summaryrefslogtreecommitdiffstats
path: root/runtime/mem_map.cc
blob: 22a61a21c09884ca94794b903d408e70c31f9979 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "mem_map.h"
#include "thread-inl.h"

#include <inttypes.h>
#include <backtrace/BacktraceMap.h>
#include <memory>

// See CreateStartPos below.
#ifdef __BIONIC__
#include <sys/auxv.h>
#endif

#include "base/stringprintf.h"
#include "ScopedFd.h"
#include "utils.h"

#define USE_ASHMEM 1

#ifdef USE_ASHMEM
#include <cutils/ashmem.h>
#endif

namespace art {

static std::ostream& operator<<(
    std::ostream& os,
    std::pair<BacktraceMap::const_iterator, BacktraceMap::const_iterator> iters) {
  for (BacktraceMap::const_iterator it = iters.first; it != iters.second; ++it) {
    os << StringPrintf("0x%08x-0x%08x %c%c%c %s\n",
                       static_cast<uint32_t>(it->start),
                       static_cast<uint32_t>(it->end),
                       (it->flags & PROT_READ) ? 'r' : '-',
                       (it->flags & PROT_WRITE) ? 'w' : '-',
                       (it->flags & PROT_EXEC) ? 'x' : '-', it->name.c_str());
  }
  return os;
}

std::ostream& operator<<(std::ostream& os, const std::multimap<void*, MemMap*>& mem_maps) {
  os << "MemMap:" << std::endl;
  for (auto it = mem_maps.begin(); it != mem_maps.end(); ++it) {
    void* base = it->first;
    MemMap* map = it->second;
    CHECK_EQ(base, map->BaseBegin());
    os << *map << std::endl;
  }
  return os;
}

std::multimap<void*, MemMap*> MemMap::maps_;

#if defined(__LP64__) && !defined(__x86_64__)
// Handling mem_map in 32b address range for 64b architectures that do not support MAP_32BIT.

// The regular start of memory allocations. The first 64KB is protected by SELinux.
static constexpr uintptr_t LOW_MEM_START = 64 * KB;

// Generate random starting position.
// To not interfere with image position, take the image's address and only place it below. Current
// formula (sketch):
//
// ART_BASE_ADDR      = 0001XXXXXXXXXXXXXXX
// ----------------------------------------
//                    = 0000111111111111111
// & ~(kPageSize - 1) =~0000000000000001111
// ----------------------------------------
// mask               = 0000111111111110000
// & random data      = YYYYYYYYYYYYYYYYYYY
// -----------------------------------
// tmp                = 0000YYYYYYYYYYY0000
// + LOW_MEM_START    = 0000000000001000000
// --------------------------------------
// start
//
// getauxval as an entropy source is exposed in Bionic, but not in glibc before 2.16. When we
// do not have Bionic, simply start with LOW_MEM_START.

// Function is standalone so it can be tested somewhat in mem_map_test.cc.
#ifdef __BIONIC__
uintptr_t CreateStartPos(uint64_t input) {
  CHECK_NE(0, ART_BASE_ADDRESS);

  // Start with all bits below highest bit in ART_BASE_ADDRESS.
  constexpr size_t leading_zeros = CLZ(static_cast<uint32_t>(ART_BASE_ADDRESS));
  constexpr uintptr_t mask_ones = (1 << (31 - leading_zeros)) - 1;

  // Lowest (usually 12) bits are not used, as aligned by page size.
  constexpr uintptr_t mask = mask_ones & ~(kPageSize - 1);

  // Mask input data.
  return (input & mask) + LOW_MEM_START;
}
#endif

static uintptr_t GenerateNextMemPos() {
#ifdef __BIONIC__
  uint8_t* random_data = reinterpret_cast<uint8_t*>(getauxval(AT_RANDOM));
  // The lower 8B are taken for the stack guard. Use the upper 8B (with mask).
  return CreateStartPos(*reinterpret_cast<uintptr_t*>(random_data + 8));
#else
  // No auxv on host, see above.
  return LOW_MEM_START;
#endif
}

// Initialize linear scan to random position.
uintptr_t MemMap::next_mem_pos_ = GenerateNextMemPos();
#endif

static bool CheckMapRequest(byte* expected_ptr, void* actual_ptr, size_t byte_count,
                            std::ostringstream* error_msg) {
  // Handled first by caller for more specific error messages.
  CHECK(actual_ptr != MAP_FAILED);

  if (expected_ptr == nullptr) {
    return true;
  }

  if (expected_ptr == actual_ptr) {
    return true;
  }

  // We asked for an address but didn't get what we wanted, all paths below here should fail.
  int result = munmap(actual_ptr, byte_count);
  if (result == -1) {
    PLOG(WARNING) << StringPrintf("munmap(%p, %zd) failed", actual_ptr, byte_count);
  }

  uintptr_t actual = reinterpret_cast<uintptr_t>(actual_ptr);
  uintptr_t expected = reinterpret_cast<uintptr_t>(expected_ptr);
  uintptr_t limit = expected + byte_count;

  std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
  if (!map->Build()) {
    *error_msg << StringPrintf("Failed to build process map to determine why mmap returned "
                               "0x%08" PRIxPTR " instead of 0x%08" PRIxPTR, actual, expected);

    return false;
  }
  for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) {
    if ((expected >= it->start && expected < it->end)  // start of new within old
        || (limit > it->start && limit < it->end)      // end of new within old
        || (expected <= it->start && limit > it->end)) {  // start/end of new includes all of old
      *error_msg
          << StringPrintf("Requested region 0x%08" PRIxPTR "-0x%08" PRIxPTR " overlaps with "
                          "existing map 0x%08" PRIxPTR "-0x%08" PRIxPTR " (%s)\n",
                          expected, limit,
                          static_cast<uintptr_t>(it->start), static_cast<uintptr_t>(it->end),
                          it->name.c_str())
          << std::make_pair(it, map->end());
      return false;
    }
  }
  *error_msg << StringPrintf("Failed to mmap at expected address, mapped at "
                             "0x%08" PRIxPTR " instead of 0x%08" PRIxPTR, actual, expected);
  return false;
}

MemMap* MemMap::MapAnonymous(const char* name, byte* expected, size_t byte_count, int prot,
                             bool low_4gb, std::string* error_msg) {
  if (byte_count == 0) {
    return new MemMap(name, nullptr, 0, nullptr, 0, prot);
  }
  size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize);

#ifdef USE_ASHMEM
  // android_os_Debug.cpp read_mapinfo assumes all ashmem regions associated with the VM are
  // prefixed "dalvik-".
  std::string debug_friendly_name("dalvik-");
  debug_friendly_name += name;
  ScopedFd fd(ashmem_create_region(debug_friendly_name.c_str(), page_aligned_byte_count));
  if (fd.get() == -1) {
    *error_msg = StringPrintf("ashmem_create_region failed for '%s': %s", name, strerror(errno));
    return nullptr;
  }
  int flags = MAP_PRIVATE;
#else
  ScopedFd fd(-1);
  int flags = MAP_PRIVATE | MAP_ANONYMOUS;
#endif

  // We need to store and potentially set an error number for pretty printing of errors
  int saved_errno = 0;

#ifdef __LP64__
  // When requesting low_4g memory and having an expectation, the requested range should fit into
  // 4GB.
  if (low_4gb && (
      // Start out of bounds.
      (reinterpret_cast<uintptr_t>(expected) >> 32) != 0 ||
      // End out of bounds. For simplicity, this will fail for the last page of memory.
      (reinterpret_cast<uintptr_t>(expected + page_aligned_byte_count) >> 32) != 0)) {
    *error_msg = StringPrintf("The requested address space (%p, %p) cannot fit in low_4gb",
                              expected, expected + page_aligned_byte_count);
    return nullptr;
  }
#endif

  // TODO:
  // A page allocator would be a useful abstraction here, as
  // 1) It is doubtful that MAP_32BIT on x86_64 is doing the right job for us
  // 2) The linear scheme, even with simple saving of the last known position, is very crude
#if defined(__LP64__) && !defined(__x86_64__)
  // MAP_32BIT only available on x86_64.
  void* actual = MAP_FAILED;
  if (low_4gb && expected == nullptr) {
    bool first_run = true;

    for (uintptr_t ptr = next_mem_pos_; ptr < 4 * GB; ptr += kPageSize) {
      if (4U * GB - ptr < page_aligned_byte_count) {
        // Not enough memory until 4GB.
        if (first_run) {
          // Try another time from the bottom;
          ptr = LOW_MEM_START - kPageSize;
          first_run = false;
          continue;
        } else {
          // Second try failed.
          break;
        }
      }

      uintptr_t tail_ptr;

      // Check pages are free.
      bool safe = true;
      for (tail_ptr = ptr; tail_ptr < ptr + page_aligned_byte_count; tail_ptr += kPageSize) {
        if (msync(reinterpret_cast<void*>(tail_ptr), kPageSize, 0) == 0) {
          safe = false;
          break;
        } else {
          DCHECK_EQ(errno, ENOMEM);
        }
      }

      next_mem_pos_ = tail_ptr;  // update early, as we break out when we found and mapped a region

      if (safe == true) {
        actual = mmap(reinterpret_cast<void*>(ptr), page_aligned_byte_count, prot, flags, fd.get(),
                      0);
        if (actual != MAP_FAILED) {
          // Since we didn't use MAP_FIXED the kernel may have mapped it somewhere not in the low
          // 4GB. If this is the case, unmap and retry.
          if (reinterpret_cast<uintptr_t>(actual) + page_aligned_byte_count < 4 * GB) {
            break;
          } else {
            munmap(actual, page_aligned_byte_count);
            actual = MAP_FAILED;
          }
        }
      } else {
        // Skip over last page.
        ptr = tail_ptr;
      }
    }

    if (actual == MAP_FAILED) {
      LOG(ERROR) << "Could not find contiguous low-memory space.";
      saved_errno = ENOMEM;
    }
  } else {
    actual = mmap(expected, page_aligned_byte_count, prot, flags, fd.get(), 0);
    saved_errno = errno;
  }

#else
#ifdef __x86_64__
  if (low_4gb && expected == nullptr) {
    flags |= MAP_32BIT;
  }
#endif

  void* actual = mmap(expected, page_aligned_byte_count, prot, flags, fd.get(), 0);
  saved_errno = errno;
#endif

  if (actual == MAP_FAILED) {
    std::string maps;
    ReadFileToString("/proc/self/maps", &maps);

    *error_msg = StringPrintf("Failed anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0): %s\n%s",
                              expected, page_aligned_byte_count, prot, flags, fd.get(),
                              strerror(saved_errno), maps.c_str());
    return nullptr;
  }
  std::ostringstream check_map_request_error_msg;
  if (!CheckMapRequest(expected, actual, page_aligned_byte_count, &check_map_request_error_msg)) {
    *error_msg = check_map_request_error_msg.str();
    return nullptr;
  }
  return new MemMap(name, reinterpret_cast<byte*>(actual), byte_count, actual,
                    page_aligned_byte_count, prot);
}

MemMap* MemMap::MapFileAtAddress(byte* expected, size_t byte_count, int prot, int flags, int fd,
                                 off_t start, bool reuse, const char* filename,
                                 std::string* error_msg) {
  CHECK_NE(0, prot);
  CHECK_NE(0, flags & (MAP_SHARED | MAP_PRIVATE));
  if (reuse) {
    // reuse means it is okay that it overlaps an existing page mapping.
    // Only use this if you actually made the page reservation yourself.
    CHECK(expected != nullptr);
    flags |= MAP_FIXED;
  } else {
    CHECK_EQ(0, flags & MAP_FIXED);
  }

  if (byte_count == 0) {
    return new MemMap(filename, nullptr, 0, nullptr, 0, prot);
  }
  // Adjust 'offset' to be page-aligned as required by mmap.
  int page_offset = start % kPageSize;
  off_t page_aligned_offset = start - page_offset;
  // Adjust 'byte_count' to be page-aligned as we will map this anyway.
  size_t page_aligned_byte_count = RoundUp(byte_count + page_offset, kPageSize);
  // The 'expected' is modified (if specified, ie non-null) to be page aligned to the file but not
  // necessarily to virtual memory. mmap will page align 'expected' for us.
  byte* page_aligned_expected = (expected == nullptr) ? nullptr : (expected - page_offset);

  byte* actual = reinterpret_cast<byte*>(mmap(page_aligned_expected,
                                              page_aligned_byte_count,
                                              prot,
                                              flags,
                                              fd,
                                              page_aligned_offset));
  if (actual == MAP_FAILED) {
    auto saved_errno = errno;

    std::string maps;
    ReadFileToString("/proc/self/maps", &maps);

    *error_msg = StringPrintf("mmap(%p, %zd, 0x%x, 0x%x, %d, %" PRId64
                              ") of file '%s' failed: %s\n%s",
                              page_aligned_expected, page_aligned_byte_count, prot, flags, fd,
                              static_cast<int64_t>(page_aligned_offset), filename,
                              strerror(saved_errno), maps.c_str());
    return nullptr;
  }
  std::ostringstream check_map_request_error_msg;
  if (!CheckMapRequest(expected, actual, page_aligned_byte_count, &check_map_request_error_msg)) {
    *error_msg = check_map_request_error_msg.str();
    return nullptr;
  }
  return new MemMap(filename, actual + page_offset, byte_count, actual, page_aligned_byte_count,
                    prot);
}

MemMap::~MemMap() {
  if (base_begin_ == nullptr && base_size_ == 0) {
    return;
  }
  int result = munmap(base_begin_, base_size_);
  if (result == -1) {
    PLOG(FATAL) << "munmap failed";
  }

  // Remove it from maps_.
  MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
  bool found = false;
  for (auto it = maps_.lower_bound(base_begin_), end = maps_.end();
       it != end && it->first == base_begin_; ++it) {
    if (it->second == this) {
      found = true;
      maps_.erase(it);
      break;
    }
  }
  CHECK(found) << "MemMap not found";
}

MemMap::MemMap(const std::string& name, byte* begin, size_t size, void* base_begin,
               size_t base_size, int prot)
    : name_(name), begin_(begin), size_(size), base_begin_(base_begin), base_size_(base_size),
      prot_(prot) {
  if (size_ == 0) {
    CHECK(begin_ == nullptr);
    CHECK(base_begin_ == nullptr);
    CHECK_EQ(base_size_, 0U);
  } else {
    CHECK(begin_ != nullptr);
    CHECK(base_begin_ != nullptr);
    CHECK_NE(base_size_, 0U);

    // Add it to maps_.
    MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
    maps_.insert(std::pair<void*, MemMap*>(base_begin_, this));
  }
};

MemMap* MemMap::RemapAtEnd(byte* new_end, const char* tail_name, int tail_prot,
                           std::string* error_msg) {
  DCHECK_GE(new_end, Begin());
  DCHECK_LE(new_end, End());
  DCHECK_LE(begin_ + size_, reinterpret_cast<byte*>(base_begin_) + base_size_);
  DCHECK(IsAligned<kPageSize>(begin_));
  DCHECK(IsAligned<kPageSize>(base_begin_));
  DCHECK(IsAligned<kPageSize>(reinterpret_cast<byte*>(base_begin_) + base_size_));
  DCHECK(IsAligned<kPageSize>(new_end));
  byte* old_end = begin_ + size_;
  byte* old_base_end = reinterpret_cast<byte*>(base_begin_) + base_size_;
  byte* new_base_end = new_end;
  DCHECK_LE(new_base_end, old_base_end);
  if (new_base_end == old_base_end) {
    return new MemMap(tail_name, nullptr, 0, nullptr, 0, tail_prot);
  }
  size_ = new_end - reinterpret_cast<byte*>(begin_);
  base_size_ = new_base_end - reinterpret_cast<byte*>(base_begin_);
  DCHECK_LE(begin_ + size_, reinterpret_cast<byte*>(base_begin_) + base_size_);
  size_t tail_size = old_end - new_end;
  byte* tail_base_begin = new_base_end;
  size_t tail_base_size = old_base_end - new_base_end;
  DCHECK_EQ(tail_base_begin + tail_base_size, old_base_end);
  DCHECK(IsAligned<kPageSize>(tail_base_size));

#ifdef USE_ASHMEM
  // android_os_Debug.cpp read_mapinfo assumes all ashmem regions associated with the VM are
  // prefixed "dalvik-".
  std::string debug_friendly_name("dalvik-");
  debug_friendly_name += tail_name;
  ScopedFd fd(ashmem_create_region(debug_friendly_name.c_str(), tail_base_size));
  int flags = MAP_PRIVATE | MAP_FIXED;
  if (fd.get() == -1) {
    *error_msg = StringPrintf("ashmem_create_region failed for '%s': %s",
                              tail_name, strerror(errno));
    return nullptr;
  }
#else
  ScopedFd fd(-1);
  int flags = MAP_PRIVATE | MAP_ANONYMOUS;
#endif

  // Unmap/map the tail region.
  int result = munmap(tail_base_begin, tail_base_size);
  if (result == -1) {
    std::string maps;
    ReadFileToString("/proc/self/maps", &maps);
    *error_msg = StringPrintf("munmap(%p, %zd) failed for '%s'\n%s",
                              tail_base_begin, tail_base_size, name_.c_str(),
                              maps.c_str());
    return nullptr;
  }
  // Don't cause memory allocation between the munmap and the mmap
  // calls. Otherwise, libc (or something else) might take this memory
  // region. Note this isn't perfect as there's no way to prevent
  // other threads to try to take this memory region here.
  byte* actual = reinterpret_cast<byte*>(mmap(tail_base_begin, tail_base_size, tail_prot,
                                              flags, fd.get(), 0));
  if (actual == MAP_FAILED) {
    std::string maps;
    ReadFileToString("/proc/self/maps", &maps);
    *error_msg = StringPrintf("anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0) failed\n%s",
                              tail_base_begin, tail_base_size, tail_prot, flags, fd.get(),
                              maps.c_str());
    return nullptr;
  }
  return new MemMap(tail_name, actual, tail_size, actual, tail_base_size, tail_prot);
}

bool MemMap::Protect(int prot) {
  if (base_begin_ == nullptr && base_size_ == 0) {
    prot_ = prot;
    return true;
  }

  if (mprotect(base_begin_, base_size_, prot) == 0) {
    prot_ = prot;
    return true;
  }

  PLOG(ERROR) << "mprotect(" << reinterpret_cast<void*>(base_begin_) << ", " << base_size_ << ", "
              << prot << ") failed";
  return false;
}

bool MemMap::CheckNoGaps(MemMap* begin_map, MemMap* end_map) {
  MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
  CHECK(begin_map != nullptr);
  CHECK(end_map != nullptr);
  CHECK(HasMemMap(begin_map));
  CHECK(HasMemMap(end_map));
  CHECK_LE(begin_map->BaseBegin(), end_map->BaseBegin());
  MemMap* map = begin_map;
  while (map->BaseBegin() != end_map->BaseBegin()) {
    MemMap* next_map = GetLargestMemMapAt(map->BaseEnd());
    if (next_map == nullptr) {
      // Found a gap.
      return false;
    }
    map = next_map;
  }
  return true;
}

void MemMap::DumpMaps(std::ostream& os) {
  DumpMaps(os, maps_);
}

void MemMap::DumpMaps(std::ostream& os, const std::multimap<void*, MemMap*>& mem_maps) {
  MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
  DumpMapsLocked(os, mem_maps);
}

void MemMap::DumpMapsLocked(std::ostream& os, const std::multimap<void*, MemMap*>& mem_maps) {
  os << mem_maps;
}

bool MemMap::HasMemMap(MemMap* map) {
  void* base_begin = map->BaseBegin();
  for (auto it = maps_.lower_bound(base_begin), end = maps_.end();
       it != end && it->first == base_begin; ++it) {
    if (it->second == map) {
      return true;
    }
  }
  return false;
}

MemMap* MemMap::GetLargestMemMapAt(void* address) {
  size_t largest_size = 0;
  MemMap* largest_map = nullptr;
  for (auto it = maps_.lower_bound(address), end = maps_.end();
       it != end && it->first == address; ++it) {
    MemMap* map = it->second;
    CHECK(map != nullptr);
    if (largest_size < map->BaseSize()) {
      largest_size = map->BaseSize();
      largest_map = map;
    }
  }
  return largest_map;
}

std::ostream& operator<<(std::ostream& os, const MemMap& mem_map) {
  os << StringPrintf("[MemMap: %p-%p prot=0x%x %s]",
                     mem_map.BaseBegin(), mem_map.BaseEnd(), mem_map.GetProtect(),
                     mem_map.GetName().c_str());
  return os;
}

}  // namespace art