summaryrefslogtreecommitdiffstats
path: root/runtime/mem_map_test.cc
blob: 2b59cd9a4addf66b7585130b910ac812bef1bf0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "mem_map.h"

#include "UniquePtr.h"
#include "gtest/gtest.h"

namespace art {

class MemMapTest : public testing::Test {
 public:
  static byte* BaseBegin(MemMap* mem_map) {
    return reinterpret_cast<byte*>(mem_map->base_begin_);
  }
  static size_t BaseSize(MemMap* mem_map) {
    return mem_map->base_size_;
  }

  static void RemapAtEndTest(bool low_4gb) {
    std::string error_msg;
    // Cast the page size to size_t.
    const size_t page_size = static_cast<size_t>(kPageSize);
    // Map a two-page memory region.
    MemMap* m0 = MemMap::MapAnonymous("MemMapTest_RemapAtEndTest_map0",
                                      nullptr,
                                      2 * page_size,
                                      PROT_READ | PROT_WRITE,
                                      low_4gb,
                                      &error_msg);
    // Check its state and write to it.
    byte* base0 = m0->Begin();
    ASSERT_TRUE(base0 != nullptr) << error_msg;
    size_t size0 = m0->Size();
    EXPECT_EQ(m0->Size(), 2 * page_size);
    EXPECT_EQ(BaseBegin(m0), base0);
    EXPECT_EQ(BaseSize(m0), size0);
    memset(base0, 42, 2 * page_size);
    // Remap the latter half into a second MemMap.
    MemMap* m1 = m0->RemapAtEnd(base0 + page_size,
                                "MemMapTest_RemapAtEndTest_map1",
                                PROT_READ | PROT_WRITE,
                                &error_msg);
    // Check the states of the two maps.
    EXPECT_EQ(m0->Begin(), base0) << error_msg;
    EXPECT_EQ(m0->Size(), page_size);
    EXPECT_EQ(BaseBegin(m0), base0);
    EXPECT_EQ(BaseSize(m0), page_size);
    byte* base1 = m1->Begin();
    size_t size1 = m1->Size();
    EXPECT_EQ(base1, base0 + page_size);
    EXPECT_EQ(size1, page_size);
    EXPECT_EQ(BaseBegin(m1), base1);
    EXPECT_EQ(BaseSize(m1), size1);
    // Write to the second region.
    memset(base1, 43, page_size);
    // Check the contents of the two regions.
    for (size_t i = 0; i < page_size; ++i) {
      EXPECT_EQ(base0[i], 42);
    }
    for (size_t i = 0; i < page_size; ++i) {
      EXPECT_EQ(base1[i], 43);
    }
    // Unmap the first region.
    delete m0;
    // Make sure the second region is still accessible after the first
    // region is unmapped.
    for (size_t i = 0; i < page_size; ++i) {
      EXPECT_EQ(base1[i], 43);
    }
    delete m1;
  }
};

TEST_F(MemMapTest, MapAnonymousEmpty) {
  std::string error_msg;
  UniquePtr<MemMap> map(MemMap::MapAnonymous("MapAnonymousEmpty",
                                             nullptr,
                                             0,
                                             PROT_READ,
                                             false,
                                             &error_msg));
  ASSERT_TRUE(map.get() != nullptr) << error_msg;
  ASSERT_TRUE(error_msg.empty());
  map.reset(MemMap::MapAnonymous("MapAnonymousEmpty",
                                 nullptr,
                                 kPageSize,
                                 PROT_READ | PROT_WRITE,
                                 false,
                                 &error_msg));
  ASSERT_TRUE(map.get() != nullptr) << error_msg;
  ASSERT_TRUE(error_msg.empty());
}

#ifdef __LP64__
TEST_F(MemMapTest, MapAnonymousEmpty32bit) {
  std::string error_msg;
  UniquePtr<MemMap> map(MemMap::MapAnonymous("MapAnonymousEmpty",
                                             nullptr,
                                             kPageSize,
                                             PROT_READ | PROT_WRITE,
                                             true,
                                             &error_msg));
  ASSERT_TRUE(map.get() != nullptr) << error_msg;
  ASSERT_TRUE(error_msg.empty());
  ASSERT_LT(reinterpret_cast<uintptr_t>(BaseBegin(map.get())), 1ULL << 32);
}
#endif

TEST_F(MemMapTest, MapAnonymousExactAddr) {
  std::string error_msg;
  // Map at an address that should work, which should succeed.
  UniquePtr<MemMap> map0(MemMap::MapAnonymous("MapAnonymous0",
                                              reinterpret_cast<byte*>(ART_BASE_ADDRESS),
                                              kPageSize,
                                              PROT_READ | PROT_WRITE,
                                              false,
                                              &error_msg));
  ASSERT_TRUE(map0.get() != nullptr) << error_msg;
  ASSERT_TRUE(error_msg.empty());
  ASSERT_TRUE(map0->BaseBegin() == reinterpret_cast<void*>(ART_BASE_ADDRESS));
  // Map at an unspecified address, which should succeed.
  UniquePtr<MemMap> map1(MemMap::MapAnonymous("MapAnonymous1",
                                              nullptr,
                                              kPageSize,
                                              PROT_READ | PROT_WRITE,
                                              false,
                                              &error_msg));
  ASSERT_TRUE(map1.get() != nullptr) << error_msg;
  ASSERT_TRUE(error_msg.empty());
  ASSERT_TRUE(map1->BaseBegin() != nullptr);
  // Attempt to map at the same address, which should fail.
  UniquePtr<MemMap> map2(MemMap::MapAnonymous("MapAnonymous2",
                                              reinterpret_cast<byte*>(map1->BaseBegin()),
                                              kPageSize,
                                              PROT_READ | PROT_WRITE,
                                              false,
                                              &error_msg));
  ASSERT_TRUE(map2.get() == nullptr) << error_msg;
  ASSERT_TRUE(!error_msg.empty());
}

TEST_F(MemMapTest, RemapAtEnd) {
  RemapAtEndTest(false);
}

#ifdef __LP64__
TEST_F(MemMapTest, RemapAtEnd32bit) {
  RemapAtEndTest(true);
}
#endif

TEST_F(MemMapTest, MapAnonymousExactAddr32bitHighAddr) {
  std::string error_msg;
  UniquePtr<MemMap> map(MemMap::MapAnonymous("MapAnonymousExactAddr32bitHighAddr",
                                             reinterpret_cast<byte*>(0x71000000),
                                             0x21000000,
                                             PROT_READ | PROT_WRITE,
                                             true,
                                             &error_msg));
  ASSERT_TRUE(map.get() != nullptr) << error_msg;
  ASSERT_TRUE(error_msg.empty());
  ASSERT_EQ(reinterpret_cast<uintptr_t>(BaseBegin(map.get())), 0x71000000U);
}

TEST_F(MemMapTest, MapAnonymousOverflow) {
  std::string error_msg;
  uintptr_t ptr = 0;
  ptr -= kPageSize;  // Now it's close to the top.
  UniquePtr<MemMap> map(MemMap::MapAnonymous("MapAnonymousOverflow",
                                             reinterpret_cast<byte*>(ptr),
                                             2 * kPageSize,  // brings it over the top.
                                             PROT_READ | PROT_WRITE,
                                             false,
                                             &error_msg));
  ASSERT_EQ(nullptr, map.get());
  ASSERT_FALSE(error_msg.empty());
}

#ifdef __LP64__
TEST_F(MemMapTest, MapAnonymousLow4GBExpectedTooHigh) {
  std::string error_msg;
  UniquePtr<MemMap> map(MemMap::MapAnonymous("MapAnonymousLow4GBExpectedTooHigh",
                                             reinterpret_cast<byte*>(UINT64_C(0x100000000)),
                                             kPageSize,
                                             PROT_READ | PROT_WRITE,
                                             true,
                                             &error_msg));
  ASSERT_EQ(nullptr, map.get());
  ASSERT_FALSE(error_msg.empty());
}

TEST_F(MemMapTest, MapAnonymousLow4GBRangeTooHigh) {
  std::string error_msg;
  UniquePtr<MemMap> map(MemMap::MapAnonymous("MapAnonymousLow4GBRangeTooHigh",
                                             reinterpret_cast<byte*>(0xF0000000),
                                             0x20000000,
                                             PROT_READ | PROT_WRITE,
                                             true,
                                             &error_msg));
  ASSERT_EQ(nullptr, map.get());
  ASSERT_FALSE(error_msg.empty());
}
#endif

}  // namespace art