summaryrefslogtreecommitdiffstats
path: root/runtime/thread.cc
blob: 6e8f89cb49b8e8e712993f459265e2dc1380a120 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define ATRACE_TAG ATRACE_TAG_DALVIK

#include "thread.h"

#include <cutils/trace.h>
#include <pthread.h>
#include <signal.h>
#include <sys/resource.h>
#include <sys/time.h>

#include <algorithm>
#include <bitset>
#include <cerrno>
#include <iostream>
#include <list>
#include <sstream>

#include "arch/context.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/bit_utils.h"
#include "base/mutex.h"
#include "base/timing_logger.h"
#include "base/to_str.h"
#include "class_linker-inl.h"
#include "debugger.h"
#include "dex_file-inl.h"
#include "entrypoints/entrypoint_utils.h"
#include "entrypoints/quick/quick_alloc_entrypoints.h"
#include "gc_map.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/allocator/rosalloc.h"
#include "gc/heap.h"
#include "gc/space/space.h"
#include "handle_scope-inl.h"
#include "indirect_reference_table-inl.h"
#include "jni_internal.h"
#include "mirror/class_loader.h"
#include "mirror/class-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/stack_trace_element.h"
#include "monitor.h"
#include "object_lock.h"
#include "quick_exception_handler.h"
#include "quick/quick_method_frame_info.h"
#include "reflection.h"
#include "runtime.h"
#include "scoped_thread_state_change.h"
#include "ScopedLocalRef.h"
#include "ScopedUtfChars.h"
#include "stack.h"
#include "thread_list.h"
#include "thread-inl.h"
#include "utils.h"
#include "verifier/dex_gc_map.h"
#include "verifier/method_verifier.h"
#include "verify_object-inl.h"
#include "vmap_table.h"
#include "well_known_classes.h"

namespace art {

bool Thread::is_started_ = false;
pthread_key_t Thread::pthread_key_self_;
ConditionVariable* Thread::resume_cond_ = nullptr;
const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);

static const char* kThreadNameDuringStartup = "<native thread without managed peer>";

void Thread::InitCardTable() {
  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
}

static void UnimplementedEntryPoint() {
  UNIMPLEMENTED(FATAL);
}

void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
                     QuickEntryPoints* qpoints);

void Thread::InitTlsEntryPoints() {
  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) +
      sizeof(tlsPtr_.quick_entrypoints));
  for (uintptr_t* it = begin; it != end; ++it) {
    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
  }
  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
                  &tlsPtr_.quick_entrypoints);
}

void Thread::InitStringEntryPoints() {
  ScopedObjectAccess soa(this);
  QuickEntryPoints* qpoints = &tlsPtr_.quick_entrypoints;
  qpoints->pNewEmptyString = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newEmptyString));
  qpoints->pNewStringFromBytes_B = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_B));
  qpoints->pNewStringFromBytes_BI = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BI));
  qpoints->pNewStringFromBytes_BII = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BII));
  qpoints->pNewStringFromBytes_BIII = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIII));
  qpoints->pNewStringFromBytes_BIIString = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIIString));
  qpoints->pNewStringFromBytes_BString = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BString));
  qpoints->pNewStringFromBytes_BIICharset = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIICharset));
  qpoints->pNewStringFromBytes_BCharset = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BCharset));
  qpoints->pNewStringFromChars_C = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_C));
  qpoints->pNewStringFromChars_CII = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_CII));
  qpoints->pNewStringFromChars_IIC = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_IIC));
  qpoints->pNewStringFromCodePoints = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromCodePoints));
  qpoints->pNewStringFromString = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromString));
  qpoints->pNewStringFromStringBuffer = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuffer));
  qpoints->pNewStringFromStringBuilder = reinterpret_cast<void(*)()>(
      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuilder));
}

void Thread::ResetQuickAllocEntryPointsForThread() {
  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
}

class DeoptimizationReturnValueRecord {
 public:
  DeoptimizationReturnValueRecord(const JValue& ret_val,
                                  bool is_reference,
                                  DeoptimizationReturnValueRecord* link)
      : ret_val_(ret_val), is_reference_(is_reference), link_(link) {}

  JValue GetReturnValue() const { return ret_val_; }
  bool IsReference() const { return is_reference_; }
  DeoptimizationReturnValueRecord* GetLink() const { return link_; }
  mirror::Object** GetGCRoot() {
    DCHECK(is_reference_);
    return ret_val_.GetGCRoot();
  }

 private:
  JValue ret_val_;
  const bool is_reference_;
  DeoptimizationReturnValueRecord* const link_;

  DISALLOW_COPY_AND_ASSIGN(DeoptimizationReturnValueRecord);
};

class StackedShadowFrameRecord {
 public:
  StackedShadowFrameRecord(ShadowFrame* shadow_frame,
                           StackedShadowFrameType type,
                           StackedShadowFrameRecord* link)
      : shadow_frame_(shadow_frame),
        type_(type),
        link_(link) {}

  ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
  StackedShadowFrameType GetType() const { return type_; }
  StackedShadowFrameRecord* GetLink() const { return link_; }

 private:
  ShadowFrame* const shadow_frame_;
  const StackedShadowFrameType type_;
  StackedShadowFrameRecord* const link_;

  DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
};

void Thread::PushAndClearDeoptimizationReturnValue() {
  DeoptimizationReturnValueRecord* record = new DeoptimizationReturnValueRecord(
      tls64_.deoptimization_return_value,
      tls32_.deoptimization_return_value_is_reference,
      tlsPtr_.deoptimization_return_value_stack);
  tlsPtr_.deoptimization_return_value_stack = record;
  ClearDeoptimizationReturnValue();
}

JValue Thread::PopDeoptimizationReturnValue() {
  DeoptimizationReturnValueRecord* record = tlsPtr_.deoptimization_return_value_stack;
  DCHECK(record != nullptr);
  tlsPtr_.deoptimization_return_value_stack = record->GetLink();
  JValue ret_val(record->GetReturnValue());
  delete record;
  return ret_val;
}

void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
  StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
      sf, type, tlsPtr_.stacked_shadow_frame_record);
  tlsPtr_.stacked_shadow_frame_record = record;
}

ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type) {
  StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
  DCHECK(record != nullptr);
  DCHECK_EQ(record->GetType(), type);
  tlsPtr_.stacked_shadow_frame_record = record->GetLink();
  ShadowFrame* shadow_frame = record->GetShadowFrame();
  delete record;
  return shadow_frame;
}

void Thread::InitTid() {
  tls32_.tid = ::art::GetTid();
}

void Thread::InitAfterFork() {
  // One thread (us) survived the fork, but we have a new tid so we need to
  // update the value stashed in this Thread*.
  InitTid();
}

void* Thread::CreateCallback(void* arg) {
  Thread* self = reinterpret_cast<Thread*>(arg);
  Runtime* runtime = Runtime::Current();
  if (runtime == nullptr) {
    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
    return nullptr;
  }
  {
    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
    //       after self->Init().
    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    // Check that if we got here we cannot be shutting down (as shutdown should never have started
    // while threads are being born).
    CHECK(!runtime->IsShuttingDownLocked());
    // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
    //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
    //       the runtime in such a case. In case this ever changes, we need to make sure here to
    //       delete the tmp_jni_env, as we own it at this point.
    CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
    self->tlsPtr_.tmp_jni_env = nullptr;
    Runtime::Current()->EndThreadBirth();
  }
  {
    ScopedObjectAccess soa(self);
    self->InitStringEntryPoints();

    // Copy peer into self, deleting global reference when done.
    CHECK(self->tlsPtr_.jpeer != nullptr);
    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
    self->tlsPtr_.jpeer = nullptr;
    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());

    ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
    self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
    Dbg::PostThreadStart(self);

    // Invoke the 'run' method of our java.lang.Thread.
    mirror::Object* receiver = self->tlsPtr_.opeer;
    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
    ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
    InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
  }
  // Detach and delete self.
  Runtime::Current()->GetThreadList()->Unregister(self);

  return nullptr;
}

Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
                                  mirror::Object* thread_peer) {
  ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
  // to stop it from going away.
  if (kIsDebugBuild) {
    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
    if (result != nullptr && !result->IsSuspended()) {
      Locks::thread_list_lock_->AssertHeld(soa.Self());
    }
  }
  return result;
}

Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
                                  jobject java_thread) {
  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
}

static size_t FixStackSize(size_t stack_size) {
  // A stack size of zero means "use the default".
  if (stack_size == 0) {
    stack_size = Runtime::Current()->GetDefaultStackSize();
  }

  // Dalvik used the bionic pthread default stack size for native threads,
  // so include that here to support apps that expect large native stacks.
  stack_size += 1 * MB;

  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
  if (stack_size < PTHREAD_STACK_MIN) {
    stack_size = PTHREAD_STACK_MIN;
  }

  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
    // It's likely that callers are trying to ensure they have at least a certain amount of
    // stack space, so we should add our reserved space on top of what they requested, rather
    // than implicitly take it away from them.
    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
  } else {
    // If we are going to use implicit stack checks, allocate space for the protected
    // region at the bottom of the stack.
    stack_size += Thread::kStackOverflowImplicitCheckSize +
        GetStackOverflowReservedBytes(kRuntimeISA);
  }

  // Some systems require the stack size to be a multiple of the system page size, so round up.
  stack_size = RoundUp(stack_size, kPageSize);

  return stack_size;
}

// Global variable to prevent the compiler optimizing away the page reads for the stack.
uint8_t dont_optimize_this;

// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
// overflow is detected.  It is located right below the stack_begin_.
//
// There is a little complexity here that deserves a special mention.  On some
// architectures, the stack created using a VM_GROWSDOWN flag
// to prevent memory being allocated when it's not needed.  This flag makes the
// kernel only allocate memory for the stack by growing down in memory.  Because we
// want to put an mprotected region far away from that at the stack top, we need
// to make sure the pages for the stack are mapped in before we call mprotect.  We do
// this by reading every page from the stack bottom (highest address) to the stack top.
// We then madvise this away.
void Thread::InstallImplicitProtection() {
  uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
  uint8_t* stack_himem = tlsPtr_.stack_end;
  uint8_t* stack_top = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(&stack_himem) &
      ~(kPageSize - 1));    // Page containing current top of stack.

  // First remove the protection on the protected region as will want to read and
  // write it.  This may fail (on the first attempt when the stack is not mapped)
  // but we ignore that.
  UnprotectStack();

  // Map in the stack.  This must be done by reading from the
  // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
  // in the kernel.  Any access more than a page below the current SP might cause
  // a segv.

  // Read every page from the high address to the low.
  for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
    dont_optimize_this = *p;
  }

  VLOG(threads) << "installing stack protected region at " << std::hex <<
      static_cast<void*>(pregion) << " to " <<
      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);

  // Protect the bottom of the stack to prevent read/write to it.
  ProtectStack();

  // Tell the kernel that we won't be needing these pages any more.
  // NB. madvise will probably write zeroes into the memory (on linux it does).
  uint32_t unwanted_size = stack_top - pregion - kPageSize;
  madvise(pregion, unwanted_size, MADV_DONTNEED);
}

void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
  CHECK(java_peer != nullptr);
  Thread* self = static_cast<JNIEnvExt*>(env)->self;
  Runtime* runtime = Runtime::Current();

  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
  bool thread_start_during_shutdown = false;
  {
    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    if (runtime->IsShuttingDownLocked()) {
      thread_start_during_shutdown = true;
    } else {
      runtime->StartThreadBirth();
    }
  }
  if (thread_start_during_shutdown) {
    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
    return;
  }

  Thread* child_thread = new Thread(is_daemon);
  // Use global JNI ref to hold peer live while child thread starts.
  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
  stack_size = FixStackSize(stack_size);

  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
  // assign it.
  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
                    reinterpret_cast<jlong>(child_thread));

  // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
  // do not have a good way to report this on the child's side.
  std::unique_ptr<JNIEnvExt> child_jni_env_ext(
      JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM()));

  int pthread_create_result = 0;
  if (child_jni_env_ext.get() != nullptr) {
    pthread_t new_pthread;
    pthread_attr_t attr;
    child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
    CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
    CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
                       "PTHREAD_CREATE_DETACHED");
    CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
    pthread_create_result = pthread_create(&new_pthread,
                                           &attr,
                                           Thread::CreateCallback,
                                           child_thread);
    CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");

    if (pthread_create_result == 0) {
      // pthread_create started the new thread. The child is now responsible for managing the
      // JNIEnvExt we created.
      // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
      //       between the threads.
      child_jni_env_ext.release();
      return;
    }
  }

  // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
  {
    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    runtime->EndThreadBirth();
  }
  // Manually delete the global reference since Thread::Init will not have been run.
  env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
  child_thread->tlsPtr_.jpeer = nullptr;
  delete child_thread;
  child_thread = nullptr;
  // TODO: remove from thread group?
  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
  {
    std::string msg(child_jni_env_ext.get() == nullptr ?
        "Could not allocate JNI Env" :
        StringPrintf("pthread_create (%s stack) failed: %s",
                                 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
    ScopedObjectAccess soa(env);
    soa.Self()->ThrowOutOfMemoryError(msg.c_str());
  }
}

bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
  // This function does all the initialization that must be run by the native thread it applies to.
  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
  // we can handshake with the corresponding native thread when it's ready.) Check this native
  // thread hasn't been through here already...
  CHECK(Thread::Current() == nullptr);

  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
  tlsPtr_.pthread_self = pthread_self();
  CHECK(is_started_);

  SetUpAlternateSignalStack();
  if (!InitStackHwm()) {
    return false;
  }
  InitCpu();
  InitTlsEntryPoints();
  RemoveSuspendTrigger();
  InitCardTable();
  InitTid();

  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
  DCHECK_EQ(Thread::Current(), this);

  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);

  if (jni_env_ext != nullptr) {
    DCHECK_EQ(jni_env_ext->vm, java_vm);
    DCHECK_EQ(jni_env_ext->self, this);
    tlsPtr_.jni_env = jni_env_ext;
  } else {
    tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm);
    if (tlsPtr_.jni_env == nullptr) {
      return false;
    }
  }

  thread_list->Register(this);
  return true;
}

Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
                       bool create_peer) {
  Runtime* runtime = Runtime::Current();
  if (runtime == nullptr) {
    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
    return nullptr;
  }
  Thread* self;
  {
    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    if (runtime->IsShuttingDownLocked()) {
      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
      return nullptr;
    } else {
      Runtime::Current()->StartThreadBirth();
      self = new Thread(as_daemon);
      bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
      Runtime::Current()->EndThreadBirth();
      if (!init_success) {
        delete self;
        return nullptr;
      }
    }
  }

  self->InitStringEntryPoints();

  CHECK_NE(self->GetState(), kRunnable);
  self->SetState(kNative);

  // If we're the main thread, ClassLinker won't be created until after we're attached,
  // so that thread needs a two-stage attach. Regular threads don't need this hack.
  // In the compiler, all threads need this hack, because no-one's going to be getting
  // a native peer!
  if (create_peer) {
    self->CreatePeer(thread_name, as_daemon, thread_group);
    if (self->IsExceptionPending()) {
      // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
      {
        ScopedObjectAccess soa(self);
        LOG(ERROR) << "Exception creating thread peer:";
        LOG(ERROR) << self->GetException()->Dump();
        self->ClearException();
      }
      runtime->GetThreadList()->Unregister(self);
      // Unregister deletes self, no need to do this here.
      return nullptr;
    }
  } else {
    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
    if (thread_name != nullptr) {
      self->tlsPtr_.name->assign(thread_name);
      ::art::SetThreadName(thread_name);
    } else if (self->GetJniEnv()->check_jni) {
      LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
    }
  }

  {
    ScopedObjectAccess soa(self);
    Dbg::PostThreadStart(self);
  }

  return self;
}

void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
  Runtime* runtime = Runtime::Current();
  CHECK(runtime->IsStarted());
  JNIEnv* env = tlsPtr_.jni_env;

  if (thread_group == nullptr) {
    thread_group = runtime->GetMainThreadGroup();
  }
  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
  // Add missing null check in case of OOM b/18297817
  if (name != nullptr && thread_name.get() == nullptr) {
    CHECK(IsExceptionPending());
    return;
  }
  jint thread_priority = GetNativePriority();
  jboolean thread_is_daemon = as_daemon;

  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
  if (peer.get() == nullptr) {
    CHECK(IsExceptionPending());
    return;
  }
  {
    ScopedObjectAccess soa(this);
    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
  }
  env->CallNonvirtualVoidMethod(peer.get(),
                                WellKnownClasses::java_lang_Thread,
                                WellKnownClasses::java_lang_Thread_init,
                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
  if (IsExceptionPending()) {
    return;
  }

  Thread* self = this;
  DCHECK_EQ(self, Thread::Current());
  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
                    reinterpret_cast<jlong>(self));

  ScopedObjectAccess soa(self);
  StackHandleScope<1> hs(self);
  MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
  if (peer_thread_name.Get() == nullptr) {
    // The Thread constructor should have set the Thread.name to a
    // non-null value. However, because we can run without code
    // available (in the compiler, in tests), we manually assign the
    // fields the constructor should have set.
    if (runtime->IsActiveTransaction()) {
      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
    } else {
      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
    }
    peer_thread_name.Assign(GetThreadName(soa));
  }
  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
  if (peer_thread_name.Get() != nullptr) {
    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
  }
}

template<bool kTransactionActive>
void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
                      jobject thread_name, jint thread_priority) {
  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
}

void Thread::SetThreadName(const char* name) {
  tlsPtr_.name->assign(name);
  ::art::SetThreadName(name);
  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
}

bool Thread::InitStackHwm() {
  void* read_stack_base;
  size_t read_stack_size;
  size_t read_guard_size;
  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);

  tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
  tlsPtr_.stack_size = read_stack_size;

  // The minimum stack size we can cope with is the overflow reserved bytes (typically
  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
  // between 8K and 12K.
  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
    + 4 * KB;
  if (read_stack_size <= min_stack) {
    // Note, as we know the stack is small, avoid operations that could use a lot of stack.
    LogMessage::LogLineLowStack(__PRETTY_FUNCTION__, __LINE__, ERROR,
                                "Attempt to attach a thread with a too-small stack");
    return false;
  }

  // This is included in the SIGQUIT output, but it's useful here for thread debugging.
  VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
                                read_stack_base,
                                PrettySize(read_stack_size).c_str(),
                                PrettySize(read_guard_size).c_str());

  // Set stack_end_ to the bottom of the stack saving space of stack overflows

  Runtime* runtime = Runtime::Current();
  bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
  ResetDefaultStackEnd();

  // Install the protected region if we are doing implicit overflow checks.
  if (implicit_stack_check) {
    // The thread might have protected region at the bottom.  We need
    // to install our own region so we need to move the limits
    // of the stack to make room for it.

    tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
    tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
    tlsPtr_.stack_size -= read_guard_size;

    InstallImplicitProtection();
  }

  // Sanity check.
  int stack_variable;
  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));

  return true;
}

void Thread::ShortDump(std::ostream& os) const {
  os << "Thread[";
  if (GetThreadId() != 0) {
    // If we're in kStarting, we won't have a thin lock id or tid yet.
    os << GetThreadId()
       << ",tid=" << GetTid() << ',';
  }
  os << GetState()
     << ",Thread*=" << this
     << ",peer=" << tlsPtr_.opeer
     << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
     << "]";
}

void Thread::Dump(std::ostream& os) const {
  DumpState(os);
  DumpStack(os);
}

mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
  ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
  return (tlsPtr_.opeer != nullptr) ?
      reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
}

void Thread::GetThreadName(std::string& name) const {
  name.assign(*tlsPtr_.name);
}

uint64_t Thread::GetCpuMicroTime() const {
#if defined(__linux__)
  clockid_t cpu_clock_id;
  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
  timespec now;
  clock_gettime(cpu_clock_id, &now);
  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
#else  // __APPLE__
  UNIMPLEMENTED(WARNING);
  return -1;
#endif
}

// Attempt to rectify locks so that we dump thread list with required locks before exiting.
static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
  LOG(ERROR) << *thread << " suspend count already zero.";
  Locks::thread_suspend_count_lock_->Unlock(self);
  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
    Locks::mutator_lock_->SharedTryLock(self);
    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
    }
  }
  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
    Locks::thread_list_lock_->TryLock(self);
    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
    }
  }
  std::ostringstream ss;
  Runtime::Current()->GetThreadList()->Dump(ss);
  LOG(FATAL) << ss.str();
}

void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
  if (kIsDebugBuild) {
    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
          << delta << " " << tls32_.debug_suspend_count << " " << this;
    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
    Locks::thread_suspend_count_lock_->AssertHeld(self);
    if (this != self && !IsSuspended()) {
      Locks::thread_list_lock_->AssertHeld(self);
    }
  }
  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
    UnsafeLogFatalForSuspendCount(self, this);
    return;
  }

  tls32_.suspend_count += delta;
  if (for_debugger) {
    tls32_.debug_suspend_count += delta;
  }

  if (tls32_.suspend_count == 0) {
    AtomicClearFlag(kSuspendRequest);
  } else {
    AtomicSetFlag(kSuspendRequest);
    TriggerSuspend();
  }
}

void Thread::RunCheckpointFunction() {
  Closure *checkpoints[kMaxCheckpoints];

  // Grab the suspend_count lock and copy the current set of
  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
  // function will also grab this lock so we prevent a race between setting
  // the kCheckpointRequest flag and clearing it.
  {
    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
      tlsPtr_.checkpoint_functions[i] = nullptr;
    }
    AtomicClearFlag(kCheckpointRequest);
  }

  // Outside the lock, run all the checkpoint functions that
  // we collected.
  bool found_checkpoint = false;
  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
    if (checkpoints[i] != nullptr) {
      ATRACE_BEGIN("Checkpoint function");
      checkpoints[i]->Run(this);
      ATRACE_END();
      found_checkpoint = true;
    }
  }
  CHECK(found_checkpoint);
}

bool Thread::RequestCheckpoint(Closure* function) {
  union StateAndFlags old_state_and_flags;
  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
  if (old_state_and_flags.as_struct.state != kRunnable) {
    return false;  // Fail, thread is suspended and so can't run a checkpoint.
  }

  uint32_t available_checkpoint = kMaxCheckpoints;
  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
      available_checkpoint = i;
      break;
    }
  }
  if (available_checkpoint == kMaxCheckpoints) {
    // No checkpoint functions available, we can't run a checkpoint
    return false;
  }
  tlsPtr_.checkpoint_functions[available_checkpoint] = function;

  // Checkpoint function installed now install flag bit.
  // We must be runnable to request a checkpoint.
  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
  union StateAndFlags new_state_and_flags;
  new_state_and_flags.as_int = old_state_and_flags.as_int;
  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
  bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
      old_state_and_flags.as_int, new_state_and_flags.as_int);
  if (UNLIKELY(!success)) {
    // The thread changed state before the checkpoint was installed.
    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
  } else {
    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
    TriggerSuspend();
  }
  return success;
}

Closure* Thread::GetFlipFunction() {
  Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
  Closure* func;
  do {
    func = atomic_func->LoadRelaxed();
    if (func == nullptr) {
      return nullptr;
    }
  } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
  DCHECK(func != nullptr);
  return func;
}

void Thread::SetFlipFunction(Closure* function) {
  CHECK(function != nullptr);
  Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
  atomic_func->StoreSequentiallyConsistent(function);
}

void Thread::FullSuspendCheck() {
  VLOG(threads) << this << " self-suspending";
  ATRACE_BEGIN("Full suspend check");
  // Make thread appear suspended to other threads, release mutator_lock_.
  tls32_.suspended_at_suspend_check = true;
  TransitionFromRunnableToSuspended(kSuspended);
  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
  TransitionFromSuspendedToRunnable();
  tls32_.suspended_at_suspend_check = false;
  ATRACE_END();
  VLOG(threads) << this << " self-reviving";
}

void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
  std::string group_name;
  int priority;
  bool is_daemon = false;
  Thread* self = Thread::Current();

  // If flip_function is not null, it means we have run a checkpoint
  // before the thread wakes up to execute the flip function and the
  // thread roots haven't been forwarded.  So the following access to
  // the roots (opeer or methods in the frames) would be bad. Run it
  // here. TODO: clean up.
  if (thread != nullptr) {
    ScopedObjectAccessUnchecked soa(self);
    Thread* this_thread = const_cast<Thread*>(thread);
    Closure* flip_func = this_thread->GetFlipFunction();
    if (flip_func != nullptr) {
      flip_func->Run(this_thread);
    }
  }

  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
  // cause ScopedObjectAccessUnchecked to deadlock.
  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
    ScopedObjectAccessUnchecked soa(self);
    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
        ->GetInt(thread->tlsPtr_.opeer);
    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
        ->GetBoolean(thread->tlsPtr_.opeer);

    mirror::Object* thread_group =
        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);

    if (thread_group != nullptr) {
      ArtField* group_name_field =
          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
      mirror::String* group_name_string =
          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
    }
  } else {
    priority = GetNativePriority();
  }

  std::string scheduler_group_name(GetSchedulerGroupName(tid));
  if (scheduler_group_name.empty()) {
    scheduler_group_name = "default";
  }

  if (thread != nullptr) {
    os << '"' << *thread->tlsPtr_.name << '"';
    if (is_daemon) {
      os << " daemon";
    }
    os << " prio=" << priority
       << " tid=" << thread->GetThreadId()
       << " " << thread->GetState();
    if (thread->IsStillStarting()) {
      os << " (still starting up)";
    }
    os << "\n";
  } else {
    os << '"' << ::art::GetThreadName(tid) << '"'
       << " prio=" << priority
       << " (not attached)\n";
  }

  if (thread != nullptr) {
    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
    os << "  | group=\"" << group_name << "\""
       << " sCount=" << thread->tls32_.suspend_count
       << " dsCount=" << thread->tls32_.debug_suspend_count
       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
  }

  os << "  | sysTid=" << tid
     << " nice=" << getpriority(PRIO_PROCESS, tid)
     << " cgrp=" << scheduler_group_name;
  if (thread != nullptr) {
    int policy;
    sched_param sp;
    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
                       __FUNCTION__);
    os << " sched=" << policy << "/" << sp.sched_priority
       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
  }
  os << "\n";

  // Grab the scheduler stats for this thread.
  std::string scheduler_stats;
  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
  } else {
    scheduler_stats = "0 0 0";
  }

  char native_thread_state = '?';
  int utime = 0;
  int stime = 0;
  int task_cpu = 0;
  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);

  os << "  | state=" << native_thread_state
     << " schedstat=( " << scheduler_stats << " )"
     << " utm=" << utime
     << " stm=" << stime
     << " core=" << task_cpu
     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
  if (thread != nullptr) {
    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
    // Dump the held mutexes.
    os << "  | held mutexes=";
    for (size_t i = 0; i < kLockLevelCount; ++i) {
      if (i != kMonitorLock) {
        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
        if (mutex != nullptr) {
          os << " \"" << mutex->GetName() << "\"";
          if (mutex->IsReaderWriterMutex()) {
            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
              os << "(exclusive held)";
            } else {
              os << "(shared held)";
            }
          }
        }
      }
    }
    os << "\n";
  }
}

void Thread::DumpState(std::ostream& os) const {
  Thread::DumpState(os, this, GetTid());
}

struct StackDumpVisitor : public StackVisitor {
  StackDumpVisitor(std::ostream& os_in, Thread* thread_in, Context* context, bool can_allocate_in)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      : StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
        os(os_in),
        thread(thread_in),
        can_allocate(can_allocate_in),
        last_method(nullptr),
        last_line_number(0),
        repetition_count(0),
        frame_count(0) {}

  virtual ~StackDumpVisitor() {
    if (frame_count == 0) {
      os << "  (no managed stack frames)\n";
    }
  }

  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    ArtMethod* m = GetMethod();
    if (m->IsRuntimeMethod()) {
      return true;
    }
    m = m->GetInterfaceMethodIfProxy(sizeof(void*));
    const int kMaxRepetition = 3;
    mirror::Class* c = m->GetDeclaringClass();
    mirror::DexCache* dex_cache = c->GetDexCache();
    int line_number = -1;
    if (dex_cache != nullptr) {  // be tolerant of bad input
      const DexFile& dex_file = *dex_cache->GetDexFile();
      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
    }
    if (line_number == last_line_number && last_method == m) {
      ++repetition_count;
    } else {
      if (repetition_count >= kMaxRepetition) {
        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
      }
      repetition_count = 0;
      last_line_number = line_number;
      last_method = m;
    }
    if (repetition_count < kMaxRepetition) {
      os << "  at " << PrettyMethod(m, false);
      if (m->IsNative()) {
        os << "(Native method)";
      } else {
        const char* source_file(m->GetDeclaringClassSourceFile());
        os << "(" << (source_file != nullptr ? source_file : "unavailable")
           << ":" << line_number << ")";
      }
      os << "\n";
      if (frame_count == 0) {
        Monitor::DescribeWait(os, thread);
      }
      if (can_allocate) {
        // Visit locks, but do not abort on errors. This would trigger a nested abort.
        Monitor::VisitLocks(this, DumpLockedObject, &os, false);
      }
    }

    ++frame_count;
    return true;
  }

  static void DumpLockedObject(mirror::Object* o, void* context)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
    os << "  - locked ";
    if (o == nullptr) {
      os << "an unknown object";
    } else {
      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
        // Getting the identity hashcode here would result in lock inflation and suspension of the
        // current thread, which isn't safe if this is the only runnable thread.
        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
                           PrettyTypeOf(o).c_str());
      } else {
        // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
        // we get the pretty type beofre we call IdentityHashCode.
        const std::string pretty_type(PrettyTypeOf(o));
        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
      }
    }
    os << "\n";
  }

  std::ostream& os;
  const Thread* thread;
  const bool can_allocate;
  ArtMethod* last_method;
  int last_line_number;
  int repetition_count;
  int frame_count;
};

static bool ShouldShowNativeStack(const Thread* thread)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  ThreadState state = thread->GetState();

  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
  if (state > kWaiting && state < kStarting) {
    return true;
  }

  // In an Object.wait variant or Thread.sleep? That's not interesting.
  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
    return false;
  }

  // Threads with no managed stack frames should be shown.
  const ManagedStack* managed_stack = thread->GetManagedStack();
  if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
      managed_stack->GetTopShadowFrame() == nullptr)) {
    return true;
  }

  // In some other native method? That's interesting.
  // We don't just check kNative because native methods will be in state kSuspended if they're
  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
  ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
  return current_method != nullptr && current_method->IsNative();
}

void Thread::DumpJavaStack(std::ostream& os) const {
  // If flip_function is not null, it means we have run a checkpoint
  // before the thread wakes up to execute the flip function and the
  // thread roots haven't been forwarded.  So the following access to
  // the roots (locks or methods in the frames) would be bad. Run it
  // here. TODO: clean up.
  {
    Thread* this_thread = const_cast<Thread*>(this);
    Closure* flip_func = this_thread->GetFlipFunction();
    if (flip_func != nullptr) {
      flip_func->Run(this_thread);
    }
  }

  // Dumping the Java stack involves the verifier for locks. The verifier operates under the
  // assumption that there is no exception pending on entry. Thus, stash any pending exception.
  // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
  // thread.
  StackHandleScope<1> scope(Thread::Current());
  Handle<mirror::Throwable> exc;
  bool have_exception = false;
  if (IsExceptionPending()) {
    exc = scope.NewHandle(GetException());
    const_cast<Thread*>(this)->ClearException();
    have_exception = true;
  }

  std::unique_ptr<Context> context(Context::Create());
  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
                          !tls32_.throwing_OutOfMemoryError);
  dumper.WalkStack();

  if (have_exception) {
    const_cast<Thread*>(this)->SetException(exc.Get());
  }
}

void Thread::DumpStack(std::ostream& os) const {
  // TODO: we call this code when dying but may not have suspended the thread ourself. The
  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
  //       the race with the thread_suspend_count_lock_).
  bool dump_for_abort = (gAborting > 0);
  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
  if (!kIsDebugBuild) {
    // We always want to dump the stack for an abort, however, there is no point dumping another
    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
    safe_to_dump = (safe_to_dump || dump_for_abort);
  }
  if (safe_to_dump) {
    // If we're currently in native code, dump that stack before dumping the managed stack.
    if (dump_for_abort || ShouldShowNativeStack(this)) {
      DumpKernelStack(os, GetTid(), "  kernel: ", false);
      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr, !dump_for_abort));
    }
    DumpJavaStack(os);
  } else {
    os << "Not able to dump stack of thread that isn't suspended";
  }
}

void Thread::ThreadExitCallback(void* arg) {
  Thread* self = reinterpret_cast<Thread*>(arg);
  if (self->tls32_.thread_exit_check_count == 0) {
    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
        "going to use a pthread_key_create destructor?): " << *self;
    CHECK(is_started_);
    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
    self->tls32_.thread_exit_check_count = 1;
  } else {
    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
  }
}

void Thread::Startup() {
  CHECK(!is_started_);
  is_started_ = true;
  {
    // MutexLock to keep annotalysis happy.
    //
    // Note we use null for the thread because Thread::Current can
    // return garbage since (is_started_ == true) and
    // Thread::pthread_key_self_ is not yet initialized.
    // This was seen on glibc.
    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
                                         *Locks::thread_suspend_count_lock_);
  }

  // Allocate a TLS slot.
  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
                     "self key");

  // Double-check the TLS slot allocation.
  if (pthread_getspecific(pthread_key_self_) != nullptr) {
    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
  }
}

void Thread::FinishStartup() {
  Runtime* runtime = Runtime::Current();
  CHECK(runtime->IsStarted());

  // Finish attaching the main thread.
  ScopedObjectAccess soa(Thread::Current());
  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
  Thread::Current()->AssertNoPendingException();

  Runtime::Current()->GetClassLinker()->RunRootClinits();
}

void Thread::Shutdown() {
  CHECK(is_started_);
  is_started_ = false;
  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
  if (resume_cond_ != nullptr) {
    delete resume_cond_;
    resume_cond_ = nullptr;
  }
}

Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
  wait_mutex_ = new Mutex("a thread wait mutex");
  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
  tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));

  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
  tls32_.state_and_flags.as_struct.flags = 0;
  tls32_.state_and_flags.as_struct.state = kNative;
  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
  std::fill(tlsPtr_.rosalloc_runs,
            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
            gc::allocator::RosAlloc::GetDedicatedFullRun());
  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
    tlsPtr_.checkpoint_functions[i] = nullptr;
  }
  tlsPtr_.flip_function = nullptr;
  tls32_.suspended_at_suspend_check = false;
}

bool Thread::IsStillStarting() const {
  // You might think you can check whether the state is kStarting, but for much of thread startup,
  // the thread is in kNative; it might also be in kVmWait.
  // You might think you can check whether the peer is null, but the peer is actually created and
  // assigned fairly early on, and needs to be.
  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
  // this thread _ever_ entered kRunnable".
  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
      (*tlsPtr_.name == kThreadNameDuringStartup);
}

void Thread::AssertPendingException() const {
  CHECK(IsExceptionPending()) << "Pending exception expected.";
}

void Thread::AssertPendingOOMException() const {
  AssertPendingException();
  auto* e = GetException();
  CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
      << e->Dump();
}

void Thread::AssertNoPendingException() const {
  if (UNLIKELY(IsExceptionPending())) {
    ScopedObjectAccess soa(Thread::Current());
    mirror::Throwable* exception = GetException();
    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
  }
}

void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
  if (UNLIKELY(IsExceptionPending())) {
    ScopedObjectAccess soa(Thread::Current());
    mirror::Throwable* exception = GetException();
    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
        << exception->Dump();
  }
}

class MonitorExitVisitor : public SingleRootVisitor {
 public:
  explicit MonitorExitVisitor(Thread* self) : self_(self) { }

  // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
  void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
      OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
    if (self_->HoldsLock(entered_monitor)) {
      LOG(WARNING) << "Calling MonitorExit on object "
                   << entered_monitor << " (" << PrettyTypeOf(entered_monitor) << ")"
                   << " left locked by native thread "
                   << *Thread::Current() << " which is detaching";
      entered_monitor->MonitorExit(self_);
    }
  }

 private:
  Thread* const self_;
};

void Thread::Destroy() {
  Thread* self = this;
  DCHECK_EQ(self, Thread::Current());

  if (tlsPtr_.jni_env != nullptr) {
    {
      ScopedObjectAccess soa(self);
      MonitorExitVisitor visitor(self);
      // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
      tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
    }
    // Release locally held global references which releasing may require the mutator lock.
    if (tlsPtr_.jpeer != nullptr) {
      // If pthread_create fails we don't have a jni env here.
      tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
      tlsPtr_.jpeer = nullptr;
    }
    if (tlsPtr_.class_loader_override != nullptr) {
      tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
      tlsPtr_.class_loader_override = nullptr;
    }
  }

  if (tlsPtr_.opeer != nullptr) {
    ScopedObjectAccess soa(self);
    // We may need to call user-supplied managed code, do this before final clean-up.
    HandleUncaughtExceptions(soa);
    RemoveFromThreadGroup(soa);

    // this.nativePeer = 0;
    if (Runtime::Current()->IsActiveTransaction()) {
      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
          ->SetLong<true>(tlsPtr_.opeer, 0);
    } else {
      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
          ->SetLong<false>(tlsPtr_.opeer, 0);
    }
    Dbg::PostThreadDeath(self);

    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
    // who is waiting.
    mirror::Object* lock =
        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
    if (lock != nullptr) {
      StackHandleScope<1> hs(self);
      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
      ObjectLock<mirror::Object> locker(self, h_obj);
      locker.NotifyAll();
    }
    tlsPtr_.opeer = nullptr;
  }

  {
    ScopedObjectAccess soa(self);
    Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
  }
}

Thread::~Thread() {
  CHECK(tlsPtr_.class_loader_override == nullptr);
  CHECK(tlsPtr_.jpeer == nullptr);
  CHECK(tlsPtr_.opeer == nullptr);
  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
  if (initialized) {
    delete tlsPtr_.jni_env;
    tlsPtr_.jni_env = nullptr;
  }
  CHECK_NE(GetState(), kRunnable);
  CHECK_NE(ReadFlag(kCheckpointRequest), true);
  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
  CHECK(tlsPtr_.flip_function == nullptr);
  CHECK_EQ(tls32_.suspended_at_suspend_check, false);

  // We may be deleting a still born thread.
  SetStateUnsafe(kTerminated);

  delete wait_cond_;
  delete wait_mutex_;

  if (tlsPtr_.long_jump_context != nullptr) {
    delete tlsPtr_.long_jump_context;
  }

  if (initialized) {
    CleanupCpu();
  }

  if (tlsPtr_.single_step_control != nullptr) {
    delete tlsPtr_.single_step_control;
  }
  delete tlsPtr_.instrumentation_stack;
  delete tlsPtr_.name;
  delete tlsPtr_.stack_trace_sample;
  free(tlsPtr_.nested_signal_state);

  Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);

  TearDownAlternateSignalStack();
}

void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
  if (!IsExceptionPending()) {
    return;
  }
  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
  ScopedThreadStateChange tsc(this, kNative);

  // Get and clear the exception.
  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
  tlsPtr_.jni_env->ExceptionClear();

  // If the thread has its own handler, use that.
  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
  if (handler.get() == nullptr) {
    // Otherwise use the thread group's default handler.
    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
                                                  WellKnownClasses::java_lang_Thread_group));
  }

  // Call the handler.
  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
      WellKnownClasses::java_lang_Thread__UncaughtExceptionHandler_uncaughtException,
      peer.get(), exception.get());

  // If the handler threw, clear that exception too.
  tlsPtr_.jni_env->ExceptionClear();
}

void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
  // this.group.removeThread(this);
  // group can be null if we're in the compiler or a test.
  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
      ->GetObject(tlsPtr_.opeer);
  if (ogroup != nullptr) {
    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
    ScopedThreadStateChange tsc(soa.Self(), kNative);
    tlsPtr_.jni_env->CallVoidMethod(group.get(),
                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
                                    peer.get());
  }
}

size_t Thread::NumHandleReferences() {
  size_t count = 0;
  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur != nullptr; cur = cur->GetLink()) {
    count += cur->NumberOfReferences();
  }
  return count;
}

bool Thread::HandleScopeContains(jobject obj) const {
  StackReference<mirror::Object>* hs_entry =
      reinterpret_cast<StackReference<mirror::Object>*>(obj);
  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
    if (cur->Contains(hs_entry)) {
      return true;
    }
  }
  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
}

void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
  BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
      visitor, RootInfo(kRootNativeStack, thread_id));
  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
    for (size_t j = 0, count = cur->NumberOfReferences(); j < count; ++j) {
      // GetReference returns a pointer to the stack reference within the handle scope. If this
      // needs to be updated, it will be done by the root visitor.
      buffered_visitor.VisitRootIfNonNull(cur->GetHandle(j).GetReference());
    }
  }
}

mirror::Object* Thread::DecodeJObject(jobject obj) const {
  if (obj == nullptr) {
    return nullptr;
  }
  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
  IndirectRefKind kind = GetIndirectRefKind(ref);
  mirror::Object* result;
  bool expect_null = false;
  // The "kinds" below are sorted by the frequency we expect to encounter them.
  if (kind == kLocal) {
    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
    // Local references do not need a read barrier.
    result = locals.Get<kWithoutReadBarrier>(ref);
  } else if (kind == kHandleScopeOrInvalid) {
    // TODO: make stack indirect reference table lookup more efficient.
    // Check if this is a local reference in the handle scope.
    if (LIKELY(HandleScopeContains(obj))) {
      // Read from handle scope.
      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
      VerifyObject(result);
    } else {
      tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
      expect_null = true;
      result = nullptr;
    }
  } else if (kind == kGlobal) {
    result = tlsPtr_.jni_env->vm->DecodeGlobal(const_cast<Thread*>(this), ref);
  } else {
    DCHECK_EQ(kind, kWeakGlobal);
    result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
    if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
      // This is a special case where it's okay to return null.
      expect_null = true;
      result = nullptr;
    }
  }

  if (UNLIKELY(!expect_null && result == nullptr)) {
    tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
                                   ToStr<IndirectRefKind>(kind).c_str(), obj);
  }
  return result;
}

// Implements java.lang.Thread.interrupted.
bool Thread::Interrupted() {
  MutexLock mu(Thread::Current(), *wait_mutex_);
  bool interrupted = IsInterruptedLocked();
  SetInterruptedLocked(false);
  return interrupted;
}

// Implements java.lang.Thread.isInterrupted.
bool Thread::IsInterrupted() {
  MutexLock mu(Thread::Current(), *wait_mutex_);
  return IsInterruptedLocked();
}

void Thread::Interrupt(Thread* self) {
  MutexLock mu(self, *wait_mutex_);
  if (interrupted_) {
    return;
  }
  interrupted_ = true;
  NotifyLocked(self);
}

void Thread::Notify() {
  Thread* self = Thread::Current();
  MutexLock mu(self, *wait_mutex_);
  NotifyLocked(self);
}

void Thread::NotifyLocked(Thread* self) {
  if (wait_monitor_ != nullptr) {
    wait_cond_->Signal(self);
  }
}

void Thread::SetClassLoaderOverride(jobject class_loader_override) {
  if (tlsPtr_.class_loader_override != nullptr) {
    GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
  }
  tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
}

class CountStackDepthVisitor : public StackVisitor {
 public:
  explicit CountStackDepthVisitor(Thread* thread)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
        depth_(0), skip_depth_(0), skipping_(true) {}

  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    // We want to skip frames up to and including the exception's constructor.
    // Note we also skip the frame if it doesn't have a method (namely the callee
    // save frame)
    ArtMethod* m = GetMethod();
    if (skipping_ && !m->IsRuntimeMethod() &&
        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
      skipping_ = false;
    }
    if (!skipping_) {
      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
        ++depth_;
      }
    } else {
      ++skip_depth_;
    }
    return true;
  }

  int GetDepth() const {
    return depth_;
  }

  int GetSkipDepth() const {
    return skip_depth_;
  }

 private:
  uint32_t depth_;
  uint32_t skip_depth_;
  bool skipping_;
};

template<bool kTransactionActive>
class BuildInternalStackTraceVisitor : public StackVisitor {
 public:
  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
      : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
        self_(self),
        skip_depth_(skip_depth),
        count_(0),
        trace_(nullptr),
        pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}

  bool Init(int depth)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    // Allocate method trace with format [method pointers][pcs].
    auto* cl = Runtime::Current()->GetClassLinker();
    trace_ = cl->AllocPointerArray(self_, depth * 2);
    if (trace_ == nullptr) {
      self_->AssertPendingOOMException();
      return false;
    }
    // If We are called from native, use non-transactional mode.
    const char* last_no_suspend_cause =
        self_->StartAssertNoThreadSuspension("Building internal stack trace");
    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
    return true;
  }

  virtual ~BuildInternalStackTraceVisitor() {
    if (trace_ != nullptr) {
      self_->EndAssertNoThreadSuspension(nullptr);
    }
  }

  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    if (trace_ == nullptr) {
      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
    }
    if (skip_depth_ > 0) {
      skip_depth_--;
      return true;
    }
    ArtMethod* m = GetMethod();
    if (m->IsRuntimeMethod()) {
      return true;  // Ignore runtime frames (in particular callee save).
    }
    trace_->SetElementPtrSize<kTransactionActive>(
        count_, m, pointer_size_);
    trace_->SetElementPtrSize<kTransactionActive>(
        trace_->GetLength() / 2 + count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc(),
            pointer_size_);
    ++count_;
    return true;
  }

  mirror::PointerArray* GetInternalStackTrace() const {
    return trace_;
  }

 private:
  Thread* const self_;
  // How many more frames to skip.
  int32_t skip_depth_;
  // Current position down stack trace.
  uint32_t count_;
  // An array of the methods on the stack, the last entries are the dex PCs.
  mirror::PointerArray* trace_;
  // For cross compilation.
  size_t pointer_size_;
};

template<bool kTransactionActive>
jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
  // Compute depth of stack
  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
  count_visitor.WalkStack();
  int32_t depth = count_visitor.GetDepth();
  int32_t skip_depth = count_visitor.GetSkipDepth();

  // Build internal stack trace.
  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
                                                                         const_cast<Thread*>(this),
                                                                         skip_depth);
  if (!build_trace_visitor.Init(depth)) {
    return nullptr;  // Allocation failed.
  }
  build_trace_visitor.WalkStack();
  mirror::PointerArray* trace = build_trace_visitor.GetInternalStackTrace();
  if (kIsDebugBuild) {
    // Second half is dex PCs.
    for (uint32_t i = 0; i < static_cast<uint32_t>(trace->GetLength() / 2); ++i) {
      auto* method = trace->GetElementPtrSize<ArtMethod*>(
          i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
      CHECK(method != nullptr);
    }
  }
  return soa.AddLocalReference<jobject>(trace);
}
template jobject Thread::CreateInternalStackTrace<false>(
    const ScopedObjectAccessAlreadyRunnable& soa) const;
template jobject Thread::CreateInternalStackTrace<true>(
    const ScopedObjectAccessAlreadyRunnable& soa) const;

bool Thread::IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const {
  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
  count_visitor.WalkStack();
  return count_visitor.GetDepth() == exception->GetStackDepth();
}

jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
    int* stack_depth) {
  // Decode the internal stack trace into the depth, method trace and PC trace
  int32_t depth = soa.Decode<mirror::PointerArray*>(internal)->GetLength() / 2;

  auto* cl = Runtime::Current()->GetClassLinker();

  jobjectArray result;

  if (output_array != nullptr) {
    // Reuse the array we were given.
    result = output_array;
    // ...adjusting the number of frames we'll write to not exceed the array length.
    const int32_t traces_length =
        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
    depth = std::min(depth, traces_length);
  } else {
    // Create java_trace array and place in local reference table
    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
        cl->AllocStackTraceElementArray(soa.Self(), depth);
    if (java_traces == nullptr) {
      return nullptr;
    }
    result = soa.AddLocalReference<jobjectArray>(java_traces);
  }

  if (stack_depth != nullptr) {
    *stack_depth = depth;
  }

  for (int32_t i = 0; i < depth; ++i) {
    auto* method_trace = soa.Decode<mirror::PointerArray*>(internal);
    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
    ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, sizeof(void*));
    uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
        i + method_trace->GetLength() / 2, sizeof(void*));
    int32_t line_number;
    StackHandleScope<3> hs(soa.Self());
    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
    if (method->IsProxyMethod()) {
      line_number = -1;
      class_name_object.Assign(method->GetDeclaringClass()->GetName());
      // source_name_object intentionally left null for proxy methods
    } else {
      line_number = method->GetLineNumFromDexPC(dex_pc);
      // Allocate element, potentially triggering GC
      // TODO: reuse class_name_object via Class::name_?
      const char* descriptor = method->GetDeclaringClassDescriptor();
      CHECK(descriptor != nullptr);
      std::string class_name(PrettyDescriptor(descriptor));
      class_name_object.Assign(
          mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
      if (class_name_object.Get() == nullptr) {
        soa.Self()->AssertPendingOOMException();
        return nullptr;
      }
      const char* source_file = method->GetDeclaringClassSourceFile();
      if (source_file != nullptr) {
        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
        if (source_name_object.Get() == nullptr) {
          soa.Self()->AssertPendingOOMException();
          return nullptr;
        }
      }
    }
    const char* method_name = method->GetInterfaceMethodIfProxy(sizeof(void*))->GetName();
    CHECK(method_name != nullptr);
    Handle<mirror::String> method_name_object(
        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
    if (method_name_object.Get() == nullptr) {
      return nullptr;
    }
    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
    if (obj == nullptr) {
      return nullptr;
    }
    // We are called from native: use non-transactional mode.
    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
  }
  return result;
}

void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
  va_list args;
  va_start(args, fmt);
  ThrowNewExceptionV(exception_class_descriptor, fmt, args);
  va_end(args);
}

void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
                                const char* fmt, va_list ap) {
  std::string msg;
  StringAppendV(&msg, fmt, ap);
  ThrowNewException(exception_class_descriptor, msg.c_str());
}

void Thread::ThrowNewException(const char* exception_class_descriptor,
                               const char* msg) {
  // Callers should either clear or call ThrowNewWrappedException.
  AssertNoPendingExceptionForNewException(msg);
  ThrowNewWrappedException(exception_class_descriptor, msg);
}

static mirror::ClassLoader* GetCurrentClassLoader(Thread* self)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  ArtMethod* method = self->GetCurrentMethod(nullptr);
  return method != nullptr
      ? method->GetDeclaringClass()->GetClassLoader()
      : nullptr;
}

void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
                                      const char* msg) {
  DCHECK_EQ(this, Thread::Current());
  ScopedObjectAccessUnchecked soa(this);
  StackHandleScope<3> hs(soa.Self());
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
  ClearException();
  Runtime* runtime = Runtime::Current();
  auto* cl = runtime->GetClassLinker();
  Handle<mirror::Class> exception_class(
      hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
  if (UNLIKELY(exception_class.Get() == nullptr)) {
    CHECK(IsExceptionPending());
    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
    return;
  }

  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
                                                             true))) {
    DCHECK(IsExceptionPending());
    return;
  }
  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
  Handle<mirror::Throwable> exception(
      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));

  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
  if (exception.Get() == nullptr) {
    SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
    return;
  }

  // Choose an appropriate constructor and set up the arguments.
  const char* signature;
  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
  if (msg != nullptr) {
    // Ensure we remember this and the method over the String allocation.
    msg_string.reset(
        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
    if (UNLIKELY(msg_string.get() == nullptr)) {
      CHECK(IsExceptionPending());  // OOME.
      return;
    }
    if (cause.get() == nullptr) {
      signature = "(Ljava/lang/String;)V";
    } else {
      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
    }
  } else {
    if (cause.get() == nullptr) {
      signature = "()V";
    } else {
      signature = "(Ljava/lang/Throwable;)V";
    }
  }
  ArtMethod* exception_init_method =
      exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize());

  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
      << PrettyDescriptor(exception_class_descriptor);

  if (UNLIKELY(!runtime->IsStarted())) {
    // Something is trying to throw an exception without a started runtime, which is the common
    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
    // the exception fields directly.
    if (msg != nullptr) {
      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
    }
    if (cause.get() != nullptr) {
      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
    }
    ScopedLocalRef<jobject> trace(GetJniEnv(),
                                  Runtime::Current()->IsActiveTransaction()
                                      ? CreateInternalStackTrace<true>(soa)
                                      : CreateInternalStackTrace<false>(soa));
    if (trace.get() != nullptr) {
      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
    }
    SetException(exception.Get());
  } else {
    jvalue jv_args[2];
    size_t i = 0;

    if (msg != nullptr) {
      jv_args[i].l = msg_string.get();
      ++i;
    }
    if (cause.get() != nullptr) {
      jv_args[i].l = cause.get();
      ++i;
    }
    ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
    InvokeWithJValues(soa, ref.get(), soa.EncodeMethod(exception_init_method), jv_args);
    if (LIKELY(!IsExceptionPending())) {
      SetException(exception.Get());
    }
  }
}

void Thread::ThrowOutOfMemoryError(const char* msg) {
  LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
  if (!tls32_.throwing_OutOfMemoryError) {
    tls32_.throwing_OutOfMemoryError = true;
    ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
    tls32_.throwing_OutOfMemoryError = false;
  } else {
    Dump(LOG(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
    SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
  }
}

Thread* Thread::CurrentFromGdb() {
  return Thread::Current();
}

void Thread::DumpFromGdb() const {
  std::ostringstream ss;
  Dump(ss);
  std::string str(ss.str());
  // log to stderr for debugging command line processes
  std::cerr << str;
#ifdef HAVE_ANDROID_OS
  // log to logcat for debugging frameworks processes
  LOG(INFO) << str;
#endif
}

// Explicitly instantiate 32 and 64bit thread offset dumping support.
template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);

template<size_t ptr_size>
void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
#define DO_THREAD_OFFSET(x, y) \
    if (offset == x.Uint32Value()) { \
      os << y; \
      return; \
    }
  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
#undef DO_THREAD_OFFSET

#define INTERPRETER_ENTRY_POINT_INFO(x) \
    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
      os << #x; \
      return; \
    }
  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
#undef INTERPRETER_ENTRY_POINT_INFO

#define JNI_ENTRY_POINT_INFO(x) \
    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
      os << #x; \
      return; \
    }
  JNI_ENTRY_POINT_INFO(pDlsymLookup)
#undef JNI_ENTRY_POINT_INFO

#define QUICK_ENTRY_POINT_INFO(x) \
    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
      os << #x; \
      return; \
    }
  QUICK_ENTRY_POINT_INFO(pAllocArray)
  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
  QUICK_ENTRY_POINT_INFO(pAllocObject)
  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
  QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
  QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
  QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
  QUICK_ENTRY_POINT_INFO(pCheckCast)
  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
  QUICK_ENTRY_POINT_INFO(pInitializeType)
  QUICK_ENTRY_POINT_INFO(pResolveString)
  QUICK_ENTRY_POINT_INFO(pSet8Instance)
  QUICK_ENTRY_POINT_INFO(pSet8Static)
  QUICK_ENTRY_POINT_INFO(pSet16Instance)
  QUICK_ENTRY_POINT_INFO(pSet16Static)
  QUICK_ENTRY_POINT_INFO(pSet32Instance)
  QUICK_ENTRY_POINT_INFO(pSet32Static)
  QUICK_ENTRY_POINT_INFO(pSet64Instance)
  QUICK_ENTRY_POINT_INFO(pSet64Static)
  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
  QUICK_ENTRY_POINT_INFO(pGetByteInstance)
  QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
  QUICK_ENTRY_POINT_INFO(pGetByteStatic)
  QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
  QUICK_ENTRY_POINT_INFO(pGetShortInstance)
  QUICK_ENTRY_POINT_INFO(pGetCharInstance)
  QUICK_ENTRY_POINT_INFO(pGetShortStatic)
  QUICK_ENTRY_POINT_INFO(pGetCharStatic)
  QUICK_ENTRY_POINT_INFO(pGet32Instance)
  QUICK_ENTRY_POINT_INFO(pGet32Static)
  QUICK_ENTRY_POINT_INFO(pGet64Instance)
  QUICK_ENTRY_POINT_INFO(pGet64Static)
  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
  QUICK_ENTRY_POINT_INFO(pAputObject)
  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
  QUICK_ENTRY_POINT_INFO(pLockObject)
  QUICK_ENTRY_POINT_INFO(pUnlockObject)
  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
  QUICK_ENTRY_POINT_INFO(pCmplDouble)
  QUICK_ENTRY_POINT_INFO(pCmplFloat)
  QUICK_ENTRY_POINT_INFO(pFmod)
  QUICK_ENTRY_POINT_INFO(pL2d)
  QUICK_ENTRY_POINT_INFO(pFmodf)
  QUICK_ENTRY_POINT_INFO(pL2f)
  QUICK_ENTRY_POINT_INFO(pD2iz)
  QUICK_ENTRY_POINT_INFO(pF2iz)
  QUICK_ENTRY_POINT_INFO(pIdivmod)
  QUICK_ENTRY_POINT_INFO(pD2l)
  QUICK_ENTRY_POINT_INFO(pF2l)
  QUICK_ENTRY_POINT_INFO(pLdiv)
  QUICK_ENTRY_POINT_INFO(pLmod)
  QUICK_ENTRY_POINT_INFO(pLmul)
  QUICK_ENTRY_POINT_INFO(pShlLong)
  QUICK_ENTRY_POINT_INFO(pShrLong)
  QUICK_ENTRY_POINT_INFO(pUshrLong)
  QUICK_ENTRY_POINT_INFO(pIndexOf)
  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
  QUICK_ENTRY_POINT_INFO(pMemcpy)
  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
  QUICK_ENTRY_POINT_INFO(pTestSuspend)
  QUICK_ENTRY_POINT_INFO(pDeliverException)
  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
  QUICK_ENTRY_POINT_INFO(pDeoptimize)
  QUICK_ENTRY_POINT_INFO(pA64Load)
  QUICK_ENTRY_POINT_INFO(pA64Store)
  QUICK_ENTRY_POINT_INFO(pNewEmptyString)
  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
  QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
  QUICK_ENTRY_POINT_INFO(pNewStringFromString)
  QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
  QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
  QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
#undef QUICK_ENTRY_POINT_INFO

  os << offset;
}

void Thread::QuickDeliverException() {
  // Get exception from thread.
  mirror::Throwable* exception = GetException();
  CHECK(exception != nullptr);
  // Don't leave exception visible while we try to find the handler, which may cause class
  // resolution.
  ClearException();
  bool is_deoptimization = (exception == GetDeoptimizationException());
  QuickExceptionHandler exception_handler(this, is_deoptimization);
  if (is_deoptimization) {
    exception_handler.DeoptimizeStack();
  } else {
    exception_handler.FindCatch(exception);
  }
  exception_handler.UpdateInstrumentationStack();
  exception_handler.DoLongJump();
}

Context* Thread::GetLongJumpContext() {
  Context* result = tlsPtr_.long_jump_context;
  if (result == nullptr) {
    result = Context::Create();
  } else {
    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
    result->Reset();
  }
  return result;
}

// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
struct CurrentMethodVisitor FINAL : public StackVisitor {
  CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
        this_object_(nullptr),
        method_(nullptr),
        dex_pc_(0),
        abort_on_error_(abort_on_error) {}
  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    ArtMethod* m = GetMethod();
    if (m->IsRuntimeMethod()) {
      // Continue if this is a runtime method.
      return true;
    }
    if (context_ != nullptr) {
      this_object_ = GetThisObject();
    }
    method_ = m;
    dex_pc_ = GetDexPc(abort_on_error_);
    return false;
  }
  mirror::Object* this_object_;
  ArtMethod* method_;
  uint32_t dex_pc_;
  const bool abort_on_error_;
};

ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
  visitor.WalkStack(false);
  if (dex_pc != nullptr) {
    *dex_pc = visitor.dex_pc_;
  }
  return visitor.method_;
}

bool Thread::HoldsLock(mirror::Object* object) const {
  if (object == nullptr) {
    return false;
  }
  return object->GetLockOwnerThreadId() == GetThreadId();
}

// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
template <typename RootVisitor>
class ReferenceMapVisitor : public StackVisitor {
 public:
  ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
        // We are visiting the references in compiled frames, so we do not need
        // to know the inlined frames.
      : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
        visitor_(visitor) {}

  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    if (false) {
      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
                << StringPrintf("@ PC:%04x", GetDexPc());
    }
    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
    if (shadow_frame != nullptr) {
      VisitShadowFrame(shadow_frame);
    } else {
      VisitQuickFrame();
    }
    return true;
  }

  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    ArtMethod* m = shadow_frame->GetMethod();
    DCHECK(m != nullptr);
    size_t num_regs = shadow_frame->NumberOfVRegs();
    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
      // handle scope for JNI or References for interpreter.
      for (size_t reg = 0; reg < num_regs; ++reg) {
        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
        if (ref != nullptr) {
          mirror::Object* new_ref = ref;
          visitor_(&new_ref, reg, this);
          if (new_ref != ref) {
            shadow_frame->SetVRegReference(reg, new_ref);
          }
        }
      }
    } else {
      // Java method.
      // Portable path use DexGcMap and store in Method.native_gc_map_.
      const uint8_t* gc_map = m->GetNativeGcMap(sizeof(void*));
      CHECK(gc_map != nullptr) << PrettyMethod(m);
      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
      uint32_t dex_pc = shadow_frame->GetDexPC();
      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
      DCHECK(reg_bitmap != nullptr);
      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
      for (size_t reg = 0; reg < num_regs; ++reg) {
        if (TestBitmap(reg, reg_bitmap)) {
          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
          if (ref != nullptr) {
            mirror::Object* new_ref = ref;
            visitor_(&new_ref, reg, this);
            if (new_ref != ref) {
              shadow_frame->SetVRegReference(reg, new_ref);
            }
          }
        }
      }
    }
  }

 private:
  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    auto* cur_quick_frame = GetCurrentQuickFrame();
    DCHECK(cur_quick_frame != nullptr);
    auto* m = *cur_quick_frame;

    // Process register map (which native and runtime methods don't have)
    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
      if (m->IsOptimized(sizeof(void*))) {
        auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
            reinterpret_cast<uintptr_t>(cur_quick_frame));
        Runtime* runtime = Runtime::Current();
        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
        uintptr_t native_pc_offset = m->NativeQuickPcOffset(GetCurrentQuickFramePc(), entry_point);
        CodeInfo code_info = m->GetOptimizedCodeInfo();
        StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
        MemoryRegion mask = map.GetStackMask(code_info);
        // Visit stack entries that hold pointers.
        for (size_t i = 0; i < mask.size_in_bits(); ++i) {
          if (mask.LoadBit(i)) {
            auto* ref_addr = vreg_base + i;
            mirror::Object* ref = ref_addr->AsMirrorPtr();
            if (ref != nullptr) {
              mirror::Object* new_ref = ref;
              visitor_(&new_ref, -1, this);
              if (ref != new_ref) {
                ref_addr->Assign(new_ref);
              }
            }
          }
        }
        // Visit callee-save registers that hold pointers.
        uint32_t register_mask = map.GetRegisterMask(code_info);
        for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
          if (register_mask & (1 << i)) {
            mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
            if (*ref_addr != nullptr) {
              visitor_(ref_addr, -1, this);
            }
          }
        }
      } else {
        const uint8_t* native_gc_map = m->GetNativeGcMap(sizeof(void*));
        CHECK(native_gc_map != nullptr) << PrettyMethod(m);
        const DexFile::CodeItem* code_item = m->GetCodeItem();
        // Can't be null or how would we compile its instructions?
        DCHECK(code_item != nullptr) << PrettyMethod(m);
        NativePcOffsetToReferenceMap map(native_gc_map);
        size_t num_regs = std::min(map.RegWidth() * 8,
                                   static_cast<size_t>(code_item->registers_size_));
        if (num_regs > 0) {
          Runtime* runtime = Runtime::Current();
          const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
          uintptr_t native_pc_offset = m->NativeQuickPcOffset(GetCurrentQuickFramePc(), entry_point);
          const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
          DCHECK(reg_bitmap != nullptr);
          const void* code_pointer = ArtMethod::EntryPointToCodePointer(entry_point);
          const VmapTable vmap_table(m->GetVmapTable(code_pointer, sizeof(void*)));
          QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
          // For all dex registers in the bitmap
          DCHECK(cur_quick_frame != nullptr);
          for (size_t reg = 0; reg < num_regs; ++reg) {
            // Does this register hold a reference?
            if (TestBitmap(reg, reg_bitmap)) {
              uint32_t vmap_offset;
              if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
                int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
                                                          kReferenceVReg);
                // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
                mirror::Object** ref_addr =
                    reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
                if (*ref_addr != nullptr) {
                  visitor_(ref_addr, reg, this);
                }
              } else {
                StackReference<mirror::Object>* ref_addr =
                    reinterpret_cast<StackReference<mirror::Object>*>(GetVRegAddrFromQuickCode(
                        cur_quick_frame, code_item, frame_info.CoreSpillMask(),
                        frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
                mirror::Object* ref = ref_addr->AsMirrorPtr();
                if (ref != nullptr) {
                  mirror::Object* new_ref = ref;
                  visitor_(&new_ref, reg, this);
                  if (ref != new_ref) {
                    ref_addr->Assign(new_ref);
                  }
                }
              }
            }
          }
        }
      }
    }
  }

  // Visitor for when we visit a root.
  RootVisitor& visitor_;
};

class RootCallbackVisitor {
 public:
  RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}

  void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
  }

 private:
  RootVisitor* const visitor_;
  const uint32_t tid_;
};

void Thread::VisitRoots(RootVisitor* visitor) {
  const uint32_t thread_id = GetThreadId();
  visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
    visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
                   RootInfo(kRootNativeStack, thread_id));
  }
  visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
  tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
  tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
  HandleScopeVisitRoots(visitor, thread_id);
  if (tlsPtr_.debug_invoke_req != nullptr) {
    tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
  }
  if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
    RootCallbackVisitor visitor_to_callback(visitor, thread_id);
    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
    for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
         record != nullptr;
         record = record->GetLink()) {
      for (ShadowFrame* shadow_frame = record->GetShadowFrame();
           shadow_frame != nullptr;
           shadow_frame = shadow_frame->GetLink()) {
        mapper.VisitShadowFrame(shadow_frame);
      }
    }
  }
  if (tlsPtr_.deoptimization_return_value_stack != nullptr) {
    for (DeoptimizationReturnValueRecord* record = tlsPtr_.deoptimization_return_value_stack;
         record != nullptr;
         record = record->GetLink()) {
      if (record->IsReference()) {
        visitor->VisitRootIfNonNull(record->GetGCRoot(),
            RootInfo(kRootThreadObject, thread_id));
      }
    }
  }
  for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
    verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
  }
  // Visit roots on this thread's stack
  Context* context = GetLongJumpContext();
  RootCallbackVisitor visitor_to_callback(visitor, thread_id);
  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback);
  mapper.WalkStack();
  ReleaseLongJumpContext(context);
  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
    visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
  }
}

class VerifyRootVisitor : public SingleRootVisitor {
 public:
  void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
      OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    VerifyObject(root);
  }
};

void Thread::VerifyStackImpl() {
  VerifyRootVisitor visitor;
  std::unique_ptr<Context> context(Context::Create());
  RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
  mapper.WalkStack();
}

// Set the stack end to that to be used during a stack overflow
void Thread::SetStackEndForStackOverflow() {
  // During stack overflow we allow use of the full stack.
  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
    // However, we seem to have already extended to use the full stack.
    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
    DumpStack(LOG(ERROR));
    LOG(FATAL) << "Recursive stack overflow.";
  }

  tlsPtr_.stack_end = tlsPtr_.stack_begin;

  // Remove the stack overflow protection if is it set up.
  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
  if (implicit_stack_check) {
    if (!UnprotectStack()) {
      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
    }
  }
}

void Thread::SetTlab(uint8_t* start, uint8_t* end) {
  DCHECK_LE(start, end);
  tlsPtr_.thread_local_start = start;
  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
  tlsPtr_.thread_local_end = end;
  tlsPtr_.thread_local_objects = 0;
}

bool Thread::HasTlab() const {
  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
  if (has_tlab) {
    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
  } else {
    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
  }
  return has_tlab;
}

std::ostream& operator<<(std::ostream& os, const Thread& thread) {
  thread.ShortDump(os);
  return os;
}

void Thread::ProtectStack() {
  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
  VLOG(threads) << "Protecting stack at " << pregion;
  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
        "Reason: "
        << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
  }
}

bool Thread::UnprotectStack() {
  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
  VLOG(threads) << "Unprotecting stack at " << pregion;
  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
}

void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
  CHECK(Dbg::IsDebuggerActive());
  CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
  CHECK(ssc != nullptr);
  tlsPtr_.single_step_control = ssc;
}

void Thread::DeactivateSingleStepControl() {
  CHECK(Dbg::IsDebuggerActive());
  CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
  SingleStepControl* ssc = GetSingleStepControl();
  tlsPtr_.single_step_control = nullptr;
  delete ssc;
}

void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
  CHECK(Dbg::IsDebuggerActive());
  CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
  CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
  CHECK(req != nullptr);
  tlsPtr_.debug_invoke_req = req;
}

void Thread::ClearDebugInvokeReq() {
  CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
  CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
  DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
  tlsPtr_.debug_invoke_req = nullptr;
  delete req;
}

void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
  verifier->link_ = tlsPtr_.method_verifier;
  tlsPtr_.method_verifier = verifier;
}

void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
  CHECK_EQ(tlsPtr_.method_verifier, verifier);
  tlsPtr_.method_verifier = verifier->link_;
}

}  // namespace art