1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_LEB128_H_
#define ART_RUNTIME_LEB128_H_
#include "globals.h"
#include "utils.h"
namespace art {
// Reads an unsigned LEB128 value, updating the given pointer to point
// just past the end of the read value. This function tolerates
// non-zero high-order bits in the fifth encoded byte.
static inline uint32_t DecodeUnsignedLeb128(const uint8_t** data) {
const uint8_t* ptr = *data;
int result = *(ptr++);
if (result > 0x7f) {
int cur = *(ptr++);
result = (result & 0x7f) | ((cur & 0x7f) << 7);
if (cur > 0x7f) {
cur = *(ptr++);
result |= (cur & 0x7f) << 14;
if (cur > 0x7f) {
cur = *(ptr++);
result |= (cur & 0x7f) << 21;
if (cur > 0x7f) {
// Note: We don't check to see if cur is out of range here,
// meaning we tolerate garbage in the four high-order bits.
cur = *(ptr++);
result |= cur << 28;
}
}
}
}
*data = ptr;
return static_cast<uint32_t>(result);
}
// Reads an unsigned LEB128 + 1 value. updating the given pointer to point
// just past the end of the read value. This function tolerates
// non-zero high-order bits in the fifth encoded byte.
// It is possible for this function to return -1.
static inline int32_t DecodeUnsignedLeb128P1(const uint8_t** data) {
return DecodeUnsignedLeb128(data) - 1;
}
// Reads a signed LEB128 value, updating the given pointer to point
// just past the end of the read value. This function tolerates
// non-zero high-order bits in the fifth encoded byte.
static inline int32_t DecodeSignedLeb128(const uint8_t** data) {
const uint8_t* ptr = *data;
int32_t result = *(ptr++);
if (result <= 0x7f) {
result = (result << 25) >> 25;
} else {
int cur = *(ptr++);
result = (result & 0x7f) | ((cur & 0x7f) << 7);
if (cur <= 0x7f) {
result = (result << 18) >> 18;
} else {
cur = *(ptr++);
result |= (cur & 0x7f) << 14;
if (cur <= 0x7f) {
result = (result << 11) >> 11;
} else {
cur = *(ptr++);
result |= (cur & 0x7f) << 21;
if (cur <= 0x7f) {
result = (result << 4) >> 4;
} else {
// Note: We don't check to see if cur is out of range here,
// meaning we tolerate garbage in the four high-order bits.
cur = *(ptr++);
result |= cur << 28;
}
}
}
}
*data = ptr;
return result;
}
// Returns the number of bytes needed to encode the value in unsigned LEB128.
static inline uint32_t UnsignedLeb128Size(uint32_t data) {
// bits_to_encode = (data != 0) ? 32 - CLZ(x) : 1 // 32 - CLZ(data | 1)
// bytes = ceil(bits_to_encode / 7.0); // (6 + bits_to_encode) / 7
uint32_t x = 6 + 32 - CLZ(data | 1);
// Division by 7 is done by (x * 37) >> 8 where 37 = ceil(256 / 7).
// This works for 0 <= x < 256 / (7 * 37 - 256), i.e. 0 <= x <= 85.
return (x * 37) >> 8;
}
// Returns the number of bytes needed to encode the value in unsigned LEB128.
static inline uint32_t SignedLeb128Size(int32_t data) {
// Like UnsignedLeb128Size(), but we need one bit beyond the highest bit that differs from sign.
data = data ^ (data >> 31);
uint32_t x = 1 /* we need to encode the sign bit */ + 6 + 32 - CLZ(data | 1);
return (x * 37) >> 8;
}
static inline uint8_t* EncodeUnsignedLeb128(uint8_t* dest, uint32_t value) {
uint8_t out = value & 0x7f;
value >>= 7;
while (value != 0) {
*dest++ = out | 0x80;
out = value & 0x7f;
value >>= 7;
}
*dest++ = out;
return dest;
}
static inline uint8_t* EncodeSignedLeb128(uint8_t* dest, int32_t value) {
uint32_t extra_bits = static_cast<uint32_t>(value ^ (value >> 31)) >> 6;
uint8_t out = value & 0x7f;
while (extra_bits != 0u) {
*dest++ = out | 0x80;
value >>= 7;
out = value & 0x7f;
extra_bits >>= 7;
}
*dest++ = out;
return dest;
}
// An encoder with an API similar to vector<uint32_t> where the data is captured in ULEB128 format.
class Leb128EncodingVector {
public:
Leb128EncodingVector() {
}
void Reserve(uint32_t size) {
data_.reserve(size);
}
void PushBackUnsigned(uint32_t value) {
uint8_t out = value & 0x7f;
value >>= 7;
while (value != 0) {
data_.push_back(out | 0x80);
out = value & 0x7f;
value >>= 7;
}
data_.push_back(out);
}
template<typename It>
void InsertBackUnsigned(It cur, It end) {
for (; cur != end; ++cur) {
PushBackUnsigned(*cur);
}
}
void PushBackSigned(int32_t value) {
uint32_t extra_bits = static_cast<uint32_t>(value ^ (value >> 31)) >> 6;
uint8_t out = value & 0x7f;
while (extra_bits != 0u) {
data_.push_back(out | 0x80);
value >>= 7;
out = value & 0x7f;
extra_bits >>= 7;
}
data_.push_back(out);
}
template<typename It>
void InsertBackSigned(It cur, It end) {
for (; cur != end; ++cur) {
PushBackSigned(*cur);
}
}
const std::vector<uint8_t>& GetData() const {
return data_;
}
private:
std::vector<uint8_t> data_;
DISALLOW_COPY_AND_ASSIGN(Leb128EncodingVector);
};
} // namespace art
#endif // ART_RUNTIME_LEB128_H_
|