summaryrefslogtreecommitdiffstats
path: root/runtime/mirror/array-inl.h
blob: 7f974d0cf0ad2695afa9e2ce01293dcd065e0e88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
#define ART_RUNTIME_MIRROR_ARRAY_INL_H_

#include "array.h"

#include "class.h"
#include "gc/heap-inl.h"
#include "thread.h"
#include "utils.h"

namespace art {
namespace mirror {

template<VerifyObjectFlags kVerifyFlags, bool kDoReadBarrier>
inline size_t Array::SizeOf() {
  // This is safe from overflow because the array was already allocated, so we know it's sane.
  size_t component_size =
      GetClass<kVerifyFlags, kDoReadBarrier>()->template GetComponentSize<kDoReadBarrier>();
  // Don't need to check this since we already check this in GetClass.
  int32_t component_count =
      GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
  size_t header_size = DataOffset(component_size).SizeValue();
  size_t data_size = component_count * component_size;
  return header_size + data_size;
}

static inline size_t ComputeArraySize(Thread* self, Class* array_class, int32_t component_count,
                                      size_t component_size)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  DCHECK(array_class != NULL);
  DCHECK_GE(component_count, 0);
  DCHECK(array_class->IsArrayClass());

  size_t header_size = Array::DataOffset(component_size).SizeValue();
  size_t data_size = component_count * component_size;
  size_t size = header_size + data_size;

  // Check for overflow and throw OutOfMemoryError if this was an unreasonable request.
  size_t component_shift = sizeof(size_t) * 8 - 1 - CLZ(component_size);
  if (UNLIKELY(data_size >> component_shift != size_t(component_count) || size < data_size)) {
    self->ThrowOutOfMemoryError(StringPrintf("%s of length %d would overflow",
                                             PrettyDescriptor(array_class).c_str(),
                                             component_count).c_str());
    return 0;  // failure
  }
  return size;
}

// Used for setting the array length in the allocation code path to ensure it is guarded by a
// StoreStore fence.
class SetLengthVisitor {
 public:
  explicit SetLengthVisitor(int32_t length) : length_(length) {
  }

  void operator()(Object* obj, size_t usable_size) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    UNUSED(usable_size);
    // Avoid AsArray as object is not yet in live bitmap or allocation stack.
    Array* array = down_cast<Array*>(obj);
    // DCHECK(array->IsArrayInstance());
    array->SetLength(length_);
  }

 private:
  const int32_t length_;

  DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
};

// Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
// array.
class SetLengthToUsableSizeVisitor {
 public:
  SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size, size_t component_size) :
      minimum_length_(min_length), header_size_(header_size), component_size_(component_size) {
  }

  void operator()(Object* obj, size_t usable_size) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    // Avoid AsArray as object is not yet in live bitmap or allocation stack.
    Array* array = down_cast<Array*>(obj);
    // DCHECK(array->IsArrayInstance());
    int32_t length = (usable_size - header_size_) / component_size_;
    DCHECK_GE(length, minimum_length_);
    byte* old_end = reinterpret_cast<byte*>(array->GetRawData(component_size_, minimum_length_));
    byte* new_end = reinterpret_cast<byte*>(array->GetRawData(component_size_, length));
    // Ensure space beyond original allocation is zeroed.
    memset(old_end, 0, new_end - old_end);
    array->SetLength(length);
  }

 private:
  const int32_t minimum_length_;
  const size_t header_size_;
  const size_t component_size_;

  DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
};

template <bool kIsInstrumented>
inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count,
                           size_t component_size, gc::AllocatorType allocator_type,
                           bool fill_usable) {
  DCHECK(allocator_type != gc::kAllocatorTypeLOS);
  size_t size = ComputeArraySize(self, array_class, component_count, component_size);
  if (UNLIKELY(size == 0)) {
    return nullptr;
  }
  gc::Heap* heap = Runtime::Current()->GetHeap();
  Array* result;
  if (!fill_usable) {
    SetLengthVisitor visitor(component_count);
    result = down_cast<Array*>(
        heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
                                                              allocator_type, visitor));
  } else {
    SetLengthToUsableSizeVisitor visitor(component_count, DataOffset(component_size).SizeValue(),
                                         component_size);
    result = down_cast<Array*>(
        heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
                                                              allocator_type, visitor));
  }
  if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
    array_class = result->GetClass();  // In case the array class moved.
    CHECK_EQ(array_class->GetComponentSize(), component_size);
    if (!fill_usable) {
      CHECK_EQ(result->SizeOf(), size);
    } else {
      CHECK_GE(result->SizeOf(), size);
    }
  }
  return result;
}

template<class T>
inline void PrimitiveArray<T>::VisitRoots(RootCallback* callback, void* arg) {
  if (array_class_ != nullptr) {
    callback(reinterpret_cast<mirror::Object**>(&array_class_), arg, 0, kRootStickyClass);
  }
}

template<typename T>
inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
  DCHECK(array_class_ != NULL);
  Array* raw_array = Array::Alloc<true>(self, array_class_, length, sizeof(T),
                                        Runtime::Current()->GetHeap()->GetCurrentAllocator());
  return down_cast<PrimitiveArray<T>*>(raw_array);
}

// Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
template<typename T>
static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
  d += count;
  s += count;
  for (int32_t i = 0; i < count; ++i) {
    d--;
    s--;
    *d = *s;
  }
}

// Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
template<typename T>
static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
  for (int32_t i = 0; i < count; ++i) {
    *d = *s;
    d++;
    s++;
  }
}

template<class T>
inline void PrimitiveArray<T>::Memmove(int32_t dst_pos, PrimitiveArray<T>* src, int32_t src_pos,
                                       int32_t count) {
  if (UNLIKELY(count == 0)) {
    return;
  }
  DCHECK_GE(dst_pos, 0);
  DCHECK_GE(src_pos, 0);
  DCHECK_GT(count, 0);
  DCHECK(src != nullptr);
  DCHECK_LT(dst_pos, GetLength());
  DCHECK_LE(dst_pos, GetLength() - count);
  DCHECK_LT(src_pos, src->GetLength());
  DCHECK_LE(src_pos, src->GetLength() - count);

  // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
  // in our implementation, because they may copy byte-by-byte.
  if (LIKELY(src != this)) {
    // Memcpy ok for guaranteed non-overlapping distinct arrays.
    Memcpy(dst_pos, src, src_pos, count);
  } else {
    // Handle copies within the same array using the appropriate direction copy.
    void* dst_raw = GetRawData(sizeof(T), dst_pos);
    const void* src_raw = src->GetRawData(sizeof(T), src_pos);
    if (sizeof(T) == sizeof(uint8_t)) {
      uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
      const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
      memmove(d, s, count);
    } else {
      const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
      if (sizeof(T) == sizeof(uint16_t)) {
        uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
        const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
        if (copy_forward) {
          ArrayForwardCopy<uint16_t>(d, s, count);
        } else {
          ArrayBackwardCopy<uint16_t>(d, s, count);
        }
      } else if (sizeof(T) == sizeof(uint32_t)) {
        uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
        const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
        if (copy_forward) {
          ArrayForwardCopy<uint32_t>(d, s, count);
        } else {
          ArrayBackwardCopy<uint32_t>(d, s, count);
        }
      } else {
        DCHECK_EQ(sizeof(T), sizeof(uint64_t));
        uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
        const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
        if (copy_forward) {
          ArrayForwardCopy<uint64_t>(d, s, count);
        } else {
          ArrayBackwardCopy<uint64_t>(d, s, count);
        }
      }
    }
  }
}

template<class T>
inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos, PrimitiveArray<T>* src, int32_t src_pos,
                                      int32_t count) {
  if (UNLIKELY(count == 0)) {
    return;
  }
  DCHECK_GE(dst_pos, 0);
  DCHECK_GE(src_pos, 0);
  DCHECK_GT(count, 0);
  DCHECK(src != nullptr);
  DCHECK_LT(dst_pos, GetLength());
  DCHECK_LE(dst_pos, GetLength() - count);
  DCHECK_LT(src_pos, src->GetLength());
  DCHECK_LE(src_pos, src->GetLength() - count);

  // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
  // in our implementation, because they may copy byte-by-byte.
  void* dst_raw = GetRawData(sizeof(T), dst_pos);
  const void* src_raw = src->GetRawData(sizeof(T), src_pos);
  if (sizeof(T) == sizeof(uint8_t)) {
    memcpy(dst_raw, src_raw, count);
  } else if (sizeof(T) == sizeof(uint16_t)) {
    uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
    const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
    ArrayForwardCopy<uint16_t>(d, s, count);
  } else if (sizeof(T) == sizeof(uint32_t)) {
    uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
    const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
    ArrayForwardCopy<uint32_t>(d, s, count);
  } else {
    DCHECK_EQ(sizeof(T), sizeof(uint64_t));
    uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
    const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
    ArrayForwardCopy<uint64_t>(d, s, count);
  }
}

}  // namespace mirror
}  // namespace art

#endif  // ART_RUNTIME_MIRROR_ARRAY_INL_H_