1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_CLASS_H_
#define ART_RUNTIME_MIRROR_CLASS_H_
#include "invoke_type.h"
#include "modifiers.h"
#include "object.h"
#include "primitive.h"
/*
* A magic value for refOffsets. Ignore the bits and walk the super
* chain when this is the value.
* [This is an unlikely "natural" value, since it would be 30 non-ref instance
* fields followed by 2 ref instance fields.]
*/
#define CLASS_WALK_SUPER 3U
#define CLASS_BITS_PER_WORD (sizeof(uint32_t) * 8)
#define CLASS_OFFSET_ALIGNMENT 4
#define CLASS_HIGH_BIT (1U << (CLASS_BITS_PER_WORD - 1))
/*
* Given an offset, return the bit number which would encode that offset.
* Local use only.
*/
#define _CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset) \
((unsigned int)(byteOffset) / \
CLASS_OFFSET_ALIGNMENT)
/*
* Is the given offset too large to be encoded?
*/
#define CLASS_CAN_ENCODE_OFFSET(byteOffset) \
(_CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset) < CLASS_BITS_PER_WORD)
/*
* Return a single bit, encoding the offset.
* Undefined if the offset is too large, as defined above.
*/
#define CLASS_BIT_FROM_OFFSET(byteOffset) \
(CLASS_HIGH_BIT >> _CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset))
/*
* Return an offset, given a bit number as returned from CLZ.
*/
#define CLASS_OFFSET_FROM_CLZ(rshift) \
MemberOffset((static_cast<int>(rshift) * CLASS_OFFSET_ALIGNMENT))
namespace art {
struct ClassClassOffsets;
struct ClassOffsets;
class Signature;
class StringPiece;
namespace mirror {
class ArtField;
class ClassLoader;
class DexCache;
class IfTable;
// C++ mirror of java.lang.Class
class MANAGED Class : public Object {
public:
// Class Status
//
// kStatusNotReady: If a Class cannot be found in the class table by
// FindClass, it allocates an new one with AllocClass in the
// kStatusNotReady and calls LoadClass. Note if it does find a
// class, it may not be kStatusResolved and it will try to push it
// forward toward kStatusResolved.
//
// kStatusIdx: LoadClass populates with Class with information from
// the DexFile, moving the status to kStatusIdx, indicating that the
// Class value in super_class_ has not been populated. The new Class
// can then be inserted into the classes table.
//
// kStatusLoaded: After taking a lock on Class, the ClassLinker will
// attempt to move a kStatusIdx class forward to kStatusLoaded by
// using ResolveClass to initialize the super_class_ and ensuring the
// interfaces are resolved.
//
// kStatusResolved: Still holding the lock on Class, the ClassLinker
// shows linking is complete and fields of the Class populated by making
// it kStatusResolved. Java allows circularities of the form where a super
// class has a field that is of the type of the sub class. We need to be able
// to fully resolve super classes while resolving types for fields.
//
// kStatusRetryVerificationAtRuntime: The verifier sets a class to
// this state if it encounters a soft failure at compile time. This
// often happens when there are unresolved classes in other dex
// files, and this status marks a class as needing to be verified
// again at runtime.
//
// TODO: Explain the other states
enum Status {
kStatusError = -1,
kStatusNotReady = 0,
kStatusIdx = 1, // Loaded, DEX idx in super_class_type_idx_ and interfaces_type_idx_.
kStatusLoaded = 2, // DEX idx values resolved.
kStatusResolved = 3, // Part of linking.
kStatusVerifying = 4, // In the process of being verified.
kStatusRetryVerificationAtRuntime = 5, // Compile time verification failed, retry at runtime.
kStatusVerifyingAtRuntime = 6, // Retrying verification at runtime.
kStatusVerified = 7, // Logically part of linking; done pre-init.
kStatusInitializing = 8, // Class init in progress.
kStatusInitialized = 9, // Ready to go.
kStatusMax = 10,
};
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
Status GetStatus() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
COMPILE_ASSERT(sizeof(Status) == sizeof(uint32_t), size_of_status_not_uint32);
return static_cast<Status>(GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, status_),
true));
}
void SetStatus(Status new_status, Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset StatusOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, status_);
}
// Returns true if the class has failed to link.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsErroneous() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() == kStatusError;
}
// Returns true if the class has been loaded.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsIdxLoaded() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusIdx;
}
// Returns true if the class has been loaded.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsLoaded() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusLoaded;
}
// Returns true if the class has been linked.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsResolved() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusResolved;
}
// Returns true if the class was compile-time verified.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsCompileTimeVerified() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusRetryVerificationAtRuntime;
}
// Returns true if the class has been verified.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsVerified() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusVerified;
}
// Returns true if the class is initializing.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsInitializing() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() >= kStatusInitializing;
}
// Returns true if the class is initialized.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsInitialized() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetStatus<kVerifyFlags>() == kStatusInitialized;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
uint32_t GetAccessFlags() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetAccessFlags(uint32_t new_access_flags) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), new_access_flags, false);
}
// Returns true if the class is an interface.
bool IsInterface() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccInterface) != 0;
}
// Returns true if the class is declared public.
bool IsPublic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccPublic) != 0;
}
// Returns true if the class is declared final.
bool IsFinal() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccFinal) != 0;
}
bool IsFinalizable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccClassIsFinalizable) != 0;
}
void SetFinalizable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uint32_t flags = GetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), false);
SetAccessFlags(flags | kAccClassIsFinalizable);
}
// Returns true if the class is abstract.
bool IsAbstract() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccAbstract) != 0;
}
// Returns true if the class is an annotation.
bool IsAnnotation() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccAnnotation) != 0;
}
// Returns true if the class is synthetic.
bool IsSynthetic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccSynthetic) != 0;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags<kVerifyFlags>() & kAccClassIsReference) != 0;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsWeakReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags<kVerifyFlags>() & kAccClassIsWeakReference) != 0;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsSoftReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags<kVerifyFlags>() & kAccReferenceFlagsMask) == kAccClassIsReference;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsFinalizerReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags<kVerifyFlags>() & kAccClassIsFinalizerReference) != 0;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPhantomReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags<kVerifyFlags>() & kAccClassIsPhantomReference) != 0;
}
// Can references of this type be assigned to by things of another type? For non-array types
// this is a matter of whether sub-classes may exist - which they can't if the type is final.
// For array classes, where all the classes are final due to there being no sub-classes, an
// Object[] may be assigned to by a String[] but a String[] may not be assigned to by other
// types as the component is final.
bool CannotBeAssignedFromOtherTypes() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (!IsArrayClass()) {
return IsFinal();
} else {
Class* component = GetComponentType();
if (component->IsPrimitive()) {
return true;
} else {
return component->CannotBeAssignedFromOtherTypes();
}
}
}
String* GetName() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the cached name.
void SetName(String* name) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Sets the cached name.
// Computes the name, then sets the cached value.
String* ComputeName() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsProxyClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Read access flags without using getter as whether something is a proxy can be check in
// any loaded state
// TODO: switch to a check if the super class is java.lang.reflect.Proxy?
uint32_t access_flags = GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_),
false);
return (access_flags & kAccClassIsProxy) != 0;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
Primitive::Type GetPrimitiveType() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t));
return static_cast<Primitive::Type>(
GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_), false));
}
void SetPrimitiveType(Primitive::Type new_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t));
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_), new_type, false);
}
// Returns true if the class is a primitive type.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitive() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() != Primitive::kPrimNot;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveBoolean() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimBoolean;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveByte() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimByte;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveChar() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimChar;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveShort() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimShort;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveInt() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType() == Primitive::kPrimInt;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveLong() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimLong;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveFloat() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimFloat;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveDouble() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimDouble;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveVoid() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimVoid;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsPrimitiveArray() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return IsArrayClass<kVerifyFlags>() &&
GetComponentType<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>()->
IsPrimitive();
}
// Depth of class from java.lang.Object
uint32_t Depth() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uint32_t depth = 0;
for (Class* klass = this; klass->GetSuperClass() != NULL; klass = klass->GetSuperClass()) {
depth++;
}
return depth;
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, bool kDoReadBarrier = true>
bool IsArrayClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetComponentType<kVerifyFlags, kDoReadBarrier>() != NULL;
}
bool IsClassClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsStringClass() const;
bool IsThrowableClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<bool kDoReadBarrier = true>
bool IsArtFieldClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<bool kDoReadBarrier = true>
bool IsArtMethodClass();
static MemberOffset ComponentTypeOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, component_type_);
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, bool kDoReadBarrier = true>
Class* GetComponentType() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetFieldObject<Class, kVerifyFlags, kDoReadBarrier>(ComponentTypeOffset(), false);
}
void SetComponentType(Class* new_component_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(GetComponentType() == NULL);
DCHECK(new_component_type != NULL);
// Component type is invariant: use non-transactional mode without check.
SetFieldObject<false, false>(ComponentTypeOffset(), new_component_type, false);
}
template<bool kDoReadBarrier = true>
size_t GetComponentSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return Primitive::ComponentSize(
GetComponentType<kDefaultVerifyFlags, kDoReadBarrier>()->GetPrimitiveType());
}
bool IsObjectClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return !IsPrimitive() && GetSuperClass() == NULL;
}
bool IsInstantiable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (!IsPrimitive() && !IsInterface() && !IsAbstract()) || ((IsAbstract()) && IsArrayClass());
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
bool IsObjectArrayClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetComponentType<kVerifyFlags>() != nullptr && !GetComponentType<kVerifyFlags>()->IsPrimitive();
}
// Creates a raw object instance but does not invoke the default constructor.
template <bool kIsInstrumented>
ALWAYS_INLINE Object* Alloc(Thread* self, gc::AllocatorType allocator_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Object* AllocObject(Thread* self)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Object* AllocNonMovableObject(Thread* self)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsVariableSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Classes and arrays vary in size, and so the object_size_ field cannot
// be used to get their instance size
return IsClassClass() || IsArrayClass();
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, bool kDoReadBarrier = true>
uint32_t SizeOf() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, class_size_), false);
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
uint32_t GetClassSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, class_size_), false);
}
void SetClassSize(uint32_t new_class_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint32_t GetObjectSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetObjectSize(uint32_t new_object_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(!IsVariableSize());
// Not called within a transaction.
return SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, object_size_), new_object_size, false);
}
// Returns true if this class is in the same packages as that class.
bool IsInSamePackage(Class* that) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static bool IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2);
// Returns true if this class can access that class.
bool CanAccess(Class* that) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return that->IsPublic() || this->IsInSamePackage(that);
}
// Can this class access a member in the provided class with the provided member access flags?
// Note that access to the class isn't checked in case the declaring class is protected and the
// method has been exposed by a public sub-class
bool CanAccessMember(Class* access_to, uint32_t member_flags)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Classes can access all of their own members
if (this == access_to) {
return true;
}
// Public members are trivially accessible
if (member_flags & kAccPublic) {
return true;
}
// Private members are trivially not accessible
if (member_flags & kAccPrivate) {
return false;
}
// Check for protected access from a sub-class, which may or may not be in the same package.
if (member_flags & kAccProtected) {
if (this->IsSubClass(access_to)) {
return true;
}
}
// Allow protected access from other classes in the same package.
return this->IsInSamePackage(access_to);
}
// Can this class access a resolved field?
// Note that access to field's class is checked and this may require looking up the class
// referenced by the FieldId in the DexFile in case the declaring class is inaccessible.
bool CanAccessResolvedField(Class* access_to, ArtField* field,
DexCache* dex_cache, uint32_t field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool CheckResolvedFieldAccess(Class* access_to, ArtField* field,
uint32_t field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Can this class access a resolved method?
// Note that access to methods's class is checked and this may require looking up the class
// referenced by the MethodId in the DexFile in case the declaring class is inaccessible.
bool CanAccessResolvedMethod(Class* access_to, ArtMethod* resolved_method,
DexCache* dex_cache, uint32_t method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <InvokeType throw_invoke_type>
bool CheckResolvedMethodAccess(Class* access_to, ArtMethod* resolved_method,
uint32_t method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsSubClass(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Can src be assigned to this class? For example, String can be assigned to Object (by an
// upcast), however, an Object cannot be assigned to a String as a potentially exception throwing
// downcast would be necessary. Similarly for interfaces, a class that implements (or an interface
// that extends) another can be assigned to its parent, but not vice-versa. All Classes may assign
// to themselves. Classes for primitive types may not assign to each other.
inline bool IsAssignableFrom(Class* src) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(src != NULL);
if (this == src) {
// Can always assign to things of the same type.
return true;
} else if (IsObjectClass()) {
// Can assign any reference to java.lang.Object.
return !src->IsPrimitive();
} else if (IsInterface()) {
return src->Implements(this);
} else if (src->IsArrayClass()) {
return IsAssignableFromArray(src);
} else {
return !src->IsInterface() && src->IsSubClass(this);
}
}
Class* GetSuperClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetSuperClass(Class *new_super_class) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Super class is assigned once, except during class linker initialization.
Class* old_super_class = GetFieldObject<Class>(OFFSET_OF_OBJECT_MEMBER(Class, super_class_),
false);
DCHECK(old_super_class == nullptr || old_super_class == new_super_class);
DCHECK(new_super_class != nullptr);
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, super_class_), new_super_class, false);
}
bool HasSuperClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetSuperClass() != NULL;
}
static MemberOffset SuperClassOffset() {
return MemberOffset(OFFSETOF_MEMBER(Class, super_class_));
}
ClassLoader* GetClassLoader() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetClassLoader(ClassLoader* new_cl) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset DexCacheOffset() {
return MemberOffset(OFFSETOF_MEMBER(Class, dex_cache_));
}
enum {
kDumpClassFullDetail = 1,
kDumpClassClassLoader = (1 << 1),
kDumpClassInitialized = (1 << 2),
};
void DumpClass(std::ostream& os, int flags) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
DexCache* GetDexCache() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDexCache(DexCache* new_dex_cache) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<ArtMethod>* GetDirectMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDirectMethods(ObjectArray<ArtMethod>* new_direct_methods)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* GetDirectMethod(int32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDirectMethod(uint32_t i, ArtMethod* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the number of static, private, and constructor methods.
uint32_t NumDirectMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
ObjectArray<ArtMethod>* GetVirtualMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetVirtualMethods(ObjectArray<ArtMethod>* new_virtual_methods)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the number of non-inherited virtual methods.
uint32_t NumVirtualMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
ArtMethod* GetVirtualMethod(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* GetVirtualMethodDuringLinking(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetVirtualMethod(uint32_t i, ArtMethod* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<ArtMethod>* GetVTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<ArtMethod>* GetVTableDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetVTable(ObjectArray<ArtMethod>* new_vtable)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset VTableOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, vtable_);
}
ObjectArray<ArtMethod>* GetImTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetImTable(ObjectArray<ArtMethod>* new_imtable)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset ImTableOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, imtable_);
}
// Given a method implemented by this class but potentially from a super class, return the
// specific implementation method for this class.
ArtMethod* FindVirtualMethodForVirtual(ArtMethod* method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Given a method implemented by this class' super class, return the specific implementation
// method for this class.
ArtMethod* FindVirtualMethodForSuper(ArtMethod* method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Given a method implemented by this class, but potentially from a
// super class or interface, return the specific implementation
// method for this class.
ArtMethod* FindVirtualMethodForInterface(ArtMethod* method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE;
ArtMethod* FindVirtualMethodForVirtualOrInterface(ArtMethod* method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindInterfaceMethod(const StringPiece& name, const Signature& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindInterfaceMethod(const DexCache* dex_cache, uint32_t dex_method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredDirectMethod(const StringPiece& name, const StringPiece& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredDirectMethod(const StringPiece& name, const Signature& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDirectMethod(const StringPiece& name, const StringPiece& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDirectMethod(const StringPiece& name, const Signature& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredVirtualMethod(const StringPiece& name, const StringPiece& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredVirtualMethod(const StringPiece& name, const Signature& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindVirtualMethod(const StringPiece& name, const StringPiece& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindVirtualMethod(const StringPiece& name, const Signature& signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindClassInitializer() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
int32_t GetIfTableCount() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
IfTable* GetIfTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetIfTable(IfTable* new_iftable) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Get instance fields of the class (See also GetSFields).
ObjectArray<ArtField>* GetIFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetIFields(ObjectArray<ArtField>* new_ifields) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint32_t NumInstanceFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* GetInstanceField(uint32_t i) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetInstanceField(uint32_t i, ArtField* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the number of instance fields containing reference types.
uint32_t NumReferenceInstanceFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsResolved() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_), false);
}
uint32_t NumReferenceInstanceFieldsDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsLoaded() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_), false);
}
void SetNumReferenceInstanceFields(uint32_t new_num) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_), new_num,
false);
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
uint32_t GetReferenceInstanceOffsets() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsResolved<kVerifyFlags>() || IsErroneous<kVerifyFlags>());
return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_),
false);
}
void SetReferenceInstanceOffsets(uint32_t new_reference_offsets)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Beginning of static field data
static MemberOffset FieldsOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, fields_);
}
// Returns the number of static fields containing reference types.
uint32_t NumReferenceStaticFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsResolved() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_), false);
}
uint32_t NumReferenceStaticFieldsDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsLoaded() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_), false);
}
void SetNumReferenceStaticFields(uint32_t new_num) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_), new_num, false);
}
// Gets the static fields of the class.
ObjectArray<ArtField>* GetSFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetSFields(ObjectArray<ArtField>* new_sfields) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint32_t NumStaticFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// TODO: uint16_t
ArtField* GetStaticField(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// TODO: uint16_t
void SetStaticField(uint32_t i, ArtField* f) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
uint32_t GetReferenceStaticOffsets() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, reference_static_offsets_),
false);
}
void SetReferenceStaticOffsets(uint32_t new_reference_offsets)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Find a static or instance field using the JLS resolution order
ArtField* FindField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given instance field in this class or a superclass.
ArtField* FindInstanceField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given instance field in this class or a superclass, only searches classes that
// have the same dex cache.
ArtField* FindInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredInstanceField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given static field in this class or a superclass.
ArtField* FindStaticField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given static field in this class or superclass, only searches classes that
// have the same dex cache.
ArtField* FindStaticField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredStaticField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredStaticField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
pid_t GetClinitThreadId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsIdxLoaded() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_), false);
}
void SetClinitThreadId(pid_t new_clinit_thread_id) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (Runtime::Current()->IsActiveTransaction()) {
SetField32<true>(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_), new_clinit_thread_id,
false);
} else {
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_), new_clinit_thread_id,
false);
}
}
Class* GetVerifyErrorClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// DCHECK(IsErroneous());
return GetFieldObject<Class>(OFFSET_OF_OBJECT_MEMBER(Class, verify_error_class_), false);
}
uint16_t GetDexClassDefIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_class_def_idx_), false);
}
void SetDexClassDefIndex(uint16_t class_def_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, dex_class_def_idx_), class_def_idx, false);
}
uint16_t GetDexTypeIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_type_idx_), false);
}
void SetDexTypeIndex(uint16_t type_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, dex_type_idx_), type_idx, false);
}
static Class* GetJavaLangClass() {
DCHECK(java_lang_Class_ != NULL);
return java_lang_Class_;
}
// Can't call this SetClass or else gets called instead of Object::SetClass in places.
static void SetClassClass(Class* java_lang_Class);
static void ResetClass();
static void VisitRoots(RootCallback* callback, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// When class is verified, set the kAccPreverified flag on each method.
void SetPreverifiedFlagOnAllMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <bool kVisitClass, typename Visitor>
void VisitReferences(mirror::Class* klass, const Visitor& visitor)
NO_THREAD_SAFETY_ANALYSIS;
private:
void SetVerifyErrorClass(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <bool throw_on_failure, bool use_referrers_cache>
bool ResolvedFieldAccessTest(Class* access_to, ArtField* field,
uint32_t field_idx, DexCache* dex_cache)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <bool throw_on_failure, bool use_referrers_cache, InvokeType throw_invoke_type>
bool ResolvedMethodAccessTest(Class* access_to, ArtMethod* resolved_method,
uint32_t method_idx, DexCache* dex_cache)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool Implements(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsArrayAssignableFromArray(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsAssignableFromArray(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CheckObjectAlloc() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// defining class loader, or NULL for the "bootstrap" system loader
HeapReference<ClassLoader> class_loader_;
// For array classes, the component class object for instanceof/checkcast
// (for String[][][], this will be String[][]). NULL for non-array classes.
HeapReference<Class> component_type_;
// DexCache of resolved constant pool entries (will be NULL for classes generated by the
// runtime such as arrays and primitive classes).
HeapReference<DexCache> dex_cache_;
// static, private, and <init> methods
HeapReference<ObjectArray<ArtMethod> > direct_methods_;
// instance fields
//
// These describe the layout of the contents of an Object.
// Note that only the fields directly declared by this class are
// listed in ifields; fields declared by a superclass are listed in
// the superclass's Class.ifields.
//
// All instance fields that refer to objects are guaranteed to be at
// the beginning of the field list. num_reference_instance_fields_
// specifies the number of reference fields.
HeapReference<ObjectArray<ArtField> > ifields_;
// The interface table (iftable_) contains pairs of a interface class and an array of the
// interface methods. There is one pair per interface supported by this class. That means one
// pair for each interface we support directly, indirectly via superclass, or indirectly via a
// superinterface. This will be null if neither we nor our superclass implement any interfaces.
//
// Why we need this: given "class Foo implements Face", declare "Face faceObj = new Foo()".
// Invoke faceObj.blah(), where "blah" is part of the Face interface. We can't easily use a
// single vtable.
//
// For every interface a concrete class implements, we create an array of the concrete vtable_
// methods for the methods in the interface.
HeapReference<IfTable> iftable_;
// Interface method table (imt), for quick "invoke-interface".
HeapReference<ObjectArray<ArtMethod> > imtable_;
// Descriptor for the class such as "java.lang.Class" or "[C". Lazily initialized by ComputeName
HeapReference<String> name_;
// Static fields
HeapReference<ObjectArray<ArtField>> sfields_;
// The superclass, or NULL if this is java.lang.Object, an interface or primitive type.
HeapReference<Class> super_class_;
// If class verify fails, we must return same error on subsequent tries.
HeapReference<Class> verify_error_class_;
// Virtual methods defined in this class; invoked through vtable.
HeapReference<ObjectArray<ArtMethod> > virtual_methods_;
// Virtual method table (vtable), for use by "invoke-virtual". The vtable from the superclass is
// copied in, and virtual methods from our class either replace those from the super or are
// appended. For abstract classes, methods may be created in the vtable that aren't in
// virtual_ methods_ for miranda methods.
HeapReference<ObjectArray<ArtMethod> > vtable_;
// Access flags; low 16 bits are defined by VM spec.
uint32_t access_flags_;
// Total size of the Class instance; used when allocating storage on gc heap.
// See also object_size_.
uint32_t class_size_;
// Tid used to check for recursive <clinit> invocation.
pid_t clinit_thread_id_;
// ClassDef index in dex file, -1 if no class definition such as an array.
// TODO: really 16bits
int32_t dex_class_def_idx_;
// Type index in dex file.
// TODO: really 16bits
int32_t dex_type_idx_;
// Number of instance fields that are object refs.
uint32_t num_reference_instance_fields_;
// Number of static fields that are object refs,
uint32_t num_reference_static_fields_;
// Total object size; used when allocating storage on gc heap.
// (For interfaces and abstract classes this will be zero.)
// See also class_size_.
uint32_t object_size_;
// Primitive type value, or Primitive::kPrimNot (0); set for generated primitive classes.
Primitive::Type primitive_type_;
// Bitmap of offsets of ifields.
uint32_t reference_instance_offsets_;
// Bitmap of offsets of sfields.
uint32_t reference_static_offsets_;
// State of class initialization.
Status status_;
// TODO: ?
// initiating class loader list
// NOTE: for classes with low serialNumber, these are unused, and the
// values are kept in a table in gDvm.
// InitiatingLoaderList initiating_loader_list_;
// Location of first static field.
uint32_t fields_[0];
// java.lang.Class
static Class* java_lang_Class_;
friend struct art::ClassOffsets; // for verifying offset information
DISALLOW_IMPLICIT_CONSTRUCTORS(Class);
};
std::ostream& operator<<(std::ostream& os, const Class::Status& rhs);
class MANAGED ClassClass : public Class {
private:
int32_t pad_;
int64_t serialVersionUID_;
friend struct art::ClassClassOffsets; // for verifying offset information
DISALLOW_IMPLICIT_CONSTRUCTORS(ClassClass);
};
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_CLASS_H_
|