summaryrefslogtreecommitdiffstats
path: root/runtime/profiler.cc
blob: 951444812b96bf3034f984e6741f51a53c4fd3f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "profiler.h"

#include <fstream>
#include <sys/uio.h>
#include <sys/file.h>

#include "base/stl_util.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "common_throws.h"
#include "debugger.h"
#include "dex_file-inl.h"
#include "instrumentation.h"
#include "mirror/art_method-inl.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache.h"
#include "mirror/object_array-inl.h"
#include "mirror/object-inl.h"
#include "os.h"
#include "scoped_thread_state_change.h"
#include "ScopedLocalRef.h"
#include "thread.h"
#include "thread_list.h"

#ifdef HAVE_ANDROID_OS
#include "cutils/properties.h"
#endif

#if !defined(ART_USE_PORTABLE_COMPILER)
#include "entrypoints/quick/quick_entrypoints.h"
#endif

namespace art {

BackgroundMethodSamplingProfiler* BackgroundMethodSamplingProfiler::profiler_ = nullptr;
pthread_t BackgroundMethodSamplingProfiler::profiler_pthread_ = 0U;
volatile bool BackgroundMethodSamplingProfiler::shutting_down_ = false;

// TODO: this profiler runs regardless of the state of the machine.  Maybe we should use the
// wakelock or something to modify the run characteristics.  This can be done when we
// have some performance data after it's been used for a while.

// Walk through the method within depth of max_depth_ on the Java stack
class BoundedStackVisitor : public StackVisitor {
 public:
  BoundedStackVisitor(std::vector<std::pair<mirror::ArtMethod*, uint32_t>>* stack,
      Thread* thread, uint32_t max_depth)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      : StackVisitor(thread, NULL), stack_(stack), max_depth_(max_depth), depth_(0) {
  }

  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    mirror::ArtMethod* m = GetMethod();
    if (m->IsRuntimeMethod()) {
      return true;
    }
    uint32_t dex_pc_ = GetDexPc();
    stack_->push_back(std::make_pair(m, dex_pc_));
    ++depth_;
    if (depth_ < max_depth_) {
      return true;
    } else {
      return false;
    }
  }

 private:
  std::vector<std::pair<mirror::ArtMethod*, uint32_t>>* stack_;
  const uint32_t max_depth_;
  uint32_t depth_;
};

// This is called from either a thread list traversal or from a checkpoint.  Regardless
// of which caller, the mutator lock must be held.
static void GetSample(Thread* thread, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  BackgroundMethodSamplingProfiler* profiler =
      reinterpret_cast<BackgroundMethodSamplingProfiler*>(arg);
  const ProfilerOptions profile_options = profiler->GetProfilerOptions();
  switch (profile_options.GetProfileType()) {
    case kProfilerMethod: {
      mirror::ArtMethod* method = thread->GetCurrentMethod(nullptr);
      if (false && method == nullptr) {
        LOG(INFO) << "No current method available";
        std::ostringstream os;
        thread->Dump(os);
        std::string data(os.str());
        LOG(INFO) << data;
      }
      profiler->RecordMethod(method);
      break;
    }
    case kProfilerBoundedStack: {
      std::vector<InstructionLocation> stack;
      uint32_t max_depth = profile_options.GetMaxStackDepth();
      BoundedStackVisitor bounded_stack_visitor(&stack, thread, max_depth);
      bounded_stack_visitor.WalkStack();
      profiler->RecordStack(stack);
      break;
    }
    default:
      LOG(INFO) << "This profile type is not implemented.";
  }
}

// A closure that is called by the thread checkpoint code.
class SampleCheckpoint : public Closure {
 public:
  explicit SampleCheckpoint(BackgroundMethodSamplingProfiler* const profiler) :
    profiler_(profiler) {}

  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
    Thread* self = Thread::Current();
    if (thread == nullptr) {
      LOG(ERROR) << "Checkpoint with nullptr thread";
      return;
    }

    // Grab the mutator lock (shared access).
    ScopedObjectAccess soa(self);

    // Grab a sample.
    GetSample(thread, this->profiler_);

    // And finally tell the barrier that we're done.
    this->profiler_->GetBarrier().Pass(self);
  }

 private:
  BackgroundMethodSamplingProfiler* const profiler_;
};

bool BackgroundMethodSamplingProfiler::ShuttingDown(Thread* self) {
  MutexLock mu(self, *Locks::profiler_lock_);
  return shutting_down_;
}

void* BackgroundMethodSamplingProfiler::RunProfilerThread(void* arg) {
  Runtime* runtime = Runtime::Current();
  BackgroundMethodSamplingProfiler* profiler =
      reinterpret_cast<BackgroundMethodSamplingProfiler*>(arg);

  // Add a random delay for the first time run so that we don't hammer the CPU
  // with all profiles running at the same time.
  const int kRandomDelayMaxSecs = 30;
  const double kMaxBackoffSecs = 24*60*60;   // Max backoff time.

  srand(MicroTime() * getpid());
  int startup_delay = rand() % kRandomDelayMaxSecs;   // random delay for startup.


  CHECK(runtime->AttachCurrentThread("Profiler", true, runtime->GetSystemThreadGroup(),
                                      !runtime->IsCompiler()));

  Thread* self = Thread::Current();

  double backoff = 1.0;
  while (true) {
    if (ShuttingDown(self)) {
      break;
    }

    {
      // wait until we need to run another profile
      uint64_t delay_secs = profiler->options_.GetPeriodS() * backoff;

      // Add a startup delay to prevent all the profiles running at once.
      delay_secs += startup_delay;

      // Immediate startup for benchmarking?
      if (profiler->options_.GetStartImmediately() && startup_delay > 0) {
        delay_secs = 0;
      }

      startup_delay = 0;

      VLOG(profiler) << "Delaying profile start for " << delay_secs << " secs";
      MutexLock mu(self, profiler->wait_lock_);
      profiler->period_condition_.TimedWait(self, delay_secs * 1000, 0);

      // Expand the backoff by its coefficient, but don't go beyond the max.
      backoff = std::min(backoff * profiler->options_.GetBackoffCoefficient(), kMaxBackoffSecs);
    }

    if (ShuttingDown(self)) {
      break;
    }


    uint64_t start_us = MicroTime();
    uint64_t end_us = start_us + profiler->options_.GetDurationS() * UINT64_C(1000000);
    uint64_t now_us = start_us;

    VLOG(profiler) << "Starting profiling run now for "
                   << PrettyDuration((end_us - start_us) * 1000);

    SampleCheckpoint check_point(profiler);

    size_t valid_samples = 0;
    while (now_us < end_us) {
      if (ShuttingDown(self)) {
        break;
      }

      usleep(profiler->options_.GetIntervalUs());    // Non-interruptible sleep.

      ThreadList* thread_list = runtime->GetThreadList();

      profiler->profiler_barrier_->Init(self, 0);
      size_t barrier_count = thread_list->RunCheckpointOnRunnableThreads(&check_point);

      // All threads are suspended, nothing to do.
      if (barrier_count == 0) {
        now_us = MicroTime();
        continue;
      }

      valid_samples += barrier_count;

      ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);

      // Wait for the barrier to be crossed by all runnable threads.  This wait
      // is done with a timeout so that we can detect problems with the checkpoint
      // running code.  We should never see this.
      const uint32_t kWaitTimeoutMs = 10000;
      const uint32_t kWaitTimeoutUs = kWaitTimeoutMs * 1000;

      uint64_t waitstart_us = MicroTime();
      // Wait for all threads to pass the barrier.
      profiler->profiler_barrier_->Increment(self, barrier_count, kWaitTimeoutMs);
      uint64_t waitend_us = MicroTime();
      uint64_t waitdiff_us = waitend_us - waitstart_us;

      // We should never get a timeout.  If we do, it suggests a problem with the checkpoint
      // code.  Crash the process in this case.
      CHECK_LT(waitdiff_us, kWaitTimeoutUs);

      // Update the current time.
      now_us = MicroTime();
    }

    if (valid_samples > 0) {
      // After the profile has been taken, write it out.
      ScopedObjectAccess soa(self);   // Acquire the mutator lock.
      uint32_t size = profiler->WriteProfile();
      VLOG(profiler) << "Profile size: " << size;
    }
  }

  LOG(INFO) << "Profiler shutdown";
  runtime->DetachCurrentThread();
  return nullptr;
}

// Write out the profile file if we are generating a profile.
uint32_t BackgroundMethodSamplingProfiler::WriteProfile() {
  std::string full_name = output_filename_;
  VLOG(profiler) << "Saving profile to " << full_name;

  int fd = open(full_name.c_str(), O_RDWR);
  if (fd < 0) {
    // Open failed.
    LOG(ERROR) << "Failed to open profile file " << full_name;
    return 0;
  }

  // Lock the file for exclusive access.  This will block if another process is using
  // the file.
  int err = flock(fd, LOCK_EX);
  if (err < 0) {
    LOG(ERROR) << "Failed to lock profile file " << full_name;
    return 0;
  }

  // Read the previous profile.
  profile_table_.ReadPrevious(fd, options_.GetProfileType());

  // Move back to the start of the file.
  lseek(fd, 0, SEEK_SET);

  // Format the profile output and write to the file.
  std::ostringstream os;
  uint32_t num_methods = DumpProfile(os);
  std::string data(os.str());
  const char *p = data.c_str();
  size_t length = data.length();
  size_t full_length = length;
  do {
    int n = ::write(fd, p, length);
    p += n;
    length -= n;
  } while (length > 0);

  // Truncate the file to the new length.
  ftruncate(fd, full_length);

  // Now unlock the file, allowing another process in.
  err = flock(fd, LOCK_UN);
  if (err < 0) {
    LOG(ERROR) << "Failed to unlock profile file " << full_name;
  }

  // Done, close the file.
  ::close(fd);

  // Clean the profile for the next time.
  CleanProfile();

  return num_methods;
}

bool BackgroundMethodSamplingProfiler::Start(
    const std::string& output_filename, const ProfilerOptions& options) {
  if (!options.IsEnabled()) {
    LOG(INFO) << "Profiler disabled. To enable setprop dalvik.vm.profiler 1.";
    return false;
  }

  CHECK(!output_filename.empty());

  Thread* self = Thread::Current();
  {
    MutexLock mu(self, *Locks::profiler_lock_);
    // Don't start two profiler threads.
    if (profiler_ != nullptr) {
      return true;
    }
  }

  LOG(INFO) << "Starting profiler using output file: " << output_filename
            << " and options: " << options;
  {
    MutexLock mu(self, *Locks::profiler_lock_);
    profiler_ = new BackgroundMethodSamplingProfiler(output_filename, options);

    CHECK_PTHREAD_CALL(pthread_create, (&profiler_pthread_, nullptr, &RunProfilerThread,
        reinterpret_cast<void*>(profiler_)),
                       "Profiler thread");
  }
  return true;
}



void BackgroundMethodSamplingProfiler::Stop() {
  BackgroundMethodSamplingProfiler* profiler = nullptr;
  pthread_t profiler_pthread = 0U;
  {
    MutexLock trace_mu(Thread::Current(), *Locks::profiler_lock_);
    CHECK(!shutting_down_);
    profiler = profiler_;
    shutting_down_ = true;
    profiler_pthread = profiler_pthread_;
  }

  // Now wake up the sampler thread if it sleeping.
  {
    MutexLock profile_mu(Thread::Current(), profiler->wait_lock_);
    profiler->period_condition_.Signal(Thread::Current());
  }
  // Wait for the sample thread to stop.
  CHECK_PTHREAD_CALL(pthread_join, (profiler_pthread, nullptr), "profiler thread shutdown");

  {
    MutexLock mu(Thread::Current(), *Locks::profiler_lock_);
    profiler_ = nullptr;
  }
  delete profiler;
}


void BackgroundMethodSamplingProfiler::Shutdown() {
  Stop();
}

BackgroundMethodSamplingProfiler::BackgroundMethodSamplingProfiler(
  const std::string& output_filename, const ProfilerOptions& options)
    : output_filename_(output_filename),
      options_(options),
      wait_lock_("Profile wait lock"),
      period_condition_("Profile condition", wait_lock_),
      profile_table_(wait_lock_),
      profiler_barrier_(new Barrier(0)) {
  // Populate the filtered_methods set.
  // This is empty right now, but to add a method, do this:
  //
  // filtered_methods_.insert("void java.lang.Object.wait(long, int)");
}

// Filter out methods the profiler doesn't want to record.
// We require mutator lock since some statistics will be updated here.
bool BackgroundMethodSamplingProfiler::ProcessMethod(mirror::ArtMethod* method) {
  if (method == nullptr) {
    profile_table_.NullMethod();
    // Don't record a nullptr method.
    return false;
  }

  mirror::Class* cls = method->GetDeclaringClass();
  if (cls != nullptr) {
    if (cls->GetClassLoader() == nullptr) {
      // Don't include things in the boot
      profile_table_.BootMethod();
      return false;
    }
  }

  bool is_filtered = false;

  if (strcmp(method->GetName(), "<clinit>") == 0) {
    // always filter out class init
    is_filtered = true;
  }

  // Filter out methods by name if there are any.
  if (!is_filtered && filtered_methods_.size() > 0) {
    std::string method_full_name = PrettyMethod(method);

    // Don't include specific filtered methods.
    is_filtered = filtered_methods_.count(method_full_name) != 0;
  }
  return !is_filtered;
}

// A method has been hit, record its invocation in the method map.
// The mutator_lock must be held (shared) when this is called.
void BackgroundMethodSamplingProfiler::RecordMethod(mirror::ArtMethod* method) {
  // Add to the profile table unless it is filtered out.
  if (ProcessMethod(method)) {
    profile_table_.Put(method);
  }
}

// Record the current bounded stack into sampling results.
void BackgroundMethodSamplingProfiler::RecordStack(const std::vector<InstructionLocation>& stack) {
  if (stack.size() == 0) {
    return;
  }
  // Get the method on top of the stack. We use this method to perform filtering.
  mirror::ArtMethod* method = stack.front().first;
  if (ProcessMethod(method)) {
      profile_table_.PutStack(stack);
  }
}

// Clean out any recordings for the method traces.
void BackgroundMethodSamplingProfiler::CleanProfile() {
  profile_table_.Clear();
}

uint32_t BackgroundMethodSamplingProfiler::DumpProfile(std::ostream& os) {
  return profile_table_.Write(os, options_.GetProfileType());
}

// Profile Table.
// This holds a mapping of mirror::ArtMethod* to a count of how many times a sample
// hit it at the top of the stack.
ProfileSampleResults::ProfileSampleResults(Mutex& lock) : lock_(lock), num_samples_(0),
    num_null_methods_(0),
    num_boot_methods_(0) {
  for (int i = 0; i < kHashSize; i++) {
    table[i] = nullptr;
  }
  method_context_table = nullptr;
  stack_trie_root_ = nullptr;
}

ProfileSampleResults::~ProfileSampleResults() {
  Clear();
}

// Add a method to the profile table.  If it's the first time the method
// has been seen, add it with count=1, otherwise increment the count.
void ProfileSampleResults::Put(mirror::ArtMethod* method) {
  MutexLock mu(Thread::Current(), lock_);
  uint32_t index = Hash(method);
  if (table[index] == nullptr) {
    table[index] = new Map();
  }
  Map::iterator i = table[index]->find(method);
  if (i == table[index]->end()) {
    (*table[index])[method] = 1;
  } else {
    i->second++;
  }
  num_samples_++;
}

// Add a bounded stack to the profile table. Only the count of the method on
// top of the frame will be increased.
void ProfileSampleResults::PutStack(const std::vector<InstructionLocation>& stack) {
  MutexLock mu(Thread::Current(), lock_);
  ScopedObjectAccess soa(Thread::Current());
  if (stack_trie_root_ == nullptr) {
    // The root of the stack trie is a dummy node so that we don't have to maintain
    // a collection of tries.
    stack_trie_root_ = new StackTrieNode();
  }

  StackTrieNode* current = stack_trie_root_;
  if (stack.size() == 0) {
    current->IncreaseCount();
    return;
  }

  for (std::vector<InstructionLocation>::const_reverse_iterator iter = stack.rbegin();
       iter != stack.rend(); ++iter) {
    InstructionLocation inst_loc = *iter;
    mirror::ArtMethod* method = inst_loc.first;
    if (method == nullptr) {
      // skip null method
      continue;
    }
    uint32_t dex_pc = inst_loc.second;
    uint32_t method_idx = method->GetDexMethodIndex();
    const DexFile* dex_file = method->GetDeclaringClass()->GetDexCache()->GetDexFile();
    MethodReference method_ref(dex_file, method_idx);
    StackTrieNode* child = current->FindChild(method_ref, dex_pc);
    if (child != nullptr) {
      current = child;
    } else {
      uint32_t method_size = 0;
      const DexFile::CodeItem* codeitem = method->GetCodeItem();
      if (codeitem != nullptr) {
        method_size = codeitem->insns_size_in_code_units_;
      }
      StackTrieNode* new_node = new StackTrieNode(method_ref, dex_pc, method_size, current);
      current->AppendChild(new_node);
      current = new_node;
    }
  }

  if (current != stack_trie_root_ && current->GetCount() == 0) {
    // Insert into method_context table;
    if (method_context_table == nullptr) {
      method_context_table = new MethodContextMap();
    }
    MethodReference method = current->GetMethod();
    MethodContextMap::iterator i = method_context_table->find(method);
    if (i == method_context_table->end()) {
      TrieNodeSet* node_set = new TrieNodeSet();
      node_set->insert(current);
      (*method_context_table)[method] = node_set;
    } else {
      TrieNodeSet* node_set = i->second;
      node_set->insert(current);
    }
  }
  current->IncreaseCount();
  num_samples_++;
}

// Write the profile table to the output stream.  Also merge with the previous profile.
uint32_t ProfileSampleResults::Write(std::ostream& os, ProfileDataType type) {
  ScopedObjectAccess soa(Thread::Current());
  num_samples_ += previous_num_samples_;
  num_null_methods_ += previous_num_null_methods_;
  num_boot_methods_ += previous_num_boot_methods_;

  VLOG(profiler) << "Profile: "
                 << num_samples_ << "/" << num_null_methods_ << "/" << num_boot_methods_;
  os << num_samples_ << "/" << num_null_methods_ << "/" << num_boot_methods_ << "\n";
  uint32_t num_methods = 0;
  if (type == kProfilerMethod) {
    for (int i = 0 ; i < kHashSize; i++) {
      Map *map = table[i];
      if (map != nullptr) {
        for (const auto &meth_iter : *map) {
          mirror::ArtMethod *method = meth_iter.first;
          std::string method_name = PrettyMethod(method);

          const DexFile::CodeItem* codeitem = method->GetCodeItem();
          uint32_t method_size = 0;
          if (codeitem != nullptr) {
            method_size = codeitem->insns_size_in_code_units_;
          }
          uint32_t count = meth_iter.second;

          // Merge this profile entry with one from a previous run (if present).  Also
          // remove the previous entry.
          PreviousProfile::iterator pi = previous_.find(method_name);
          if (pi != previous_.end()) {
            count += pi->second.count_;
            previous_.erase(pi);
          }
          os << StringPrintf("%s/%u/%u\n",  method_name.c_str(), count, method_size);
          ++num_methods;
        }
      }
    }
  } else if (type == kProfilerBoundedStack) {
    if (method_context_table != nullptr) {
      for (const auto &method_iter : *method_context_table) {
        MethodReference method = method_iter.first;
        TrieNodeSet* node_set = method_iter.second;
        std::string method_name = PrettyMethod(method.dex_method_index, *(method.dex_file));
        uint32_t method_size = 0;
        uint32_t total_count = 0;
        PreviousContextMap new_context_map;
        for (const auto &trie_node_i : *node_set) {
          StackTrieNode* node = trie_node_i;
          method_size = node->GetMethodSize();
          uint32_t count = node->GetCount();
          uint32_t dexpc = node->GetDexPC();
          total_count += count;

          StackTrieNode* current = node->GetParent();
          // We go backward on the trie to retrieve context and dex_pc until the dummy root.
          // The format of the context is "method_1@pc_1@method_2@pc_2@..."
          std::vector<std::string> context_vector;
          while (current != nullptr && current->GetParent() != nullptr) {
            context_vector.push_back(StringPrintf("%s@%u",
                PrettyMethod(current->GetMethod().dex_method_index, *(current->GetMethod().dex_file)).c_str(),
                current->GetDexPC()));
            current = current->GetParent();
          }
          std::string context_sig = Join(context_vector, '@');
          new_context_map[std::make_pair(dexpc, context_sig)] = count;
        }

        PreviousProfile::iterator pi = previous_.find(method_name);
        if (pi != previous_.end()) {
          total_count += pi->second.count_;
          PreviousContextMap* previous_context_map = pi->second.context_map_;
          if (previous_context_map != nullptr) {
            for (const auto &context_i : *previous_context_map) {
              uint32_t count = context_i.second;
              PreviousContextMap::iterator ci = new_context_map.find(context_i.first);
              if (ci == new_context_map.end()) {
                new_context_map[context_i.first] = count;
              } else {
                ci->second += count;
              }
            }
          }
          delete previous_context_map;
          previous_.erase(pi);
        }
        // We write out profile data with dex pc and context information in the following format:
        // "method/total_count/size/[pc_1:count_1:context_1#pc_2:count_2:context_2#...]".
        std::vector<std::string> context_count_vector;
        for (const auto &context_i : new_context_map) {
          context_count_vector.push_back(StringPrintf("%u:%u:%s", context_i.first.first,
              context_i.second, context_i.first.second.c_str()));
        }
        os << StringPrintf("%s/%u/%u/[%s]\n", method_name.c_str(), total_count,
            method_size, Join(context_count_vector, '#').c_str());
        ++num_methods;
      }
    }
  }

  // Now we write out the remaining previous methods.
  for (const auto &pi : previous_) {
    if (type == kProfilerMethod) {
      os << StringPrintf("%s/%u/%u\n",  pi.first.c_str(), pi.second.count_, pi.second.method_size_);
    } else if (type == kProfilerBoundedStack) {
      os << StringPrintf("%s/%u/%u/[",  pi.first.c_str(), pi.second.count_, pi.second.method_size_);
      PreviousContextMap* previous_context_map = pi.second.context_map_;
      if (previous_context_map != nullptr) {
        std::vector<std::string> context_count_vector;
        for (const auto &context_i : *previous_context_map) {
          context_count_vector.push_back(StringPrintf("%u:%u:%s", context_i.first.first,
              context_i.second, context_i.first.second.c_str()));
        }
        os << Join(context_count_vector, '#');
      }
      os << "]\n";
    }
    ++num_methods;
  }
  return num_methods;
}

void ProfileSampleResults::Clear() {
  num_samples_ = 0;
  num_null_methods_ = 0;
  num_boot_methods_ = 0;
  for (int i = 0; i < kHashSize; i++) {
    delete table[i];
    table[i] = nullptr;
  }
  if (stack_trie_root_ != nullptr) {
    stack_trie_root_->DeleteChildren();
    delete stack_trie_root_;
    stack_trie_root_ = nullptr;
    if (method_context_table != nullptr) {
      delete method_context_table;
      method_context_table = nullptr;
    }
  }
  for (auto &pi : previous_) {
    if (pi.second.context_map_ != nullptr) {
      delete pi.second.context_map_;
      pi.second.context_map_ = nullptr;
    }
  }
  previous_.clear();
}

uint32_t ProfileSampleResults::Hash(mirror::ArtMethod* method) {
  return (PointerToLowMemUInt32(method) >> 3) % kHashSize;
}

// Read a single line into the given string.  Returns true if everything OK, false
// on EOF or error.
static bool ReadProfileLine(int fd, std::string& line) {
  char buf[4];
  line.clear();
  while (true) {
    int n = read(fd, buf, 1);     // TODO: could speed this up but is it worth it?
    if (n != 1) {
      return false;
    }
    if (buf[0] == '\n') {
      break;
    }
    line += buf[0];
  }
  return true;
}

void ProfileSampleResults::ReadPrevious(int fd, ProfileDataType type) {
  // Reset counters.
  previous_num_samples_ = previous_num_null_methods_ = previous_num_boot_methods_ = 0;

  std::string line;

  // The first line contains summary information.
  if (!ReadProfileLine(fd, line)) {
    return;
  }
  std::vector<std::string> summary_info;
  Split(line, '/', summary_info);
  if (summary_info.size() != 3) {
    // Bad summary info.  It should be count/nullcount/bootcount
    return;
  }
  previous_num_samples_ = strtoul(summary_info[0].c_str(), nullptr, 10);
  previous_num_null_methods_ = strtoul(summary_info[1].c_str(), nullptr, 10);
  previous_num_boot_methods_ = strtoul(summary_info[2].c_str(), nullptr, 10);

  // Now read each line until the end of file.  Each line consists of 3 or 4 fields separated by /
  while (true) {
    if (!ReadProfileLine(fd, line)) {
      break;
    }
    std::vector<std::string> info;
    Split(line, '/', info);
    if (info.size() != 3 && info.size() != 4) {
      // Malformed.
      break;
    }
    std::string methodname = info[0];
    uint32_t total_count = strtoul(info[1].c_str(), nullptr, 10);
    uint32_t size = strtoul(info[2].c_str(), nullptr, 10);
    PreviousContextMap* context_map = nullptr;
    if (type == kProfilerBoundedStack && info.size() == 4) {
      context_map = new PreviousContextMap();
      std::string context_counts_str = info[3].substr(1, info[3].size() - 2);
      std::vector<std::string> context_count_pairs;
      Split(context_counts_str, '#', context_count_pairs);
      for (uint32_t i = 0; i < context_count_pairs.size(); ++i) {
        std::vector<std::string> context_count;
        Split(context_count_pairs[i], ':', context_count);
        if (context_count.size() == 2) {
          // Handles the situtation when the profile file doesn't contain context information.
          uint32_t dexpc = strtoul(context_count[0].c_str(), nullptr, 10);
          uint32_t count = strtoul(context_count[1].c_str(), nullptr, 10);
          (*context_map)[std::make_pair(dexpc, "")] = count;
        } else {
          // Handles the situtation when the profile file contains context information.
          uint32_t dexpc = strtoul(context_count[0].c_str(), nullptr, 10);
          uint32_t count = strtoul(context_count[1].c_str(), nullptr, 10);
          std::string context = context_count[2];
          (*context_map)[std::make_pair(dexpc, context)] = count;
        }
      }
    }
    previous_[methodname] = PreviousValue(total_count, size, context_map);
  }
}

bool ProfileFile::LoadFile(const std::string& fileName) {
  LOG(VERBOSE) << "reading profile file " << fileName;
  struct stat st;
  int err = stat(fileName.c_str(), &st);
  if (err == -1) {
    LOG(VERBOSE) << "not found";
    return false;
  }
  if (st.st_size == 0) {
    return false;  // Empty profiles are invalid.
  }
  std::ifstream in(fileName.c_str());
  if (!in) {
    LOG(VERBOSE) << "profile file " << fileName << " exists but can't be opened";
    LOG(VERBOSE) << "file owner: " << st.st_uid << ":" << st.st_gid;
    LOG(VERBOSE) << "me: " << getuid() << ":" << getgid();
    LOG(VERBOSE) << "file permissions: " << std::oct << st.st_mode;
    LOG(VERBOSE) << "errno: " << errno;
    return false;
  }
  // The first line contains summary information.
  std::string line;
  std::getline(in, line);
  if (in.eof()) {
    return false;
  }
  std::vector<std::string> summary_info;
  Split(line, '/', summary_info);
  if (summary_info.size() != 3) {
    // Bad summary info.  It should be total/null/boot.
    return false;
  }
  // This is the number of hits in all profiled methods (without nullptr or boot methods)
  uint32_t total_count = strtoul(summary_info[0].c_str(), nullptr, 10);

  // Now read each line until the end of file.  Each line consists of 3 fields separated by '/'.
  // Store the info in descending order given by the most used methods.
  typedef std::set<std::pair<int, std::vector<std::string>>> ProfileSet;
  ProfileSet countSet;
  while (!in.eof()) {
    std::getline(in, line);
    if (in.eof()) {
      break;
    }
    std::vector<std::string> info;
    Split(line, '/', info);
    if (info.size() != 3 && info.size() != 4) {
      // Malformed.
      return false;
    }
    int count = atoi(info[1].c_str());
    countSet.insert(std::make_pair(-count, info));
  }

  uint32_t curTotalCount = 0;
  ProfileSet::iterator end = countSet.end();
  const ProfileData* prevData = nullptr;
  for (ProfileSet::iterator it = countSet.begin(); it != end ; it++) {
    const std::string& methodname = it->second[0];
    uint32_t count = -it->first;
    uint32_t size = strtoul(it->second[2].c_str(), nullptr, 10);
    double usedPercent = (count * 100.0) / total_count;

    curTotalCount += count;
    // Methods with the same count should be part of the same top K percentage bucket.
    double topKPercentage = (prevData != nullptr) && (prevData->GetCount() == count)
      ? prevData->GetTopKUsedPercentage()
      : 100 * static_cast<double>(curTotalCount) / static_cast<double>(total_count);

    // Add it to the profile map.
    ProfileData curData = ProfileData(methodname, count, size, usedPercent, topKPercentage);
    profile_map_[methodname] = curData;
    prevData = &curData;
  }
  return true;
}

bool ProfileFile::GetProfileData(ProfileFile::ProfileData* data, const std::string& method_name) {
  ProfileMap::iterator i = profile_map_.find(method_name);
  if (i == profile_map_.end()) {
    return false;
  }
  *data = i->second;
  return true;
}

bool ProfileFile::GetTopKSamples(std::set<std::string>& topKSamples, double topKPercentage) {
  ProfileMap::iterator end = profile_map_.end();
  for (ProfileMap::iterator it = profile_map_.begin(); it != end; it++) {
    if (it->second.GetTopKUsedPercentage() < topKPercentage) {
      topKSamples.insert(it->first);
    }
  }
  return true;
}

StackTrieNode* StackTrieNode::FindChild(MethodReference method, uint32_t dex_pc) {
  if (children_.size() == 0) {
    return nullptr;
  }
  // Create a dummy node for searching.
  StackTrieNode* node = new StackTrieNode(method, dex_pc, 0, nullptr);
  std::set<StackTrieNode*, StackTrieNodeComparator>::iterator i = children_.find(node);
  delete node;
  return (i == children_.end()) ? nullptr : *i;
}

void StackTrieNode::DeleteChildren() {
  for (auto &child : children_) {
    if (child != nullptr) {
      child->DeleteChildren();
      delete child;
    }
  }
}

}  // namespace art