::Object* o) {
    if (o != nullptr && this != nullptr && verify_object_mode_ > kNoHeapVerification) {
      VerifyObjectImpl(o);
    }
  }

  // Check sanity of all live references.
  void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
  bool VerifyHeapReferences()
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  bool VerifyMissingCardMarks()
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
  // and doesn't abort on error, allowing the caller to report more
  // meaningful diagnostics.
  bool IsValidObjectAddress(const mirror::Object* obj) const;

  // Returns true if the address passed in is a heap address, doesn't need to be aligned.
  bool IsHeapAddress(const mirror::Object* obj) const;

  // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
  // Requires the heap lock to be held.
  bool IsLiveObjectLocked(const mirror::Object* obj, bool search_allocation_stack = true,
                          bool search_live_stack = true, bool sorted = false)
      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // Returns true if there is any chance that the object (obj) will move.
  bool IsMovableObject(const mirror::Object* obj) const;

  // Returns true if an object is in the temp space, if this happens its usually indicative of
  // compaction related errors.
  bool IsInTempSpace(const mirror::Object* obj) const;

  // Enables us to prevent GC until objects are released.
  void IncrementDisableGC(Thread* self);
  void DecrementDisableGC(Thread* self);

  // Initiates an explicit garbage collection.
  void CollectGarbage(bool clear_soft_references) LOCKS_EXCLUDED(Locks::mutator_lock_);

  // Does a concurrent GC, should only be called by the GC daemon thread
  // through runtime.
  void ConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);

  // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
  // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
  void CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
                      uint64_t* counts)
      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  // Implements JDWP RT_Instances.
  void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  // Implements JDWP OR_ReferringObjects.
  void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects)
      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
  // implement dalvik.system.VMRuntime.clearGrowthLimit.
  void ClearGrowthLimit();

  // Target ideal heap utilization ratio, implements
  // dalvik.system.VMRuntime.getTargetHeapUtilization.
  double GetTargetHeapUtilization() const {
    return target_utilization_;
  }

  // Data structure memory usage tracking.
  void RegisterGCAllocation(size_t bytes);
  void RegisterGCDeAllocation(size_t bytes);

  // Set target ideal heap utilization ratio, implements
  // dalvik.system.VMRuntime.setTargetHeapUtilization.
  void SetTargetHeapUtilization(float target);

  // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
  // from the system. Doesn't allow the space to exceed its growth limit.
  void SetIdealFootprint(size_t max_allowed_footprint);

  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
  // waited for.
  collector::GcType WaitForGcToComplete(Thread* self) LOCKS_EXCLUDED(gc_complete_lock_);

  // Update the heap's process state to a new value, may cause compaction to occur.
  void UpdateProcessState(ProcessState process_state);

  const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const {
    return continuous_spaces_;
  }

  const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
    return discontinuous_spaces_;
  }

  void SetReferenceOffsets(MemberOffset reference_referent_offset,
                           MemberOffset reference_queue_offset,
                           MemberOffset reference_queueNext_offset,
                           MemberOffset reference_pendingNext_offset,
                           MemberOffset finalizer_reference_zombie_offset);
  MemberOffset GetReferenceReferentOffset() const {
    return reference_referent_offset_;
  }
  MemberOffset GetReferenceQueueOffset() const {
    return reference_queue_offset_;
  }
  MemberOffset GetReferenceQueueNextOffset() const {
    return reference_queueNext_offset_;
  }
  MemberOffset GetReferencePendingNextOffset() const {
    return reference_pendingNext_offset_;
  }
  MemberOffset GetFinalizerReferenceZombieOffset() const {
    return finalizer_reference_zombie_offset_;
  }
  static mirror::Object* PreserveSoftReferenceCallback(mirror::Object* obj, void* arg);
  void ProcessReferences(TimingLogger& timings, bool clear_soft, RootVisitor* is_marked_callback,
                         RootVisitor* recursive_mark_object_callback, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // Enable verification of object references when the runtime is sufficiently initialized.
  void EnableObjectValidation() {
    verify_object_mode_ = kDesiredHeapVerification;
    if (verify_object_mode_ > kNoHeapVerification) {
      VerifyHeap();
    }
  }

  // Disable object reference verification for image writing.
  void DisableObjectValidation() {
    verify_object_mode_ = kHeapVerificationNotPermitted;
  }

  // Other checks may be performed if we know the heap should be in a sane state.
  bool IsObjectValidationEnabled() const {
    return kDesiredHeapVerification > kNoHeapVerification &&
        verify_object_mode_ > kHeapVerificationNotPermitted;
  }

  // Returns true if low memory mode is enabled.
  bool IsLowMemoryMode() const {
    return low_memory_mode_;
  }

  void RecordFree(size_t freed_objects, size_t freed_bytes);

  // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
  // The call is not needed if NULL is stored in the field.
  void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/, const mirror::Object* /*new_value*/) {
    card_table_->MarkCard(dst);
  }

  // Write barrier for array operations that update many field positions
  void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/,
                         size_t /*length TODO: element_count or byte_count?*/) {
    card_table_->MarkCard(dst);
  }

  void WriteBarrierEveryFieldOf(const mirror::Object* obj) {
    card_table_->MarkCard(obj);
  }

  accounting::CardTable* GetCardTable() const {
    return card_table_.get();
  }

  void AddFinalizerReference(Thread* self, mirror::Object* object);

  // Returns the number of bytes currently allocated.
  size_t GetBytesAllocated() const {
    return num_bytes_allocated_;
  }

  // Returns the number of objects currently allocated.
  size_t GetObjectsAllocated() const LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);

  // Returns the total number of objects allocated since the heap was created.
  size_t GetObjectsAllocatedEver() const;

  // Returns the total number of bytes allocated since the heap was created.
  size_t GetBytesAllocatedEver() const;

  // Returns the total number of objects freed since the heap was created.
  size_t GetObjectsFreedEver() const {
    return total_objects_freed_ever_;
  }

  // Returns the total number of bytes freed since the heap was created.
  size_t GetBytesFreedEver() const {
    return total_bytes_freed_ever_;
  }

  // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
  // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
  // were specified. Android apps start with a growth limit (small heap size) which is
  // cleared/extended for large apps.
  int64_t GetMaxMemory() const {
    return growth_limit_;
  }

  // Implements java.lang.Runtime.totalMemory, returning the amount of memory consumed by an
  // application.
  int64_t GetTotalMemory() const;

  // Implements java.lang.Runtime.freeMemory.
  int64_t GetFreeMemory() const {
    return GetTotalMemory() - num_bytes_allocated_;
  }

  // Get the space that corresponds to an object's address. Current implementation searches all
  // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
  // TODO: consider using faster data structure like binary tree.
  space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const;
  space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*,
                                                              bool fail_ok) const;
  space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const;

  void DumpForSigQuit(std::ostream& os);

  // Trim the managed and native heaps by releasing unused memory back to the OS.
  void Trim();

  void RevokeThreadLocalBuffers(Thread* thread);
  void RevokeAllThreadLocalBuffers();

  accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
    return live_bitmap_.get();
  }

  accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
    return mark_bitmap_.get();
  }

  accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
    return live_stack_.get();
  }

  void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;

  // Mark and empty stack.
  void FlushAllocStack()
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // Mark all the objects in the allocation stack in the specified bitmap.
  void MarkAllocStack(accounting::SpaceBitmap* bitmap, accounting::SpaceSetMap* large_objects,
                      accounting::ObjectStack* stack)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // Mark the specified allocation stack as live.
  void MarkAllocStackAsLive(accounting::ObjectStack* stack)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added.
  // Assumes there is only one image space.
  space::ImageSpace* GetImageSpace() const;

  space::MallocSpace* GetNonMovingSpace() const {
    return non_moving_space_;
  }

  space::LargeObjectSpace* GetLargeObjectsSpace() const {
    return large_object_space_;
  }

  void DumpSpaces(std::ostream& stream = LOG(INFO));

  // GC performance measuring
  void DumpGcPerformanceInfo(std::ostream& os);

  // Returns true if we currently care about pause times.
  bool CareAboutPauseTimes() const {
    return process_state_ == kProcessStateJankPerceptible;
  }

  // Thread pool.
  void CreateThreadPool();
  void DeleteThreadPool();
  ThreadPool* GetThreadPool() {
    return thread_pool_.get();
  }
  size_t GetParallelGCThreadCount() const {
    return parallel_gc_threads_;
  }
  size_t GetConcGCThreadCount() const {
    return conc_gc_threads_;
  }
  accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
  void AddModUnionTable(accounting::ModUnionTable* mod_union_table);

  bool IsCompilingBoot() const;
  bool HasImageSpace() const;

 private:
  void Compact(space::ContinuousMemMapAllocSpace* target_space,
               space::ContinuousMemMapAllocSpace* source_space);

  static bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
    return allocator_type != kAllocatorTypeBumpPointer;
  }
  static bool AllocatorHasConcurrentGC(AllocatorType allocator_type) {
    return allocator_type != kAllocatorTypeBumpPointer;
  }
  bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const;
  ALWAYS_INLINE void CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
                                       mirror::Object* obj);

  // We don't force this to be inline since it is a slow path.
  template <bool kInstrumented, typename PreFenceVisitor>
  mirror::Object* AllocLargeObject(Thread* self, mirror::Class* klass, size_t byte_count,
                                   const PreFenceVisitor& pre_fence_visitor)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Handles Allocate()'s slow allocation path with GC involved after
  // an initial allocation attempt failed.
  mirror::Object* AllocateInternalWithGc(Thread* self, AllocatorType allocator, size_t num_bytes,
                                         size_t* bytes_allocated, mirror::Class** klass)
      LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Allocate into a specific space.
  mirror::Object* AllocateInto(Thread* self, space::AllocSpace* space, mirror::Class* c,
                               size_t bytes)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
  // that the switch statement is constant optimized in the entrypoints.
  template <const bool kInstrumented, const bool kGrow>
  ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, AllocatorType allocator_type,
                                              size_t alloc_size, size_t* bytes_allocated)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  void ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  template <const bool kGrow>
  bool IsOutOfMemoryOnAllocation(size_t alloc_size);

  // Pushes a list of cleared references out to the managed heap.
  void SetReferenceReferent(mirror::Object* reference, mirror::Object* referent)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  mirror::Object* GetReferenceReferent(mirror::Object* reference)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  void ClearReferenceReferent(mirror::Object* reference)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    SetReferenceReferent(reference, nullptr);
  }
  void EnqueueClearedReferences();
  // Returns true if the reference object has not yet been enqueued.
  bool IsEnqueuable(const mirror::Object* ref) const;
  bool IsEnqueued(mirror::Object* ref) const;
  void DelayReferenceReferent(mirror::Class* klass, mirror::Object* obj, RootVisitor mark_visitor,
                              void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Run the finalizers.
  void RunFinalization(JNIEnv* env);

  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
  // waited for.
  collector::GcType WaitForGcToCompleteLocked(Thread* self)
      EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_);

  void RequestHeapTrim() LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
  void RequestConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
  bool IsGCRequestPending() const;

  size_t RecordAllocationInstrumented(size_t size, mirror::Object* object)
      LOCKS_EXCLUDED(GlobalSynchronization::heap_bitmap_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  size_t RecordAllocationUninstrumented(size_t size, mirror::Object* object)
      LOCKS_EXCLUDED(GlobalSynchronization::heap_bitmap_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
  // which type of Gc was actually ran.
  collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause,
                                           bool clear_soft_references)
      LOCKS_EXCLUDED(gc_complete_lock_,
                     Locks::heap_bitmap_lock_,
                     Locks::thread_suspend_count_lock_);

  void PreGcVerification(collector::GarbageCollector* gc);
  void PreSweepingGcVerification(collector::GarbageCollector* gc)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
  void PostGcVerification(collector::GarbageCollector* gc)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Update the watermark for the native allocated bytes based on the current number of native
  // bytes allocated and the target utilization ratio.
  void UpdateMaxNativeFootprint();

  // Given the current contents of the alloc space, increase the allowed heap footprint to match
  // the target utilization ratio.  This should only be called immediately after a full garbage
  // collection.
  void GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration);

  size_t GetPercentFree();

  void AddSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);

  // No thread saftey analysis since we call this everywhere and it is impossible to find a proper
  // lock ordering for it.
  void VerifyObjectBody(const mirror::Object *obj) NO_THREAD_SAFETY_ANALYSIS;

  static void VerificationCallback(mirror::Object* obj, void* arg)
      SHARED_LOCKS_REQUIRED(GlobalSychronization::heap_bitmap_lock_);

  // Swap the allocation stack with the live stack.
  void SwapStacks();

  // Clear cards and update the mod union table.
  void ProcessCards(TimingLogger& timings);

  // All-known continuous spaces, where objects lie within fixed bounds.
  std::vector<space::ContinuousSpace*> continuous_spaces_;

  // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
  std::vector<space::DiscontinuousSpace*> discontinuous_spaces_;

  // All-known alloc spaces, where objects may be or have been allocated.
  std::vector<space::AllocSpace*> alloc_spaces_;

  // A space where non-movable objects are allocated, when compaction is enabled it contains
  // Classes, ArtMethods, ArtFields, and non moving objects.
  space::MallocSpace* non_moving_space_;

  // The large object space we are currently allocating into.
  space::LargeObjectSpace* large_object_space_;

  // The card table, dirtied by the write barrier.
  UniquePtr<accounting::CardTable> card_table_;

  // A mod-union table remembers all of the references from the it's space to other spaces.
  SafeMap<space::Space*, accounting::ModUnionTable*> mod_union_tables_;

  // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
  // sweep GC, false for other GC types.
  bool concurrent_gc_;

  // The current collector type.
  CollectorType collector_type_;
  // Which collector we will switch to after zygote fork.
  CollectorType post_zygote_collector_type_;

  // How many GC threads we may use for paused parts of garbage collection.
  const size_t parallel_gc_threads_;

  // How many GC threads we may use for unpaused parts of garbage collection.
  const size_t conc_gc_threads_;

  // Boolean for if we are in low memory mode.
  const bool low_memory_mode_;

  // If we get a pause longer than long pause log threshold, then we print out the GC after it
  // finishes.
  const size_t long_pause_log_threshold_;

  // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
  const size_t long_gc_log_threshold_;

  // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is
  // useful for benchmarking since it reduces time spent in GC to a low %.
  const bool ignore_max_footprint_;

  // If we have a zygote space.
  bool have_zygote_space_;

  // Number of pinned primitive arrays in the movable space.
  // Block all GC until this hits zero, or we hit the timeout!
  size_t number_gc_blockers_;
  static constexpr size_t KGCBlockTimeout = 30000;

  // Guards access to the state of GC, associated conditional variable is used to signal when a GC
  // completes.
  Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
  UniquePtr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);

  // Reference queues.
  ReferenceQueue soft_reference_queue_;
  ReferenceQueue weak_reference_queue_;
  ReferenceQueue finalizer_reference_queue_;
  ReferenceQueue phantom_reference_queue_;
  ReferenceQueue cleared_references_;

  // True while the garbage collector is running.
  volatile bool is_gc_running_ GUARDED_BY(gc_complete_lock_);

  // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
  volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
  collector::GcType next_gc_type_;

  // Maximum size that the heap can reach.
  const size_t capacity_;

  // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
  // programs it is "cleared" making it the same as capacity.
  size_t growth_limit_;

  // When the number of bytes allocated exceeds the footprint TryAllocate returns NULL indicating
  // a GC should be triggered.
  size_t max_allowed_footprint_;

  // The watermark at which a concurrent GC is requested by registerNativeAllocation.
  size_t native_footprint_gc_watermark_;

  // The watermark at which a GC is performed inside of registerNativeAllocation.
  size_t native_footprint_limit_;

  // Whether or not we need to run finalizers in the next native allocation.
  bool native_need_to_run_finalization_;

  // Activity manager members.
  jclass activity_thread_class_;
  jclass application_thread_class_;
  jobject activity_thread_;
  jobject application_thread_;
  jfieldID last_process_state_id_;

  // Whether or not we currently care about pause times.
  ProcessState process_state_;

  // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
  // it completes ahead of an allocation failing.
  size_t concurrent_start_bytes_;

  // Since the heap was created, how many bytes have been freed.
  size_t total_bytes_freed_ever_;

  // Since the heap was created, how many objects have been freed.
  size_t total_objects_freed_ever_;

  // Number of bytes allocated.  Adjusted after each allocation and free.
  AtomicInteger num_bytes_allocated_;

  // Bytes which are allocated and managed by native code but still need to be accounted for.
  AtomicInteger native_bytes_allocated_;

  // Data structure GC overhead.
  AtomicInteger gc_memory_overhead_;

  // Heap verification flags.
  const bool verify_missing_card_marks_;
  const bool verify_system_weaks_;
  const bool verify_pre_gc_heap_;
  const bool verify_post_gc_heap_;
  const bool verify_mod_union_table_;

  // Parallel GC data structures.
  UniquePtr<ThreadPool> thread_pool_;

  // Sticky mark bits GC has some overhead, so if we have less a few megabytes of AllocSpace then
  // it's probably better to just do a partial GC.
  const size_t min_alloc_space_size_for_sticky_gc_;

  // Minimum remaining size for sticky GC. Since sticky GC doesn't free up as much memory as a
  // normal GC, it is important to not use it when we are almost out of memory.
  const size_t min_remaining_space_for_sticky_gc_;

  // The last time a heap trim occurred.
  uint64_t last_trim_time_ms_;

  // The nanosecond time at which the last GC ended.
  uint64_t last_gc_time_ns_;

  // How many bytes were allocated at the end of the last GC.
  uint64_t last_gc_size_;

  // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle
  // and the start of the current one.
  uint64_t allocation_rate_;

  // For a GC cycle, a bitmap that is set corresponding to the
  UniquePtr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
  UniquePtr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);

  // Mark stack that we reuse to avoid re-allocating the mark stack.
  UniquePtr<accounting::ObjectStack> mark_stack_;

  // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
  // to use the live bitmap as the old mark bitmap.
  const size_t max_allocation_stack_size_;
  UniquePtr<accounting::ObjectStack> allocation_stack_;

  // Second allocation stack so that we can process allocation with the heap unlocked.
  UniquePtr<accounting::ObjectStack> live_stack_;

  // Allocator type.
  AllocatorType current_allocator_;
  const AllocatorType current_non_moving_allocator_;

  // Which GCs we run in order when we an allocation fails.
  std::vector<collector::GcType> gc_plan_;

  // Bump pointer spaces.
  space::BumpPointerSpace* bump_pointer_space_;
  // Temp space is the space which the semispace collector copies to.
  space::BumpPointerSpace* temp_space_;

  // offset of java.lang.ref.Reference.referent
  MemberOffset reference_referent_offset_;
  // offset of java.lang.ref.Reference.queue
  MemberOffset reference_queue_offset_;
  // offset of java.lang.ref.Reference.queueNext
  MemberOffset reference_queueNext_offset_;
  // offset of java.lang.ref.Reference.pendingNext
  MemberOffset reference_pendingNext_offset_;
  // offset of java.lang.ref.FinalizerReference.zombie
  MemberOffset finalizer_reference_zombie_offset_;

  // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
  // utilization, regardless of target utilization ratio.
  size_t min_free_;

  // The ideal maximum free size, when we grow the heap for utilization.
  size_t max_free_;

  // Target ideal heap utilization ratio
  double target_utilization_;

  // Total time which mutators are paused or waiting for GC to complete.
  uint64_t total_wait_time_;

  // Total number of objects allocated in microseconds.
  AtomicInteger total_allocation_time_;

  // The current state of heap verification, may be enabled or disabled.
  HeapVerificationMode verify_object_mode_;

  // GC disable count, error on GC if > 0.
  size_t gc_disable_count_ GUARDED_BY(gc_complete_lock_);

  std::vector<collector::GarbageCollector*> garbage_collectors_;
  collector::SemiSpace* semi_space_collector_;

  const bool running_on_valgrind_;

  friend class collector::MarkSweep;
  friend class collector::SemiSpace;
  friend class ReferenceQueue;
  friend class VerifyReferenceCardVisitor;
  friend class VerifyReferenceVisitor;
  friend class VerifyObjectVisitor;
  friend class ScopedHeapLock;
  friend class space::SpaceTest;

  class AllocationTimer {
   private:
    Heap* heap_;
    mirror::Object** allocated_obj_ptr_;
    uint64_t allocation_start_time_;
   public:
    AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr);
    ~AllocationTimer();
  };

  DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
};

}  // namespace gc
}  // namespace art

#endif  // ART_RUNTIME_GC_HEAP_H_