summaryrefslogtreecommitdiffstats
path: root/runtime/verifier/method_verifier.cc
blob: 89f51158d75b6ed0000d17de82f822fb66046931 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "method_verifier-inl.h"

#include <iostream>

#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/logging.h"
#include "base/mutex-inl.h"
#include "base/time_utils.h"
#include "class_linker.h"
#include "compiler_callbacks.h"
#include "dex_file-inl.h"
#include "dex_instruction-inl.h"
#include "dex_instruction_utils.h"
#include "dex_instruction_visitor.h"
#include "gc/accounting/card_table-inl.h"
#include "indenter.h"
#include "intern_table.h"
#include "leb128.h"
#include "mirror/class.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "reg_type-inl.h"
#include "register_line-inl.h"
#include "runtime.h"
#include "scoped_thread_state_change.h"
#include "utils.h"
#include "handle_scope-inl.h"
#include "verifier/dex_gc_map.h"

namespace art {
namespace verifier {

static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
static constexpr bool gDebugVerify = false;
// TODO: Add a constant to method_verifier to turn on verbose logging?

void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
                                 uint32_t insns_size, uint16_t registers_size,
                                 MethodVerifier* verifier) {
  DCHECK_GT(insns_size, 0U);
  register_lines_.reset(new RegisterLine*[insns_size]());
  size_ = insns_size;
  for (uint32_t i = 0; i < insns_size; i++) {
    bool interesting = false;
    switch (mode) {
      case kTrackRegsAll:
        interesting = flags[i].IsOpcode();
        break;
      case kTrackCompilerInterestPoints:
        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
        break;
      case kTrackRegsBranches:
        interesting = flags[i].IsBranchTarget();
        break;
      default:
        break;
    }
    if (interesting) {
      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
    }
  }
}

PcToRegisterLineTable::~PcToRegisterLineTable() {
  for (size_t i = 0; i < size_; i++) {
    delete register_lines_[i];
    if (kIsDebugBuild) {
      register_lines_[i] = nullptr;
    }
  }
}

// Note: returns true on failure.
ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
                                             const char* error_msg, uint32_t work_insn_idx) {
  if (kIsDebugBuild) {
    // In a debug build, abort if the error condition is wrong.
    DCHECK(condition) << error_msg << work_insn_idx;
  } else {
    // In a non-debug build, just fail the class.
    if (!condition) {
      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
      return true;
    }
  }

  return false;
}

static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
  if (verifier->IsConstructor()) {
    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
    reg_line->CheckConstructorReturn(verifier);
  }
  reg_line->MarkAllRegistersAsConflicts(verifier);
}

MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
    ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
  StackHandleScope<2> hs(Thread::Current());
  mirror::Class* klass = method->GetDeclaringClass();
  auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
  auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
  return VerifyMethod(hs.Self(), method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
                      h_class_loader, klass->GetClassDef(), method->GetCodeItem(), method,
                      method->GetAccessFlags(), allow_soft_failures, false);
}


MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
                                                        mirror::Class* klass,
                                                        bool allow_soft_failures,
                                                        std::string* error) {
  if (klass->IsVerified()) {
    return kNoFailure;
  }
  bool early_failure = false;
  std::string failure_message;
  const DexFile& dex_file = klass->GetDexFile();
  const DexFile::ClassDef* class_def = klass->GetClassDef();
  mirror::Class* super = klass->GetSuperClass();
  std::string temp;
  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
    early_failure = true;
    failure_message = " that has no super class";
  } else if (super != nullptr && super->IsFinal()) {
    early_failure = true;
    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
  } else if (class_def == nullptr) {
    early_failure = true;
    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
  }
  if (early_failure) {
    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
    if (Runtime::Current()->IsAotCompiler()) {
      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
    }
    return kHardFailure;
  }
  StackHandleScope<2> hs(self);
  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
  return VerifyClass(
      self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
}

MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
                                                        const DexFile* dex_file,
                                                        Handle<mirror::DexCache> dex_cache,
                                                        Handle<mirror::ClassLoader> class_loader,
                                                        const DexFile::ClassDef* class_def,
                                                        bool allow_soft_failures,
                                                        std::string* error) {
  DCHECK(class_def != nullptr);

  // A class must not be abstract and final.
  if ((class_def->access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) {
    *error = "Verifier rejected class ";
    *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
    *error += ": class is abstract and final.";
    return kHardFailure;
  }

  const uint8_t* class_data = dex_file->GetClassData(*class_def);
  if (class_data == nullptr) {
    // empty class, probably a marker interface
    return kNoFailure;
  }
  ClassDataItemIterator it(*dex_file, class_data);
  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
    it.Next();
  }
  size_t error_count = 0;
  bool hard_fail = false;
  ClassLinker* linker = Runtime::Current()->GetClassLinker();
  int64_t previous_direct_method_idx = -1;
  while (it.HasNextDirectMethod()) {
    self->AllowThreadSuspension();
    uint32_t method_idx = it.GetMemberIndex();
    if (method_idx == previous_direct_method_idx) {
      // smali can create dex files with two encoded_methods sharing the same method_idx
      // http://code.google.com/p/smali/issues/detail?id=119
      it.Next();
      continue;
    }
    previous_direct_method_idx = method_idx;
    InvokeType type = it.GetMethodInvokeType(*class_def);
    ArtMethod* method = linker->ResolveMethod(
        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
    if (method == nullptr) {
      DCHECK(self->IsExceptionPending());
      // We couldn't resolve the method, but continue regardless.
      self->ClearException();
    } else {
      DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
    }
    StackHandleScope<1> hs(self);
    MethodVerifier::FailureKind result = VerifyMethod(self,
                                                      method_idx,
                                                      dex_file,
                                                      dex_cache,
                                                      class_loader,
                                                      class_def,
                                                      it.GetMethodCodeItem(),
        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
    if (result != kNoFailure) {
      if (result == kHardFailure) {
        hard_fail = true;
        if (error_count > 0) {
          *error += "\n";
        }
        *error = "Verifier rejected class ";
        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
        *error += " due to bad method ";
        *error += PrettyMethod(method_idx, *dex_file);
      }
      ++error_count;
    }
    it.Next();
  }
  int64_t previous_virtual_method_idx = -1;
  while (it.HasNextVirtualMethod()) {
    self->AllowThreadSuspension();
    uint32_t method_idx = it.GetMemberIndex();
    if (method_idx == previous_virtual_method_idx) {
      // smali can create dex files with two encoded_methods sharing the same method_idx
      // http://code.google.com/p/smali/issues/detail?id=119
      it.Next();
      continue;
    }
    previous_virtual_method_idx = method_idx;
    InvokeType type = it.GetMethodInvokeType(*class_def);
    ArtMethod* method = linker->ResolveMethod(
        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
    if (method == nullptr) {
      DCHECK(self->IsExceptionPending());
      // We couldn't resolve the method, but continue regardless.
      self->ClearException();
    }
    StackHandleScope<1> hs(self);
    MethodVerifier::FailureKind result = VerifyMethod(self,
                                                      method_idx,
                                                      dex_file,
                                                      dex_cache,
                                                      class_loader,
                                                      class_def,
                                                      it.GetMethodCodeItem(),
        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
    if (result != kNoFailure) {
      if (result == kHardFailure) {
        hard_fail = true;
        if (error_count > 0) {
          *error += "\n";
        }
        *error = "Verifier rejected class ";
        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
        *error += " due to bad method ";
        *error += PrettyMethod(method_idx, *dex_file);
      }
      ++error_count;
    }
    it.Next();
  }
  if (error_count == 0) {
    return kNoFailure;
  } else {
    return hard_fail ? kHardFailure : kSoftFailure;
  }
}

static bool IsLargeMethod(const DexFile::CodeItem* const code_item) {
  if (code_item == nullptr) {
    return false;
  }

  uint16_t registers_size = code_item->registers_size_;
  uint32_t insns_size = code_item->insns_size_in_code_units_;

  return registers_size * insns_size > 4*1024*1024;
}

MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
                                                         const DexFile* dex_file,
                                                         Handle<mirror::DexCache> dex_cache,
                                                         Handle<mirror::ClassLoader> class_loader,
                                                         const DexFile::ClassDef* class_def,
                                                         const DexFile::CodeItem* code_item,
                                                         ArtMethod* method,
                                                         uint32_t method_access_flags,
                                                         bool allow_soft_failures,
                                                         bool need_precise_constants) {
  MethodVerifier::FailureKind result = kNoFailure;
  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;

  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
                          method_idx, method, method_access_flags, true, allow_soft_failures,
                          need_precise_constants, true);
  if (verifier.Verify()) {
    // Verification completed, however failures may be pending that didn't cause the verification
    // to hard fail.
    CHECK(!verifier.have_pending_hard_failure_);
    if (verifier.failures_.size() != 0) {
      if (VLOG_IS_ON(verifier)) {
          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
                                << PrettyMethod(method_idx, *dex_file) << "\n");
      }
      result = kSoftFailure;
    }
  } else {
    // Bad method data.
    CHECK_NE(verifier.failures_.size(), 0U);
    CHECK(verifier.have_pending_hard_failure_);
    verifier.DumpFailures(LOG(INFO) << "Verification error in "
                                    << PrettyMethod(method_idx, *dex_file) << "\n");
    if (gDebugVerify) {
      std::cout << "\n" << verifier.info_messages_.str();
      verifier.Dump(std::cout);
    }
    result = kHardFailure;
  }
  if (kTimeVerifyMethod) {
    uint64_t duration_ns = NanoTime() - start_ns;
    if (duration_ns > MsToNs(100)) {
      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
                   << " took " << PrettyDuration(duration_ns)
                   << (IsLargeMethod(code_item) ? " (large method)" : "");
    }
  }
  return result;
}

MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
                                         const DexFile* dex_file,
                                         Handle<mirror::DexCache> dex_cache,
                                         Handle<mirror::ClassLoader> class_loader,
                                         const DexFile::ClassDef* class_def,
                                         const DexFile::CodeItem* code_item,
                                         ArtMethod* method,
                                         uint32_t method_access_flags) {
  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
                                                class_def, code_item, dex_method_idx, method,
                                                method_access_flags, true, true, true, true);
  verifier->Verify();
  verifier->DumpFailures(os);
  os << verifier->info_messages_.str();
  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
  // and querying any info is dangerous/can abort.
  if (verifier->have_pending_hard_failure_) {
    delete verifier;
    return nullptr;
  } else {
    verifier->Dump(os);
    return verifier;
  }
}

MethodVerifier::MethodVerifier(Thread* self,
                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
                               Handle<mirror::ClassLoader> class_loader,
                               const DexFile::ClassDef* class_def,
                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
                               ArtMethod* method, uint32_t method_access_flags,
                               bool can_load_classes, bool allow_soft_failures,
                               bool need_precise_constants, bool verify_to_dump,
                               bool allow_thread_suspension)
    : self_(self),
      reg_types_(can_load_classes),
      work_insn_idx_(-1),
      dex_method_idx_(dex_method_idx),
      mirror_method_(method),
      method_access_flags_(method_access_flags),
      return_type_(nullptr),
      dex_file_(dex_file),
      dex_cache_(dex_cache),
      class_loader_(class_loader),
      class_def_(class_def),
      code_item_(code_item),
      declaring_class_(nullptr),
      interesting_dex_pc_(-1),
      monitor_enter_dex_pcs_(nullptr),
      have_pending_hard_failure_(false),
      have_pending_runtime_throw_failure_(false),
      new_instance_count_(0),
      monitor_enter_count_(0),
      can_load_classes_(can_load_classes),
      allow_soft_failures_(allow_soft_failures),
      need_precise_constants_(need_precise_constants),
      has_check_casts_(false),
      has_virtual_or_interface_invokes_(false),
      verify_to_dump_(verify_to_dump),
      allow_thread_suspension_(allow_thread_suspension) {
  self->PushVerifier(this);
  DCHECK(class_def != nullptr);
}

MethodVerifier::~MethodVerifier() {
  Thread::Current()->PopVerifier(this);
  STLDeleteElements(&failure_messages_);
}

void MethodVerifier::FindLocksAtDexPc(ArtMethod* m, uint32_t dex_pc,
                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
  StackHandleScope<2> hs(Thread::Current());
  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
                          false, true, false, false);
  verifier.interesting_dex_pc_ = dex_pc;
  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
  verifier.FindLocksAtDexPc();
}

static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
  const Instruction* inst = Instruction::At(code_item->insns_);

  uint32_t insns_size = code_item->insns_size_in_code_units_;
  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
      return true;
    }

    dex_pc += inst->SizeInCodeUnits();
    inst = inst->Next();
  }

  return false;
}

void MethodVerifier::FindLocksAtDexPc() {
  CHECK(monitor_enter_dex_pcs_ != nullptr);
  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.

  // Quick check whether there are any monitor_enter instructions at all.
  if (!HasMonitorEnterInstructions(code_item_)) {
    return;
  }

  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
  // verification. In practice, the phase we want relies on data structures set up by all the
  // earlier passes, so we just run the full method verification and bail out early when we've
  // got what we wanted.
  Verify();
}

ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) {
  StackHandleScope<2> hs(Thread::Current());
  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
                          true, false, true);
  return verifier.FindAccessedFieldAtDexPc(dex_pc);
}

ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.

  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
  // verification. In practice, the phase we want relies on data structures set up by all the
  // earlier passes, so we just run the full method verification and bail out early when we've
  // got what we wanted.
  bool success = Verify();
  if (!success) {
    return nullptr;
  }
  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
  if (register_line == nullptr) {
    return nullptr;
  }
  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
  return GetQuickFieldAccess(inst, register_line);
}

ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) {
  StackHandleScope<2> hs(Thread::Current());
  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
                          true, false, true);
  return verifier.FindInvokedMethodAtDexPc(dex_pc);
}

ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.

  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
  // verification. In practice, the phase we want relies on data structures set up by all the
  // earlier passes, so we just run the full method verification and bail out early when we've
  // got what we wanted.
  bool success = Verify();
  if (!success) {
    return nullptr;
  }
  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
  if (register_line == nullptr) {
    return nullptr;
  }
  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
  return GetQuickInvokedMethod(inst, register_line, is_range, false);
}

SafeMap<uint32_t, std::set<uint32_t>> MethodVerifier::FindStringInitMap(ArtMethod* m) {
  Thread* self = Thread::Current();
  StackHandleScope<2> hs(self);
  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
                          true, true, false, true);
  return verifier.FindStringInitMap();
}

SafeMap<uint32_t, std::set<uint32_t>>& MethodVerifier::FindStringInitMap() {
  Verify();
  return GetStringInitPcRegMap();
}

bool MethodVerifier::Verify() {
  // If there aren't any instructions, make sure that's expected, then exit successfully.
  if (code_item_ == nullptr) {
    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
      return false;
    } else {
      return true;
    }
  }
  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
  if (code_item_->ins_size_ > code_item_->registers_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
                                      << " regs=" << code_item_->registers_size_;
    return false;
  }
  // Allocate and initialize an array to hold instruction data.
  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
  // Run through the instructions and see if the width checks out.
  bool result = ComputeWidthsAndCountOps();
  // Flag instructions guarded by a "try" block and check exception handlers.
  result = result && ScanTryCatchBlocks();
  // Perform static instruction verification.
  result = result && VerifyInstructions();
  // Perform code-flow analysis and return.
  result = result && VerifyCodeFlow();
  // Compute information for compiler.
  if (result && Runtime::Current()->IsCompiler()) {
    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
  }
  return result;
}

std::ostream& MethodVerifier::Fail(VerifyError error) {
  switch (error) {
    case VERIFY_ERROR_NO_CLASS:
    case VERIFY_ERROR_NO_FIELD:
    case VERIFY_ERROR_NO_METHOD:
    case VERIFY_ERROR_ACCESS_CLASS:
    case VERIFY_ERROR_ACCESS_FIELD:
    case VERIFY_ERROR_ACCESS_METHOD:
    case VERIFY_ERROR_INSTANTIATION:
    case VERIFY_ERROR_CLASS_CHANGE:
      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
        // class change and instantiation errors into soft verification errors so that we re-verify
        // at runtime. We may fail to find or to agree on access because of not yet available class
        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
        // paths" that dynamically perform the verification and cause the behavior to be that akin
        // to an interpreter.
        error = VERIFY_ERROR_BAD_CLASS_SOFT;
      } else {
        // If we fail again at runtime, mark that this instruction would throw and force this
        // method to be executed using the interpreter with checks.
        have_pending_runtime_throw_failure_ = true;

        // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
        // try to merge garbage.
        // Note: this assumes that Fail is called before we do any work_line modifications.
        const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
        const Instruction* inst = Instruction::At(insns);
        int opcode_flags = Instruction::FlagsOf(inst->Opcode());

        if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
          saved_line_->CopyFromLine(work_line_.get());
        }
      }
      break;
      // Indication that verification should be retried at runtime.
    case VERIFY_ERROR_BAD_CLASS_SOFT:
      if (!allow_soft_failures_) {
        have_pending_hard_failure_ = true;
      }
      break;
      // Hard verification failures at compile time will still fail at runtime, so the class is
      // marked as rejected to prevent it from being compiled.
    case VERIFY_ERROR_BAD_CLASS_HARD: {
      if (Runtime::Current()->IsAotCompiler()) {
        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
      }
      have_pending_hard_failure_ = true;
      break;
    }
  }
  failures_.push_back(error);
  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
                                    work_insn_idx_));
  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
  failure_messages_.push_back(failure_message);
  return *failure_message;
}

std::ostream& MethodVerifier::LogVerifyInfo() {
  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
}

void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
  size_t failure_num = failure_messages_.size();
  DCHECK_NE(failure_num, 0U);
  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
  prepend += last_fail_message->str();
  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
  delete last_fail_message;
}

void MethodVerifier::AppendToLastFailMessage(std::string append) {
  size_t failure_num = failure_messages_.size();
  DCHECK_NE(failure_num, 0U);
  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
  (*last_fail_message) << append;
}

bool MethodVerifier::ComputeWidthsAndCountOps() {
  const uint16_t* insns = code_item_->insns_;
  size_t insns_size = code_item_->insns_size_in_code_units_;
  const Instruction* inst = Instruction::At(insns);
  size_t new_instance_count = 0;
  size_t monitor_enter_count = 0;
  size_t dex_pc = 0;

  while (dex_pc < insns_size) {
    Instruction::Code opcode = inst->Opcode();
    switch (opcode) {
      case Instruction::APUT_OBJECT:
      case Instruction::CHECK_CAST:
        has_check_casts_ = true;
        break;
      case Instruction::INVOKE_VIRTUAL:
      case Instruction::INVOKE_VIRTUAL_RANGE:
      case Instruction::INVOKE_INTERFACE:
      case Instruction::INVOKE_INTERFACE_RANGE:
        has_virtual_or_interface_invokes_ = true;
        break;
      case Instruction::MONITOR_ENTER:
        monitor_enter_count++;
        break;
      case Instruction::NEW_INSTANCE:
        new_instance_count++;
        break;
      default:
        break;
    }
    size_t inst_size = inst->SizeInCodeUnits();
    insn_flags_[dex_pc].SetIsOpcode();
    dex_pc += inst_size;
    inst = inst->RelativeAt(inst_size);
  }

  if (dex_pc != insns_size) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
                                      << dex_pc << " vs. " << insns_size << ")";
    return false;
  }

  new_instance_count_ = new_instance_count;
  monitor_enter_count_ = monitor_enter_count;
  return true;
}

bool MethodVerifier::ScanTryCatchBlocks() {
  uint32_t tries_size = code_item_->tries_size_;
  if (tries_size == 0) {
    return true;
  }
  uint32_t insns_size = code_item_->insns_size_in_code_units_;
  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);

  for (uint32_t idx = 0; idx < tries_size; idx++) {
    const DexFile::TryItem* try_item = &tries[idx];
    uint32_t start = try_item->start_addr_;
    uint32_t end = start + try_item->insn_count_;
    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
                                        << " endAddr=" << end << " (size=" << insns_size << ")";
      return false;
    }
    if (!insn_flags_[start].IsOpcode()) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
          << "'try' block starts inside an instruction (" << start << ")";
      return false;
    }
    uint32_t dex_pc = start;
    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
    while (dex_pc < end) {
      insn_flags_[dex_pc].SetInTry();
      size_t insn_size = inst->SizeInCodeUnits();
      dex_pc += insn_size;
      inst = inst->RelativeAt(insn_size);
    }
  }
  // Iterate over each of the handlers to verify target addresses.
  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
  ClassLinker* linker = Runtime::Current()->GetClassLinker();
  for (uint32_t idx = 0; idx < handlers_size; idx++) {
    CatchHandlerIterator iterator(handlers_ptr);
    for (; iterator.HasNext(); iterator.Next()) {
      uint32_t dex_pc= iterator.GetHandlerAddress();
      if (!insn_flags_[dex_pc].IsOpcode()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
            << "exception handler starts at bad address (" << dex_pc << ")";
        return false;
      }
      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
            << "exception handler begins with move-result* (" << dex_pc << ")";
        return false;
      }
      insn_flags_[dex_pc].SetBranchTarget();
      // Ensure exception types are resolved so that they don't need resolution to be delivered,
      // unresolved exception types will be ignored by exception delivery
      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
                                                            iterator.GetHandlerTypeIndex(),
                                                            dex_cache_, class_loader_);
        if (exception_type == nullptr) {
          DCHECK(self_->IsExceptionPending());
          self_->ClearException();
        }
      }
    }
    handlers_ptr = iterator.EndDataPointer();
  }
  return true;
}

bool MethodVerifier::VerifyInstructions() {
  const Instruction* inst = Instruction::At(code_item_->insns_);

  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
  insn_flags_[0].SetBranchTarget();
  insn_flags_[0].SetCompileTimeInfoPoint();

  uint32_t insns_size = code_item_->insns_size_in_code_units_;
  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
    if (!VerifyInstruction(inst, dex_pc)) {
      DCHECK_NE(failures_.size(), 0U);
      return false;
    }
    /* Flag instructions that are garbage collection points */
    // All invoke points are marked as "Throw" points already.
    // We are relying on this to also count all the invokes as interesting.
    if (inst->IsBranch()) {
      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
      // The compiler also needs safepoints for fall-through to loop heads.
      // Such a loop head must be a target of a branch.
      int32_t offset = 0;
      bool cond, self_ok;
      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
      DCHECK(target_ok);
      insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
    } else if (inst->IsSwitch() || inst->IsThrow()) {
      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
    } else if (inst->IsReturn()) {
      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
    }
    dex_pc += inst->SizeInCodeUnits();
    inst = inst->Next();
  }
  return true;
}

bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
  bool result = true;
  switch (inst->GetVerifyTypeArgumentA()) {
    case Instruction::kVerifyRegA:
      result = result && CheckRegisterIndex(inst->VRegA());
      break;
    case Instruction::kVerifyRegAWide:
      result = result && CheckWideRegisterIndex(inst->VRegA());
      break;
  }
  switch (inst->GetVerifyTypeArgumentB()) {
    case Instruction::kVerifyRegB:
      result = result && CheckRegisterIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBField:
      result = result && CheckFieldIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBMethod:
      result = result && CheckMethodIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBNewInstance:
      result = result && CheckNewInstance(inst->VRegB());
      break;
    case Instruction::kVerifyRegBString:
      result = result && CheckStringIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBType:
      result = result && CheckTypeIndex(inst->VRegB());
      break;
    case Instruction::kVerifyRegBWide:
      result = result && CheckWideRegisterIndex(inst->VRegB());
      break;
  }
  switch (inst->GetVerifyTypeArgumentC()) {
    case Instruction::kVerifyRegC:
      result = result && CheckRegisterIndex(inst->VRegC());
      break;
    case Instruction::kVerifyRegCField:
      result = result && CheckFieldIndex(inst->VRegC());
      break;
    case Instruction::kVerifyRegCNewArray:
      result = result && CheckNewArray(inst->VRegC());
      break;
    case Instruction::kVerifyRegCType:
      result = result && CheckTypeIndex(inst->VRegC());
      break;
    case Instruction::kVerifyRegCWide:
      result = result && CheckWideRegisterIndex(inst->VRegC());
      break;
  }
  switch (inst->GetVerifyExtraFlags()) {
    case Instruction::kVerifyArrayData:
      result = result && CheckArrayData(code_offset);
      break;
    case Instruction::kVerifyBranchTarget:
      result = result && CheckBranchTarget(code_offset);
      break;
    case Instruction::kVerifySwitchTargets:
      result = result && CheckSwitchTargets(code_offset);
      break;
    case Instruction::kVerifyVarArgNonZero:
      // Fall-through.
    case Instruction::kVerifyVarArg: {
      // Instructions that can actually return a negative value shouldn't have this flag.
      uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
      if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
          v_a > Instruction::kMaxVarArgRegs) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
                                             "non-range invoke";
        return false;
      }

      uint32_t args[Instruction::kMaxVarArgRegs];
      inst->GetVarArgs(args);
      result = result && CheckVarArgRegs(v_a, args);
      break;
    }
    case Instruction::kVerifyVarArgRangeNonZero:
      // Fall-through.
    case Instruction::kVerifyVarArgRange:
      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
          inst->VRegA() <= 0) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
                                             "range invoke";
        return false;
      }
      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
      break;
    case Instruction::kVerifyError:
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
      result = false;
      break;
  }
  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
    result = false;
  }
  return result;
}

inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
  if (idx >= code_item_->registers_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
                                      << code_item_->registers_size_ << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
  if (idx + 1 >= code_item_->registers_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
                                      << "+1 >= " << code_item_->registers_size_ << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
  if (idx >= dex_file_->GetHeader().field_ids_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
                                      << dex_file_->GetHeader().field_ids_size_ << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
  if (idx >= dex_file_->GetHeader().method_ids_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
                                      << dex_file_->GetHeader().method_ids_size_ << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
  if (idx >= dex_file_->GetHeader().type_ids_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
                                      << dex_file_->GetHeader().type_ids_size_ << ")";
    return false;
  }
  // We don't need the actual class, just a pointer to the class name.
  const char* descriptor = dex_file_->StringByTypeIdx(idx);
  if (descriptor[0] != 'L') {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
  if (idx >= dex_file_->GetHeader().string_ids_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
                                      << dex_file_->GetHeader().string_ids_size_ << ")";
    return false;
  }
  return true;
}

inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
  if (idx >= dex_file_->GetHeader().type_ids_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
                                      << dex_file_->GetHeader().type_ids_size_ << ")";
    return false;
  }
  return true;
}

bool MethodVerifier::CheckNewArray(uint32_t idx) {
  if (idx >= dex_file_->GetHeader().type_ids_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
                                      << dex_file_->GetHeader().type_ids_size_ << ")";
    return false;
  }
  int bracket_count = 0;
  const char* descriptor = dex_file_->StringByTypeIdx(idx);
  const char* cp = descriptor;
  while (*cp++ == '[') {
    bracket_count++;
  }
  if (bracket_count == 0) {
    /* The given class must be an array type. */
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "can't new-array class '" << descriptor << "' (not an array)";
    return false;
  } else if (bracket_count > 255) {
    /* It is illegal to create an array of more than 255 dimensions. */
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << "can't new-array class '" << descriptor << "' (exceeds limit)";
    return false;
  }
  return true;
}

bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
  const uint16_t* insns = code_item_->insns_ + cur_offset;
  const uint16_t* array_data;
  int32_t array_data_offset;

  DCHECK_LT(cur_offset, insn_count);
  /* make sure the start of the array data table is in range */
  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
  if ((int32_t) cur_offset + array_data_offset < 0 ||
      cur_offset + array_data_offset + 2 >= insn_count) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
                                      << ", data offset " << array_data_offset
                                      << ", count " << insn_count;
    return false;
  }
  /* offset to array data table is a relative branch-style offset */
  array_data = insns + array_data_offset;
  /* make sure the table is 32-bit aligned */
  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
                                      << ", data offset " << array_data_offset;
    return false;
  }
  uint32_t value_width = array_data[1];
  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
  /* make sure the end of the switch is in range */
  if (cur_offset + array_data_offset + table_size > insn_count) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
                                      << ", data offset " << array_data_offset << ", end "
                                      << cur_offset + array_data_offset + table_size
                                      << ", count " << insn_count;
    return false;
  }
  return true;
}

bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
  int32_t offset;
  bool isConditional, selfOkay;
  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
    return false;
  }
  if (!selfOkay && offset == 0) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
                                      << reinterpret_cast<void*>(cur_offset);
    return false;
  }
  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
    return false;
  }
  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
  int32_t abs_offset = cur_offset + offset;
  if (abs_offset < 0 ||
      (uint32_t) abs_offset >= insn_count ||
      !insn_flags_[abs_offset].IsOpcode()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
                                      << reinterpret_cast<void*>(abs_offset) << ") at "
                                      << reinterpret_cast<void*>(cur_offset);
    return false;
  }
  insn_flags_[abs_offset].SetBranchTarget();
  return true;
}

bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
                                  bool* selfOkay) {
  const uint16_t* insns = code_item_->insns_ + cur_offset;
  *pConditional = false;
  *selfOkay = false;
  switch (*insns & 0xff) {
    case Instruction::GOTO:
      *pOffset = ((int16_t) *insns) >> 8;
      break;
    case Instruction::GOTO_32:
      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
      *selfOkay = true;
      break;
    case Instruction::GOTO_16:
      *pOffset = (int16_t) insns[1];
      break;
    case Instruction::IF_EQ:
    case Instruction::IF_NE:
    case Instruction::IF_LT:
    case Instruction::IF_GE:
    case Instruction::IF_GT:
    case Instruction::IF_LE:
    case Instruction::IF_EQZ:
    case Instruction::IF_NEZ:
    case Instruction::IF_LTZ:
    case Instruction::IF_GEZ:
    case Instruction::IF_GTZ:
    case Instruction::IF_LEZ:
      *pOffset = (int16_t) insns[1];
      *pConditional = true;
      break;
    default:
      return false;
  }
  return true;
}

bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
  DCHECK_LT(cur_offset, insn_count);
  const uint16_t* insns = code_item_->insns_ + cur_offset;
  /* make sure the start of the switch is in range */
  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 > insn_count) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
                                      << ", switch offset " << switch_offset
                                      << ", count " << insn_count;
    return false;
  }
  /* offset to switch table is a relative branch-style offset */
  const uint16_t* switch_insns = insns + switch_offset;
  /* make sure the table is 32-bit aligned */
  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
                                      << ", switch offset " << switch_offset;
    return false;
  }
  uint32_t switch_count = switch_insns[1];
  int32_t keys_offset, targets_offset;
  uint16_t expected_signature;
  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
    /* 0=sig, 1=count, 2/3=firstKey */
    targets_offset = 4;
    keys_offset = -1;
    expected_signature = Instruction::kPackedSwitchSignature;
  } else {
    /* 0=sig, 1=count, 2..count*2 = keys */
    keys_offset = 2;
    targets_offset = 2 + 2 * switch_count;
    expected_signature = Instruction::kSparseSwitchSignature;
  }
  uint32_t table_size = targets_offset + switch_count * 2;
  if (switch_insns[0] != expected_signature) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
                        switch_insns[0], expected_signature);
    return false;
  }
  /* make sure the end of the switch is in range */
  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
                                      << ", switch offset " << switch_offset
                                      << ", end " << (cur_offset + switch_offset + table_size)
                                      << ", count " << insn_count;
    return false;
  }
  /* for a sparse switch, verify the keys are in ascending order */
  if (keys_offset > 0 && switch_count > 1) {
    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
    for (uint32_t targ = 1; targ < switch_count; targ++) {
      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
      if (key <= last_key) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
                                          << ", this=" << key;
        return false;
      }
      last_key = key;
    }
  }
  /* verify each switch target */
  for (uint32_t targ = 0; targ < switch_count; targ++) {
    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
    int32_t abs_offset = cur_offset + offset;
    if (abs_offset < 0 ||
        abs_offset >= (int32_t) insn_count ||
        !insn_flags_[abs_offset].IsOpcode()) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
                                        << reinterpret_cast<void*>(cur_offset)
                                        << "[" << targ << "]";
      return false;
    }
    insn_flags_[abs_offset].SetBranchTarget();
  }
  return true;
}

bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
  uint16_t registers_size = code_item_->registers_size_;
  for (uint32_t idx = 0; idx < vA; idx++) {
    if (arg[idx] >= registers_size) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
                                        << ") in non-range invoke (>= " << registers_size << ")";
      return false;
    }
  }

  return true;
}

bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
  uint16_t registers_size = code_item_->registers_size_;
  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
  // integer overflow when adding them here.
  if (vA + vC > registers_size) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
                                      << " in range invoke (> " << registers_size << ")";
    return false;
  }
  return true;
}

bool MethodVerifier::VerifyCodeFlow() {
  uint16_t registers_size = code_item_->registers_size_;
  uint32_t insns_size = code_item_->insns_size_in_code_units_;

  /* Create and initialize table holding register status */
  reg_table_.Init(kTrackCompilerInterestPoints,
                  insn_flags_.get(),
                  insns_size,
                  registers_size,
                  this);


  work_line_.reset(RegisterLine::Create(registers_size, this));
  saved_line_.reset(RegisterLine::Create(registers_size, this));

  /* Initialize register types of method arguments. */
  if (!SetTypesFromSignature()) {
    DCHECK_NE(failures_.size(), 0U);
    std::string prepend("Bad signature in ");
    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
    PrependToLastFailMessage(prepend);
    return false;
  }
  /* Perform code flow verification. */
  if (!CodeFlowVerifyMethod()) {
    DCHECK_NE(failures_.size(), 0U);
    return false;
  }
  return true;
}

std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
  DCHECK_EQ(failures_.size(), failure_messages_.size());
  for (size_t i = 0; i < failures_.size(); ++i) {
      os << failure_messages_[i]->str() << "\n";
  }
  return os;
}

void MethodVerifier::Dump(std::ostream& os) {
  if (code_item_ == nullptr) {
    os << "Native method\n";
    return;
  }
  {
    os << "Register Types:\n";
    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
    std::ostream indent_os(&indent_filter);
    reg_types_.Dump(indent_os);
  }
  os << "Dumping instructions and register lines:\n";
  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
  std::ostream indent_os(&indent_filter);
  const Instruction* inst = Instruction::At(code_item_->insns_);
  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
      dex_pc += inst->SizeInCodeUnits()) {
    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
    if (reg_line != nullptr) {
      indent_os << reg_line->Dump(this) << "\n";
    }
    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
    const bool kDumpHexOfInstruction = false;
    if (kDumpHexOfInstruction) {
      indent_os << inst->DumpHex(5) << " ";
    }
    indent_os << inst->DumpString(dex_file_) << "\n";
    inst = inst->Next();
  }
}

static bool IsPrimitiveDescriptor(char descriptor) {
  switch (descriptor) {
    case 'I':
    case 'C':
    case 'S':
    case 'B':
    case 'Z':
    case 'F':
    case 'D':
    case 'J':
      return true;
    default:
      return false;
  }
}

bool MethodVerifier::SetTypesFromSignature() {
  RegisterLine* reg_line = reg_table_.GetLine(0);

  // Should have been verified earlier.
  DCHECK_GE(code_item_->registers_size_, code_item_->ins_size_);

  uint32_t arg_start = code_item_->registers_size_ - code_item_->ins_size_;
  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */

  // Include the "this" pointer.
  size_t cur_arg = 0;
  if (!IsStatic()) {
    if (expected_args == 0) {
      // Expect at least a receiver.
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
      return false;
    }

    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
    // argument as uninitialized. This restricts field access until the superclass constructor is
    // called.
    const RegType& declaring_class = GetDeclaringClass();
    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
      reg_line->SetRegisterType(this, arg_start + cur_arg,
                                reg_types_.UninitializedThisArgument(declaring_class));
    } else {
      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
    }
    cur_arg++;
  }

  const DexFile::ProtoId& proto_id =
      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
  DexFileParameterIterator iterator(*dex_file_, proto_id);

  for (; iterator.HasNext(); iterator.Next()) {
    const char* descriptor = iterator.GetDescriptor();
    if (descriptor == nullptr) {
      LOG(FATAL) << "Null descriptor";
    }
    if (cur_arg >= expected_args) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
                                        << " args, found more (" << descriptor << ")";
      return false;
    }
    switch (descriptor[0]) {
      case 'L':
      case '[':
        // We assume that reference arguments are initialized. The only way it could be otherwise
        // (assuming the caller was verified) is if the current method is <init>, but in that case
        // it's effectively considered initialized the instant we reach here (in the sense that we
        // can return without doing anything or call virtual methods).
        {
          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
          if (!reg_type.IsNonZeroReferenceTypes()) {
            DCHECK(HasFailures());
            return false;
          }
          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
        }
        break;
      case 'Z':
        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
        break;
      case 'C':
        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
        break;
      case 'B':
        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
        break;
      case 'I':
        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
        break;
      case 'S':
        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
        break;
      case 'F':
        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
        break;
      case 'J':
      case 'D': {
        if (cur_arg + 1 >= expected_args) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
              << " args, found more (" << descriptor << ")";
          return false;
        }

        const RegType* lo_half;
        const RegType* hi_half;
        if (descriptor[0] == 'J') {
          lo_half = &reg_types_.LongLo();
          hi_half = &reg_types_.LongHi();
        } else {
          lo_half = &reg_types_.DoubleLo();
          hi_half = &reg_types_.DoubleHi();
        }
        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
        cur_arg++;
        break;
      }
      default:
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
                                          << descriptor << "'";
        return false;
    }
    cur_arg++;
  }
  if (cur_arg != expected_args) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
                                      << " arguments, found " << cur_arg;
    return false;
  }
  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
  // format. Only major difference from the method argument format is that 'V' is supported.
  bool result;
  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
    result = descriptor[1] == '\0';
  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
    size_t i = 0;
    do {
      i++;
    } while (descriptor[i] == '[');  // process leading [
    if (descriptor[i] == 'L') {  // object array
      do {
        i++;  // find closing ;
      } while (descriptor[i] != ';' && descriptor[i] != '\0');
      result = descriptor[i] == ';';
    } else {  // primitive array
      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
    }
  } else if (descriptor[0] == 'L') {
    // could be more thorough here, but shouldn't be required
    size_t i = 0;
    do {
      i++;
    } while (descriptor[i] != ';' && descriptor[i] != '\0');
    result = descriptor[i] == ';';
  } else {
    result = false;
  }
  if (!result) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
                                      << descriptor << "'";
  }
  return result;
}

bool MethodVerifier::CodeFlowVerifyMethod() {
  const uint16_t* insns = code_item_->insns_;
  const uint32_t insns_size = code_item_->insns_size_in_code_units_;

  /* Begin by marking the first instruction as "changed". */
  insn_flags_[0].SetChanged();
  uint32_t start_guess = 0;

  /* Continue until no instructions are marked "changed". */
  while (true) {
    if (allow_thread_suspension_) {
      self_->AllowThreadSuspension();
    }
    // Find the first marked one. Use "start_guess" as a way to find one quickly.
    uint32_t insn_idx = start_guess;
    for (; insn_idx < insns_size; insn_idx++) {
      if (insn_flags_[insn_idx].IsChanged())
        break;
    }
    if (insn_idx == insns_size) {
      if (start_guess != 0) {
        /* try again, starting from the top */
        start_guess = 0;
        continue;
      } else {
        /* all flags are clear */
        break;
      }
    }
    // We carry the working set of registers from instruction to instruction. If this address can
    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
    // "changed" flags, we need to load the set of registers from the table.
    // Because we always prefer to continue on to the next instruction, we should never have a
    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
    // target.
    work_insn_idx_ = insn_idx;
    if (insn_flags_[insn_idx].IsBranchTarget()) {
      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
    } else if (kIsDebugBuild) {
      /*
       * Sanity check: retrieve the stored register line (assuming
       * a full table) and make sure it actually matches.
       */
      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
      if (register_line != nullptr) {
        if (work_line_->CompareLine(register_line) != 0) {
          Dump(std::cout);
          std::cout << info_messages_.str();
          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
                     << " work_line=" << work_line_->Dump(this) << "\n"
                     << "  expected=" << register_line->Dump(this);
        }
      }
    }
    if (!CodeFlowVerifyInstruction(&start_guess)) {
      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
      prepend += " failed to verify: ";
      PrependToLastFailMessage(prepend);
      return false;
    }
    /* Clear "changed" and mark as visited. */
    insn_flags_[insn_idx].SetVisited();
    insn_flags_[insn_idx].ClearChanged();
  }

  if (gDebugVerify) {
    /*
     * Scan for dead code. There's nothing "evil" about dead code
     * (besides the wasted space), but it indicates a flaw somewhere
     * down the line, possibly in the verifier.
     *
     * If we've substituted "always throw" instructions into the stream,
     * we are almost certainly going to have some dead code.
     */
    int dead_start = -1;
    uint32_t insn_idx = 0;
    for (; insn_idx < insns_size;
         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
      /*
       * Switch-statement data doesn't get "visited" by scanner. It
       * may or may not be preceded by a padding NOP (for alignment).
       */
      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
          insns[insn_idx] == Instruction::kArrayDataSignature ||
          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
        insn_flags_[insn_idx].SetVisited();
      }

      if (!insn_flags_[insn_idx].IsVisited()) {
        if (dead_start < 0)
          dead_start = insn_idx;
      } else if (dead_start >= 0) {
        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
        dead_start = -1;
      }
    }
    if (dead_start >= 0) {
      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
    }
    // To dump the state of the verify after a method, do something like:
    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
    //     "boolean java.lang.String.equals(java.lang.Object)") {
    //   LOG(INFO) << info_messages_.str();
    // }
  }
  return true;
}

// Returns the index of the first final instance field of the given class, or kDexNoIndex if there
// is no such field.
static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, uint16_t type_idx) {
  const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx);
  DCHECK(class_def != nullptr);
  const uint8_t* class_data = dex_file.GetClassData(*class_def);
  DCHECK(class_data != nullptr);
  ClassDataItemIterator it(dex_file, class_data);
  // Skip static fields.
  while (it.HasNextStaticField()) {
    it.Next();
  }
  while (it.HasNextInstanceField()) {
    if ((it.GetFieldAccessFlags() & kAccFinal) != 0) {
      return it.GetMemberIndex();
    }
    it.Next();
  }
  return DexFile::kDexNoIndex;
}

bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
  // We want the state _before_ the instruction, for the case where the dex pc we're
  // interested in is itself a monitor-enter instruction (which is a likely place
  // for a thread to be suspended).
  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
    }
  }

  /*
   * Once we finish decoding the instruction, we need to figure out where
   * we can go from here. There are three possible ways to transfer
   * control to another statement:
   *
   * (1) Continue to the next instruction. Applies to all but
   *     unconditional branches, method returns, and exception throws.
   * (2) Branch to one or more possible locations. Applies to branches
   *     and switch statements.
   * (3) Exception handlers. Applies to any instruction that can
   *     throw an exception that is handled by an encompassing "try"
   *     block.
   *
   * We can also return, in which case there is no successor instruction
   * from this point.
   *
   * The behavior can be determined from the opcode flags.
   */
  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
  const Instruction* inst = Instruction::At(insns);
  int opcode_flags = Instruction::FlagsOf(inst->Opcode());

  int32_t branch_target = 0;
  bool just_set_result = false;
  if (gDebugVerify) {
    // Generate processing back trace to debug verifier
    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
                    << work_line_->Dump(this) << "\n";
  }

  /*
   * Make a copy of the previous register state. If the instruction
   * can throw an exception, we will copy/merge this into the "catch"
   * address rather than work_line, because we don't want the result
   * from the "successful" code path (e.g. a check-cast that "improves"
   * a type) to be visible to the exception handler.
   */
  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
    saved_line_->CopyFromLine(work_line_.get());
  } else if (kIsDebugBuild) {
    saved_line_->FillWithGarbage();
  }


  // We need to ensure the work line is consistent while performing validation. When we spot a
  // peephole pattern we compute a new line for either the fallthrough instruction or the
  // branch target.
  std::unique_ptr<RegisterLine> branch_line;
  std::unique_ptr<RegisterLine> fallthrough_line;

  /*
   * If we are in a constructor, and we currently have an UninitializedThis type
   * in a register somewhere, we need to make sure it isn't overwritten.
   */
  bool track_uninitialized_this = false;
  size_t uninitialized_this_loc = 0;
  if (IsConstructor()) {
    track_uninitialized_this = work_line_->GetUninitializedThisLoc(this, &uninitialized_this_loc);
  }

  switch (inst->Opcode()) {
    case Instruction::NOP:
      /*
       * A "pure" NOP has no effect on anything. Data tables start with
       * a signature that looks like a NOP; if we see one of these in
       * the course of executing code then we have a problem.
       */
      if (inst->VRegA_10x() != 0) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
      }
      break;

    case Instruction::MOVE:
      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
      break;
    case Instruction::MOVE_FROM16:
      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
      break;
    case Instruction::MOVE_16:
      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
      break;
    case Instruction::MOVE_WIDE:
      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
      break;
    case Instruction::MOVE_WIDE_FROM16:
      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
      break;
    case Instruction::MOVE_WIDE_16:
      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
      break;
    case Instruction::MOVE_OBJECT:
      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
      break;
    case Instruction::MOVE_OBJECT_FROM16:
      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
      break;
    case Instruction::MOVE_OBJECT_16:
      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
      break;

    /*
     * The move-result instructions copy data out of a "pseudo-register"
     * with the results from the last method invocation. In practice we
     * might want to hold the result in an actual CPU register, so the
     * Dalvik spec requires that these only appear immediately after an
     * invoke or filled-new-array.
     *
     * These calls invalidate the "result" register. (This is now
     * redundant with the reset done below, but it can make the debug info
     * easier to read in some cases.)
     */
    case Instruction::MOVE_RESULT:
      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
      break;
    case Instruction::MOVE_RESULT_WIDE:
      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
      break;
    case Instruction::MOVE_RESULT_OBJECT:
      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
      break;

    case Instruction::MOVE_EXCEPTION: {
      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
      // where one entrypoint to the catch block is not actually an exception path.
      if (work_insn_idx_ == 0) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
        break;
      }
      /*
       * This statement can only appear as the first instruction in an exception handler. We verify
       * that as part of extracting the exception type from the catch block list.
       */
      const RegType& res_type = GetCaughtExceptionType();
      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
      break;
    }
    case Instruction::RETURN_VOID:
      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
        if (!GetMethodReturnType().IsConflict()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
        }
      }
      break;
    case Instruction::RETURN:
      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
        /* check the method signature */
        const RegType& return_type = GetMethodReturnType();
        if (!return_type.IsCategory1Types()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
                                            << return_type;
        } else {
          // Compilers may generate synthetic functions that write byte values into boolean fields.
          // Also, it may use integer values for boolean, byte, short, and character return types.
          const uint32_t vregA = inst->VRegA_11x();
          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
                          ((return_type.IsBoolean() || return_type.IsByte() ||
                           return_type.IsShort() || return_type.IsChar()) &&
                           src_type.IsInteger()));
          /* check the register contents */
          bool success =
              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
          if (!success) {
            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
          }
        }
      }
      break;
    case Instruction::RETURN_WIDE:
      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
        /* check the method signature */
        const RegType& return_type = GetMethodReturnType();
        if (!return_type.IsCategory2Types()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
        } else {
          /* check the register contents */
          const uint32_t vregA = inst->VRegA_11x();
          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
          if (!success) {
            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
          }
        }
      }
      break;
    case Instruction::RETURN_OBJECT:
      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
        const RegType& return_type = GetMethodReturnType();
        if (!return_type.IsReferenceTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
        } else {
          /* return_type is the *expected* return type, not register value */
          DCHECK(!return_type.IsZero());
          DCHECK(!return_type.IsUninitializedReference());
          const uint32_t vregA = inst->VRegA_11x();
          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
          // Disallow returning uninitialized values and verify that the reference in vAA is an
          // instance of the "return_type"
          if (reg_type.IsUninitializedTypes()) {
            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
                                              << reg_type << "'";
          } else if (!return_type.IsAssignableFrom(reg_type)) {
            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
                  << "' or '" << reg_type << "'";
            } else {
              bool soft_error = false;
              // Check whether arrays are involved. They will show a valid class status, even
              // if their components are erroneous.
              if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
                return_type.CanAssignArray(reg_type, reg_types_, class_loader_, &soft_error);
                if (soft_error) {
                  Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
                        << reg_type << " vs " << return_type;
                }
              }

              if (!soft_error) {
                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
                    << "', but expected from declaration '" << return_type << "'";
              }
            }
          }
        }
      }
      break;

      /* could be boolean, int, float, or a null reference */
    case Instruction::CONST_4: {
      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
      work_line_->SetRegisterType(this, inst->VRegA_11n(),
                                  DetermineCat1Constant(val, need_precise_constants_));
      break;
    }
    case Instruction::CONST_16: {
      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
      work_line_->SetRegisterType(this, inst->VRegA_21s(),
                                  DetermineCat1Constant(val, need_precise_constants_));
      break;
    }
    case Instruction::CONST: {
      int32_t val = inst->VRegB_31i();
      work_line_->SetRegisterType(this, inst->VRegA_31i(),
                                  DetermineCat1Constant(val, need_precise_constants_));
      break;
    }
    case Instruction::CONST_HIGH16: {
      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
      work_line_->SetRegisterType(this, inst->VRegA_21h(),
                                  DetermineCat1Constant(val, need_precise_constants_));
      break;
    }
      /* could be long or double; resolved upon use */
    case Instruction::CONST_WIDE_16: {
      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
      break;
    }
    case Instruction::CONST_WIDE_32: {
      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
      break;
    }
    case Instruction::CONST_WIDE: {
      int64_t val = inst->VRegB_51l();
      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
      break;
    }
    case Instruction::CONST_WIDE_HIGH16: {
      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
      break;
    }
    case Instruction::CONST_STRING:
      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
      break;
    case Instruction::CONST_STRING_JUMBO:
      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
      break;
    case Instruction::CONST_CLASS: {
      // Get type from instruction if unresolved then we need an access check
      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
      // Register holds class, ie its type is class, on error it will hold Conflict.
      work_line_->SetRegisterType(this, inst->VRegA_21c(),
                                  res_type.IsConflict() ? res_type
                                                        : reg_types_.JavaLangClass());
      break;
    }
    case Instruction::MONITOR_ENTER:
      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
      break;
    case Instruction::MONITOR_EXIT:
      /*
       * monitor-exit instructions are odd. They can throw exceptions,
       * but when they do they act as if they succeeded and the PC is
       * pointing to the following instruction. (This behavior goes back
       * to the need to handle asynchronous exceptions, a now-deprecated
       * feature that Dalvik doesn't support.)
       *
       * In practice we don't need to worry about this. The only
       * exceptions that can be thrown from monitor-exit are for a
       * null reference and -exit without a matching -enter. If the
       * structured locking checks are working, the former would have
       * failed on the -enter instruction, and the latter is impossible.
       *
       * This is fortunate, because issue 3221411 prevents us from
       * chasing the "can throw" path when monitor verification is
       * enabled. If we can fully verify the locking we can ignore
       * some catch blocks (which will show up as "dead" code when
       * we skip them here); if we can't, then the code path could be
       * "live" so we still need to check it.
       */
      opcode_flags &= ~Instruction::kThrow;
      work_line_->PopMonitor(this, inst->VRegA_11x());
      break;

    case Instruction::CHECK_CAST:
    case Instruction::INSTANCE_OF: {
      /*
       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
       * could be a "upcast" -- not expected, so we don't try to address it.)
       *
       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
       * dec_insn.vA when branching to a handler.
       */
      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
      if (res_type.IsConflict()) {
        // If this is a primitive type, fail HARD.
        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
        if (klass != nullptr && klass->IsPrimitive()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
              << GetDeclaringClass();
          break;
        }

        DCHECK_NE(failures_.size(), 0U);
        if (!is_checkcast) {
          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
        }
        break;  // bad class
      }
      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
      if (!res_type.IsNonZeroReferenceTypes()) {
        if (is_checkcast) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
        } else {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
        }
      } else if (!orig_type.IsReferenceTypes()) {
        if (is_checkcast) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
        } else {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
        }
      } else {
        if (is_checkcast) {
          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
        } else {
          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
        }
      }
      break;
    }
    case Instruction::ARRAY_LENGTH: {
      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
      if (res_type.IsReferenceTypes()) {
        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
        } else {
          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
        }
      } else {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
      }
      break;
    }
    case Instruction::NEW_INSTANCE: {
      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
      if (res_type.IsConflict()) {
        DCHECK_NE(failures_.size(), 0U);
        break;  // bad class
      }
      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
      // can't create an instance of an interface or abstract class */
      if (!res_type.IsInstantiableTypes()) {
        Fail(VERIFY_ERROR_INSTANTIATION)
            << "new-instance on primitive, interface or abstract class" << res_type;
        // Soft failure so carry on to set register type.
      }
      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
      // Any registers holding previous allocations from this address that have not yet been
      // initialized must be marked invalid.
      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
      // add the new uninitialized reference to the register state
      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
      break;
    }
    case Instruction::NEW_ARRAY:
      VerifyNewArray(inst, false, false);
      break;
    case Instruction::FILLED_NEW_ARRAY:
      VerifyNewArray(inst, true, false);
      just_set_result = true;  // Filled new array sets result register
      break;
    case Instruction::FILLED_NEW_ARRAY_RANGE:
      VerifyNewArray(inst, true, true);
      just_set_result = true;  // Filled new array range sets result register
      break;
    case Instruction::CMPL_FLOAT:
    case Instruction::CMPG_FLOAT:
      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
        break;
      }
      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
        break;
      }
      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
      break;
    case Instruction::CMPL_DOUBLE:
    case Instruction::CMPG_DOUBLE:
      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
                                              reg_types_.DoubleHi())) {
        break;
      }
      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
                                              reg_types_.DoubleHi())) {
        break;
      }
      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
      break;
    case Instruction::CMP_LONG:
      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
                                              reg_types_.LongHi())) {
        break;
      }
      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
                                              reg_types_.LongHi())) {
        break;
      }
      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
      break;
    case Instruction::THROW: {
      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
            << "thrown class " << res_type << " not instanceof Throwable";
      }
      break;
    }
    case Instruction::GOTO:
    case Instruction::GOTO_16:
    case Instruction::GOTO_32:
      /* no effect on or use of registers */
      break;

    case Instruction::PACKED_SWITCH:
    case Instruction::SPARSE_SWITCH:
      /* verify that vAA is an integer, or can be converted to one */
      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
      break;

    case Instruction::FILL_ARRAY_DATA: {
      /* Similar to the verification done for APUT */
      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
      /* array_type can be null if the reg type is Zero */
      if (!array_type.IsZero()) {
        if (!array_type.IsArrayTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
                                            << array_type;
        } else {
          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
          DCHECK(!component_type.IsConflict());
          if (component_type.IsNonZeroReferenceTypes()) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
                                              << component_type;
          } else {
            // Now verify if the element width in the table matches the element width declared in
            // the array
            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
            if (array_data[0] != Instruction::kArrayDataSignature) {
              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
            } else {
              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
              // Since we don't compress the data in Dex, expect to see equal width of data stored
              // in the table and expected from the array class.
              if (array_data[1] != elem_width) {
                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
                                                  << " vs " << elem_width << ")";
              }
            }
          }
        }
      }
      break;
    }
    case Instruction::IF_EQ:
    case Instruction::IF_NE: {
      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
      bool mismatch = false;
      if (reg_type1.IsZero()) {  // zero then integral or reference expected
        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
      } else if (reg_type1.IsReferenceTypes()) {  // both references?
        mismatch = !reg_type2.IsReferenceTypes();
      } else {  // both integral?
        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
      }
      if (mismatch) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
                                          << reg_type2 << ") must both be references or integral";
      }
      break;
    }
    case Instruction::IF_LT:
    case Instruction::IF_GE:
    case Instruction::IF_GT:
    case Instruction::IF_LE: {
      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
                                          << reg_type2 << ") must be integral";
      }
      break;
    }
    case Instruction::IF_EQZ:
    case Instruction::IF_NEZ: {
      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
                                          << " unexpected as arg to if-eqz/if-nez";
      }

      // Find previous instruction - its existence is a precondition to peephole optimization.
      uint32_t instance_of_idx = 0;
      if (0 != work_insn_idx_) {
        instance_of_idx = work_insn_idx_ - 1;
        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
          instance_of_idx--;
        }
        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
                        work_insn_idx_)) {
          break;
        }
      } else {
        break;
      }

      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);

      /* Check for peep-hole pattern of:
       *    ...;
       *    instance-of vX, vY, T;
       *    ifXXX vX, label ;
       *    ...;
       * label:
       *    ...;
       * and sharpen the type of vY to be type T.
       * Note, this pattern can't be if:
       *  - if there are other branches to this branch,
       *  - when vX == vY.
       */
      if (!CurrentInsnFlags()->IsBranchTarget() &&
          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
        // Check the type of the instance-of is different than that of registers type, as if they
        // are the same there is no work to be done here. Check that the conversion is not to or
        // from an unresolved type as type information is imprecise. If the instance-of is to an
        // interface then ignore the type information as interfaces can only be treated as Objects
        // and we don't want to disallow field and other operations on the object. If the value
        // being instance-of checked against is known null (zero) then allow the optimization as
        // we didn't have type information. If the merge of the instance-of type with the original
        // type is assignable to the original then allow optimization. This check is performed to
        // ensure that subsequent merges don't lose type information - such as becoming an
        // interface from a class that would lose information relevant to field checks.
        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());

        if (!orig_type.Equals(cast_type) &&
            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
            !cast_type.GetClass()->IsInterface() &&
            (orig_type.IsZero() ||
                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
          if (inst->Opcode() == Instruction::IF_EQZ) {
            fallthrough_line.reset(update_line);
          } else {
            branch_line.reset(update_line);
          }
          update_line->CopyFromLine(work_line_.get());
          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
            // See if instance-of was preceded by a move-object operation, common due to the small
            // register encoding space of instance-of, and propagate type information to the source
            // of the move-object.
            uint32_t move_idx = instance_of_idx - 1;
            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
              move_idx--;
            }
            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
                            work_insn_idx_)) {
              break;
            }
            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
            switch (move_inst->Opcode()) {
              case Instruction::MOVE_OBJECT:
                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
                }
                break;
              case Instruction::MOVE_OBJECT_FROM16:
                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
                }
                break;
              case Instruction::MOVE_OBJECT_16:
                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
                }
                break;
              default:
                break;
            }
          }
        }
      }

      break;
    }
    case Instruction::IF_LTZ:
    case Instruction::IF_GEZ:
    case Instruction::IF_GTZ:
    case Instruction::IF_LEZ: {
      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
      if (!reg_type.IsIntegralTypes()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
      }
      break;
    }
    case Instruction::AGET_BOOLEAN:
      VerifyAGet(inst, reg_types_.Boolean(), true);
      break;
    case Instruction::AGET_BYTE:
      VerifyAGet(inst, reg_types_.Byte(), true);
      break;
    case Instruction::AGET_CHAR:
      VerifyAGet(inst, reg_types_.Char(), true);
      break;
    case Instruction::AGET_SHORT:
      VerifyAGet(inst, reg_types_.Short(), true);
      break;
    case Instruction::AGET:
      VerifyAGet(inst, reg_types_.Integer(), true);
      break;
    case Instruction::AGET_WIDE:
      VerifyAGet(inst, reg_types_.LongLo(), true);
      break;
    case Instruction::AGET_OBJECT:
      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
      break;

    case Instruction::APUT_BOOLEAN:
      VerifyAPut(inst, reg_types_.Boolean(), true);
      break;
    case Instruction::APUT_BYTE:
      VerifyAPut(inst, reg_types_.Byte(), true);
      break;
    case Instruction::APUT_CHAR:
      VerifyAPut(inst, reg_types_.Char(), true);
      break;
    case Instruction::APUT_SHORT:
      VerifyAPut(inst, reg_types_.Short(), true);
      break;
    case Instruction::APUT:
      VerifyAPut(inst, reg_types_.Integer(), true);
      break;
    case Instruction::APUT_WIDE:
      VerifyAPut(inst, reg_types_.LongLo(), true);
      break;
    case Instruction::APUT_OBJECT:
      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
      break;

    case Instruction::IGET_BOOLEAN:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
      break;
    case Instruction::IGET_BYTE:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
      break;
    case Instruction::IGET_CHAR:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
      break;
    case Instruction::IGET_SHORT:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
      break;
    case Instruction::IGET:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
      break;
    case Instruction::IGET_WIDE:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
      break;
    case Instruction::IGET_OBJECT:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
                                                    false);
      break;

    case Instruction::IPUT_BOOLEAN:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
      break;
    case Instruction::IPUT_BYTE:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
      break;
    case Instruction::IPUT_CHAR:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
      break;
    case Instruction::IPUT_SHORT:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
      break;
    case Instruction::IPUT:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
      break;
    case Instruction::IPUT_WIDE:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
      break;
    case Instruction::IPUT_OBJECT:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
                                                    false);
      break;

    case Instruction::SGET_BOOLEAN:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
      break;
    case Instruction::SGET_BYTE:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
      break;
    case Instruction::SGET_CHAR:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
      break;
    case Instruction::SGET_SHORT:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
      break;
    case Instruction::SGET:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
      break;
    case Instruction::SGET_WIDE:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
      break;
    case Instruction::SGET_OBJECT:
      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
                                                    true);
      break;

    case Instruction::SPUT_BOOLEAN:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
      break;
    case Instruction::SPUT_BYTE:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
      break;
    case Instruction::SPUT_CHAR:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
      break;
    case Instruction::SPUT_SHORT:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
      break;
    case Instruction::SPUT:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
      break;
    case Instruction::SPUT_WIDE:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
      break;
    case Instruction::SPUT_OBJECT:
      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
                                                    true);
      break;

    case Instruction::INVOKE_VIRTUAL:
    case Instruction::INVOKE_VIRTUAL_RANGE:
    case Instruction::INVOKE_SUPER:
    case Instruction::INVOKE_SUPER_RANGE: {
      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
      ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range, is_super);
      const RegType* return_type = nullptr;
      if (called_method != nullptr) {
        StackHandleScope<1> hs(self_);
        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
        if (return_type_class != nullptr) {
          return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
                                   return_type_class,
                                   return_type_class->CannotBeAssignedFromOtherTypes());
        } else {
          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
          self_->ClearException();
        }
      }
      if (return_type == nullptr) {
        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
      }
      if (!return_type->IsLowHalf()) {
        work_line_->SetResultRegisterType(this, *return_type);
      } else {
        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
      }
      just_set_result = true;
      break;
    }
    case Instruction::INVOKE_DIRECT:
    case Instruction::INVOKE_DIRECT_RANGE: {
      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
      ArtMethod* called_method = VerifyInvocationArgs(inst,
                                                      METHOD_DIRECT,
                                                      is_range,
                                                      false);
      const char* return_type_descriptor;
      bool is_constructor;
      const RegType* return_type = nullptr;
      if (called_method == nullptr) {
        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
      } else {
        is_constructor = called_method->IsConstructor();
        return_type_descriptor = called_method->GetReturnTypeDescriptor();
        StackHandleScope<1> hs(self_);
        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
        if (return_type_class != nullptr) {
          return_type = &FromClass(return_type_descriptor,
                                   return_type_class,
                                   return_type_class->CannotBeAssignedFromOtherTypes());
        } else {
          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
          self_->ClearException();
        }
      }
      if (is_constructor) {
        /*
         * Some additional checks when calling a constructor. We know from the invocation arg check
         * that the "this" argument is an instance of called_method->klass. Now we further restrict
         * that to require that called_method->klass is the same as this->klass or this->super,
         * allowing the latter only if the "this" argument is the same as the "this" argument to
         * this method (which implies that we're in a constructor ourselves).
         */
        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
        if (this_type.IsConflict())  // failure.
          break;

        /* no null refs allowed (?) */
        if (this_type.IsZero()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
          break;
        }

        /* must be in same class or in superclass */
        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
        // TODO: re-enable constructor type verification
        // if (this_super_klass.IsConflict()) {
          // Unknown super class, fail so we re-check at runtime.
          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
          // break;
        // }

        /* arg must be an uninitialized reference */
        if (!this_type.IsUninitializedTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
              << this_type;
          break;
        }

        /*
         * Replace the uninitialized reference with an initialized one. We need to do this for all
         * registers that have the same object instance in them, not just the "this" register.
         */
        const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
        work_line_->MarkRefsAsInitialized(this, this_type, this_reg, work_insn_idx_);
      }
      if (return_type == nullptr) {
        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
                                                 false);
      }
      if (!return_type->IsLowHalf()) {
        work_line_->SetResultRegisterType(this, *return_type);
      } else {
        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
      }
      just_set_result = true;
      break;
    }
    case Instruction::INVOKE_STATIC:
    case Instruction::INVOKE_STATIC_RANGE: {
        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
        ArtMethod* called_method = VerifyInvocationArgs(inst,
                                                        METHOD_STATIC,
                                                        is_range,
                                                        false);
        const char* descriptor;
        if (called_method == nullptr) {
          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
        } else {
          descriptor = called_method->GetReturnTypeDescriptor();
        }
        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
        if (!return_type.IsLowHalf()) {
          work_line_->SetResultRegisterType(this, return_type);
        } else {
          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
        }
        just_set_result = true;
      }
      break;
    case Instruction::INVOKE_INTERFACE:
    case Instruction::INVOKE_INTERFACE_RANGE: {
      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
      ArtMethod* abs_method = VerifyInvocationArgs(inst,
                                                   METHOD_INTERFACE,
                                                   is_range,
                                                   false);
      if (abs_method != nullptr) {
        mirror::Class* called_interface = abs_method->GetDeclaringClass();
        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
              << PrettyMethod(abs_method) << "'";
          break;
        }
      }
      /* Get the type of the "this" arg, which should either be a sub-interface of called
       * interface or Object (see comments in RegType::JoinClass).
       */
      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
      if (this_type.IsZero()) {
        /* null pointer always passes (and always fails at runtime) */
      } else {
        if (this_type.IsUninitializedTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
              << this_type;
          break;
        }
        // In the past we have tried to assert that "called_interface" is assignable
        // from "this_type.GetClass()", however, as we do an imprecise Join
        // (RegType::JoinClass) we don't have full information on what interfaces are
        // implemented by "this_type". For example, two classes may implement the same
        // interfaces and have a common parent that doesn't implement the interface. The
        // join will set "this_type" to the parent class and a test that this implements
        // the interface will incorrectly fail.
      }
      /*
       * We don't have an object instance, so we can't find the concrete method. However, all of
       * the type information is in the abstract method, so we're good.
       */
      const char* descriptor;
      if (abs_method == nullptr) {
        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
      } else {
        descriptor = abs_method->GetReturnTypeDescriptor();
      }
      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
      if (!return_type.IsLowHalf()) {
        work_line_->SetResultRegisterType(this, return_type);
      } else {
        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
      }
      just_set_result = true;
      break;
    }
    case Instruction::NEG_INT:
    case Instruction::NOT_INT:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
      break;
    case Instruction::NEG_LONG:
    case Instruction::NOT_LONG:
      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                   reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::NEG_FLOAT:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
      break;
    case Instruction::NEG_DOUBLE:
      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::INT_TO_LONG:
      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                     reg_types_.Integer());
      break;
    case Instruction::INT_TO_FLOAT:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
      break;
    case Instruction::INT_TO_DOUBLE:
      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                     reg_types_.Integer());
      break;
    case Instruction::LONG_TO_INT:
      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
                                       reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::LONG_TO_FLOAT:
      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
                                       reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::LONG_TO_DOUBLE:
      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                   reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::FLOAT_TO_INT:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
      break;
    case Instruction::FLOAT_TO_LONG:
      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                     reg_types_.Float());
      break;
    case Instruction::FLOAT_TO_DOUBLE:
      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                     reg_types_.Float());
      break;
    case Instruction::DOUBLE_TO_INT:
      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::DOUBLE_TO_LONG:
      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::DOUBLE_TO_FLOAT:
      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::INT_TO_BYTE:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
      break;
    case Instruction::INT_TO_CHAR:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
      break;
    case Instruction::INT_TO_SHORT:
      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
      break;

    case Instruction::ADD_INT:
    case Instruction::SUB_INT:
    case Instruction::MUL_INT:
    case Instruction::REM_INT:
    case Instruction::DIV_INT:
    case Instruction::SHL_INT:
    case Instruction::SHR_INT:
    case Instruction::USHR_INT:
      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
                                reg_types_.Integer(), false);
      break;
    case Instruction::AND_INT:
    case Instruction::OR_INT:
    case Instruction::XOR_INT:
      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
                                reg_types_.Integer(), true);
      break;
    case Instruction::ADD_LONG:
    case Instruction::SUB_LONG:
    case Instruction::MUL_LONG:
    case Instruction::DIV_LONG:
    case Instruction::REM_LONG:
    case Instruction::AND_LONG:
    case Instruction::OR_LONG:
    case Instruction::XOR_LONG:
      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                    reg_types_.LongLo(), reg_types_.LongHi(),
                                    reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::SHL_LONG:
    case Instruction::SHR_LONG:
    case Instruction::USHR_LONG:
      /* shift distance is Int, making these different from other binary operations */
      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                         reg_types_.Integer());
      break;
    case Instruction::ADD_FLOAT:
    case Instruction::SUB_FLOAT:
    case Instruction::MUL_FLOAT:
    case Instruction::DIV_FLOAT:
    case Instruction::REM_FLOAT:
      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
                                reg_types_.Float(), false);
      break;
    case Instruction::ADD_DOUBLE:
    case Instruction::SUB_DOUBLE:
    case Instruction::MUL_DOUBLE:
    case Instruction::DIV_DOUBLE:
    case Instruction::REM_DOUBLE:
      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::ADD_INT_2ADDR:
    case Instruction::SUB_INT_2ADDR:
    case Instruction::MUL_INT_2ADDR:
    case Instruction::REM_INT_2ADDR:
    case Instruction::SHL_INT_2ADDR:
    case Instruction::SHR_INT_2ADDR:
    case Instruction::USHR_INT_2ADDR:
      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
                                     reg_types_.Integer(), false);
      break;
    case Instruction::AND_INT_2ADDR:
    case Instruction::OR_INT_2ADDR:
    case Instruction::XOR_INT_2ADDR:
      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
                                     reg_types_.Integer(), true);
      break;
    case Instruction::DIV_INT_2ADDR:
      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
                                     reg_types_.Integer(), false);
      break;
    case Instruction::ADD_LONG_2ADDR:
    case Instruction::SUB_LONG_2ADDR:
    case Instruction::MUL_LONG_2ADDR:
    case Instruction::DIV_LONG_2ADDR:
    case Instruction::REM_LONG_2ADDR:
    case Instruction::AND_LONG_2ADDR:
    case Instruction::OR_LONG_2ADDR:
    case Instruction::XOR_LONG_2ADDR:
      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                         reg_types_.LongLo(), reg_types_.LongHi(),
                                         reg_types_.LongLo(), reg_types_.LongHi());
      break;
    case Instruction::SHL_LONG_2ADDR:
    case Instruction::SHR_LONG_2ADDR:
    case Instruction::USHR_LONG_2ADDR:
      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
                                              reg_types_.Integer());
      break;
    case Instruction::ADD_FLOAT_2ADDR:
    case Instruction::SUB_FLOAT_2ADDR:
    case Instruction::MUL_FLOAT_2ADDR:
    case Instruction::DIV_FLOAT_2ADDR:
    case Instruction::REM_FLOAT_2ADDR:
      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
                                     reg_types_.Float(), false);
      break;
    case Instruction::ADD_DOUBLE_2ADDR:
    case Instruction::SUB_DOUBLE_2ADDR:
    case Instruction::MUL_DOUBLE_2ADDR:
    case Instruction::DIV_DOUBLE_2ADDR:
    case Instruction::REM_DOUBLE_2ADDR:
      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
      break;
    case Instruction::ADD_INT_LIT16:
    case Instruction::RSUB_INT_LIT16:
    case Instruction::MUL_INT_LIT16:
    case Instruction::DIV_INT_LIT16:
    case Instruction::REM_INT_LIT16:
      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
                                 true);
      break;
    case Instruction::AND_INT_LIT16:
    case Instruction::OR_INT_LIT16:
    case Instruction::XOR_INT_LIT16:
      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
                                 true);
      break;
    case Instruction::ADD_INT_LIT8:
    case Instruction::RSUB_INT_LIT8:
    case Instruction::MUL_INT_LIT8:
    case Instruction::DIV_INT_LIT8:
    case Instruction::REM_INT_LIT8:
    case Instruction::SHL_INT_LIT8:
    case Instruction::SHR_INT_LIT8:
    case Instruction::USHR_INT_LIT8:
      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
                                 false);
      break;
    case Instruction::AND_INT_LIT8:
    case Instruction::OR_INT_LIT8:
    case Instruction::XOR_INT_LIT8:
      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
                                 false);
      break;

    // Special instructions.
    case Instruction::RETURN_VOID_NO_BARRIER:
      if (IsConstructor() && !IsStatic()) {
        auto& declaring_class = GetDeclaringClass();
        if (declaring_class.IsUnresolvedReference()) {
          // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
          // manually over the underlying dex file.
          uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
              dex_file_->GetMethodId(dex_method_idx_).class_idx_);
          if (first_index != DexFile::kDexNoIndex) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
                              << first_index;
          }
          break;
        }
        auto* klass = declaring_class.GetClass();
        for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
          if (klass->GetInstanceField(i)->IsFinal()) {
            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
                << PrettyField(klass->GetInstanceField(i));
            break;
          }
        }
      }
      break;
    // Note: the following instructions encode offsets derived from class linking.
    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
    // meaning if the class linking and resolution were successful.
    case Instruction::IGET_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
      break;
    case Instruction::IGET_WIDE_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
      break;
    case Instruction::IGET_OBJECT_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
      break;
    case Instruction::IGET_BOOLEAN_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
      break;
    case Instruction::IGET_BYTE_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
      break;
    case Instruction::IGET_CHAR_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
      break;
    case Instruction::IGET_SHORT_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
      break;
    case Instruction::IPUT_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
      break;
    case Instruction::IPUT_BOOLEAN_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
      break;
    case Instruction::IPUT_BYTE_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
      break;
    case Instruction::IPUT_CHAR_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
      break;
    case Instruction::IPUT_SHORT_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
      break;
    case Instruction::IPUT_WIDE_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
      break;
    case Instruction::IPUT_OBJECT_QUICK:
      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
      break;
    case Instruction::INVOKE_VIRTUAL_QUICK:
    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
      ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
      if (called_method != nullptr) {
        const char* descriptor = called_method->GetReturnTypeDescriptor();
        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
        if (!return_type.IsLowHalf()) {
          work_line_->SetResultRegisterType(this, return_type);
        } else {
          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
        }
        just_set_result = true;
      }
      break;
    }

    /* These should never appear during verification. */
    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
    case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
    case Instruction::UNUSED_79:
    case Instruction::UNUSED_7A:
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
      break;

    /*
     * DO NOT add a "default" clause here. Without it the compiler will
     * complain if an instruction is missing (which is desirable).
     */
  }  // end - switch (dec_insn.opcode)

  /*
   * If we are in a constructor, and we had an UninitializedThis type
   * in a register somewhere, we need to make sure it wasn't overwritten.
   */
  if (track_uninitialized_this) {
    bool was_invoke_direct = (inst->Opcode() == Instruction::INVOKE_DIRECT ||
                              inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
    if (work_line_->WasUninitializedThisOverwritten(this, uninitialized_this_loc,
                                                    was_invoke_direct)) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
          << "Constructor failed to initialize this object";
    }
  }

  if (have_pending_hard_failure_) {
    if (Runtime::Current()->IsAotCompiler()) {
      /* When AOT compiling, check that the last failure is a hard failure */
      if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
        LOG(ERROR) << "Pending failures:";
        for (auto& error : failures_) {
          LOG(ERROR) << error;
        }
        for (auto& error_msg : failure_messages_) {
          LOG(ERROR) << error_msg->str();
        }
        LOG(FATAL) << "Pending hard failure, but last failure not hard.";
      }
    }
    /* immediate failure, reject class */
    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
    return false;
  } else if (have_pending_runtime_throw_failure_) {
    /* checking interpreter will throw, mark following code as unreachable */
    opcode_flags = Instruction::kThrow;
  }
  /*
   * If we didn't just set the result register, clear it out. This ensures that you can only use
   * "move-result" immediately after the result is set. (We could check this statically, but it's
   * not expensive and it makes our debugging output cleaner.)
   */
  if (!just_set_result) {
    work_line_->SetResultTypeToUnknown(this);
  }



  /*
   * Handle "branch". Tag the branch target.
   *
   * NOTE: instructions like Instruction::EQZ provide information about the
   * state of the register when the branch is taken or not taken. For example,
   * somebody could get a reference field, check it for zero, and if the
   * branch is taken immediately store that register in a boolean field
   * since the value is known to be zero. We do not currently account for
   * that, and will reject the code.
   *
   * TODO: avoid re-fetching the branch target
   */
  if ((opcode_flags & Instruction::kBranch) != 0) {
    bool isConditional, selfOkay;
    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
      /* should never happen after static verification */
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
      return false;
    }
    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
      return false;
    }
    /* update branch target, set "changed" if appropriate */
    if (nullptr != branch_line.get()) {
      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
        return false;
      }
    } else {
      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
        return false;
      }
    }
  }

  /*
   * Handle "switch". Tag all possible branch targets.
   *
   * We've already verified that the table is structurally sound, so we
   * just need to walk through and tag the targets.
   */
  if ((opcode_flags & Instruction::kSwitch) != 0) {
    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
    const uint16_t* switch_insns = insns + offset_to_switch;
    int switch_count = switch_insns[1];
    int offset_to_targets, targ;

    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
      /* 0 = sig, 1 = count, 2/3 = first key */
      offset_to_targets = 4;
    } else {
      /* 0 = sig, 1 = count, 2..count * 2 = keys */
      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
      offset_to_targets = 2 + 2 * switch_count;
    }

    /* verify each switch target */
    for (targ = 0; targ < switch_count; targ++) {
      int offset;
      uint32_t abs_offset;

      /* offsets are 32-bit, and only partly endian-swapped */
      offset = switch_insns[offset_to_targets + targ * 2] |
         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
      abs_offset = work_insn_idx_ + offset;
      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
        return false;
      }
      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
        return false;
      }
    }
  }

  /*
   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
   * "try" block when they throw, control transfers out of the method.)
   */
  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
    bool has_catch_all_handler = false;
    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);

    // Need the linker to try and resolve the handled class to check if it's Throwable.
    ClassLinker* linker = Runtime::Current()->GetClassLinker();

    for (; iterator.HasNext(); iterator.Next()) {
      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
      if (handler_type_idx == DexFile::kDexNoIndex16) {
        has_catch_all_handler = true;
      } else {
        // It is also a catch-all if it is java.lang.Throwable.
        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
                                                   class_loader_);
        if (klass != nullptr) {
          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
            has_catch_all_handler = true;
          }
        } else {
          // Clear exception.
          DCHECK(self_->IsExceptionPending());
          self_->ClearException();
        }
      }
      /*
       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
       * "work_regs", because at runtime the exception will be thrown before the instruction
       * modifies any registers.
       */
      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
        return false;
      }
    }

    /*
     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
     * instruction. This does apply to monitor-exit because of async exception handling.
     */
    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
      /*
       * The state in work_line reflects the post-execution state. If the current instruction is a
       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
       * it will do so before grabbing the lock).
       */
      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
            << "expected to be within a catch-all for an instruction where a monitor is held";
        return false;
      }
    }
  }

  /* Handle "continue". Tag the next consecutive instruction.
   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
   *        because it changes work_line_ when performing peephole optimization
   *        and this change should not be used in those cases.
   */
  if ((opcode_flags & Instruction::kContinue) != 0) {
    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
      return false;
    }
    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
    // next instruction isn't one.
    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
      return false;
    }
    if (nullptr != fallthrough_line.get()) {
      // Make workline consistent with fallthrough computed from peephole optimization.
      work_line_->CopyFromLine(fallthrough_line.get());
    }
    if (insn_flags_[next_insn_idx].IsReturn()) {
      // For returns we only care about the operand to the return, all other registers are dead.
      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
      Instruction::Code opcode = ret_inst->Opcode();
      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
        SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
      } else {
        if (opcode == Instruction::RETURN_WIDE) {
          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
        } else {
          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
        }
      }
    }
    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
    if (next_line != nullptr) {
      // Merge registers into what we have for the next instruction, and set the "changed" flag if
      // needed. If the merge changes the state of the registers then the work line will be
      // updated.
      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
        return false;
      }
    } else {
      /*
       * We're not recording register data for the next instruction, so we don't know what the
       * prior state was. We have to assume that something has changed and re-evaluate it.
       */
      insn_flags_[next_insn_idx].SetChanged();
    }
  }

  /* If we're returning from the method, make sure monitor stack is empty. */
  if ((opcode_flags & Instruction::kReturn) != 0) {
    if (!work_line_->VerifyMonitorStackEmpty(this)) {
      return false;
    }
  }

  /*
   * Update start_guess. Advance to the next instruction of that's
   * possible, otherwise use the branch target if one was found. If
   * neither of those exists we're in a return or throw; leave start_guess
   * alone and let the caller sort it out.
   */
  if ((opcode_flags & Instruction::kContinue) != 0) {
    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
  } else if ((opcode_flags & Instruction::kBranch) != 0) {
    /* we're still okay if branch_target is zero */
    *start_guess = work_insn_idx_ + branch_target;
  }

  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
  DCHECK(insn_flags_[*start_guess].IsOpcode());

  return true;
}  // NOLINT(readability/fn_size)

const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
  const RegType& referrer = GetDeclaringClass();
  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
  const RegType& result = klass != nullptr ?
      FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
  if (result.IsConflict()) {
    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
        << "' in " << referrer;
    return result;
  }
  if (klass == nullptr && !result.IsUnresolvedTypes()) {
    dex_cache_->SetResolvedType(class_idx, result.GetClass());
  }
  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
  // check at runtime if access is allowed and so pass here. If result is
  // primitive, skip the access check.
  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
                                    << referrer << "' -> '" << result << "'";
  }
  return result;
}

const RegType& MethodVerifier::GetCaughtExceptionType() {
  const RegType* common_super = nullptr;
  if (code_item_->tries_size_ != 0) {
    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
    for (uint32_t i = 0; i < handlers_size; i++) {
      CatchHandlerIterator iterator(handlers_ptr);
      for (; iterator.HasNext(); iterator.Next()) {
        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
            common_super = &reg_types_.JavaLangThrowable(false);
          } else {
            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
              if (exception.IsUnresolvedTypes()) {
                // We don't know enough about the type. Fail here and let runtime handle it.
                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
                return exception;
              } else {
                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
                return reg_types_.Conflict();
              }
            } else if (common_super == nullptr) {
              common_super = &exception;
            } else if (common_super->Equals(exception)) {
              // odd case, but nothing to do
            } else {
              common_super = &common_super->Merge(exception, &reg_types_);
              if (FailOrAbort(this,
                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
                              "java.lang.Throwable is not assignable-from common_super at ",
                              work_insn_idx_)) {
                break;
              }
            }
          }
        }
      }
      handlers_ptr = iterator.EndDataPointer();
    }
  }
  if (common_super == nullptr) {
    /* no catch blocks, or no catches with classes we can find */
    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
    return reg_types_.Conflict();
  }
  return *common_super;
}

ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
    uint32_t dex_method_idx, MethodType method_type) {
  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
  if (klass_type.IsConflict()) {
    std::string append(" in attempt to access method ");
    append += dex_file_->GetMethodName(method_id);
    AppendToLastFailMessage(append);
    return nullptr;
  }
  if (klass_type.IsUnresolvedTypes()) {
    return nullptr;  // Can't resolve Class so no more to do here
  }
  mirror::Class* klass = klass_type.GetClass();
  const RegType& referrer = GetDeclaringClass();
  auto* cl = Runtime::Current()->GetClassLinker();
  auto pointer_size = cl->GetImagePointerSize();
  ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
  if (res_method == nullptr) {
    const char* name = dex_file_->GetMethodName(method_id);
    const Signature signature = dex_file_->GetMethodSignature(method_id);

    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
      res_method = klass->FindDirectMethod(name, signature, pointer_size);
    } else if (method_type == METHOD_INTERFACE) {
      res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
    } else {
      res_method = klass->FindVirtualMethod(name, signature, pointer_size);
    }
    if (res_method != nullptr) {
      dex_cache_->SetResolvedMethod(dex_method_idx, res_method, pointer_size);
    } else {
      // If a virtual or interface method wasn't found with the expected type, look in
      // the direct methods. This can happen when the wrong invoke type is used or when
      // a class has changed, and will be flagged as an error in later checks.
      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
        res_method = klass->FindDirectMethod(name, signature, pointer_size);
      }
      if (res_method == nullptr) {
        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
                                     << PrettyDescriptor(klass) << "." << name
                                     << " " << signature;
        return nullptr;
      }
    }
  }
  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
  // enforce them here.
  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
                                      << PrettyMethod(res_method);
    return nullptr;
  }
  // Disallow any calls to class initializers.
  if (res_method->IsClassInitializer()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
                                      << PrettyMethod(res_method);
    return nullptr;
  }
  // Check if access is allowed.
  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
                                     << " from " << referrer << ")";
    return res_method;
  }
  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
                                      << PrettyMethod(res_method);
    return nullptr;
  }
  // Check that interface methods match interface classes.
  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
                                    << " is in an interface class " << PrettyClass(klass);
    return nullptr;
  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
                                    << " is in a non-interface class " << PrettyClass(klass);
    return nullptr;
  }
  // See if the method type implied by the invoke instruction matches the access flags for the
  // target method.
  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
      ) {
    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
                                       " type of " << PrettyMethod(res_method);
    return nullptr;
  }
  return res_method;
}

template <class T>
ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
    T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
  // match the call to the signature. Also, we might be calling through an abstract method
  // definition (which doesn't have register count values).
  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
  /* caught by static verifier */
  DCHECK(is_range || expected_args <= 5);
  if (expected_args > code_item_->outs_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
    return nullptr;
  }

  uint32_t arg[5];
  if (!is_range) {
    inst->GetVarArgs(arg);
  }
  uint32_t sig_registers = 0;

  /*
   * Check the "this" argument, which must be an instance of the class that declared the method.
   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
   * rigorous check here (which is okay since we have to do it at runtime).
   */
  if (method_type != METHOD_STATIC) {
    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
      CHECK(have_pending_hard_failure_);
      return nullptr;
    }
    if (actual_arg_type.IsUninitializedReference()) {
      if (res_method) {
        if (!res_method->IsConstructor()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
          return nullptr;
        }
      } else {
        // Check whether the name of the called method is "<init>"
        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
          return nullptr;
        }
      }
    }
    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
      const RegType* res_method_class;
      if (res_method != nullptr) {
        mirror::Class* klass = res_method->GetDeclaringClass();
        std::string temp;
        res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
                                      klass->CannotBeAssignedFromOtherTypes());
      } else {
        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
                                                      dex_file_->StringByTypeIdx(class_idx),
                                                      false);
      }
      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
                << "' not instance of '" << *res_method_class << "'";
        // Continue on soft failures. We need to find possible hard failures to avoid problems in
        // the compiler.
        if (have_pending_hard_failure_) {
          return nullptr;
        }
      }
    }
    sig_registers = 1;
  }

  for ( ; it->HasNext(); it->Next()) {
    if (sig_registers >= expected_args) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
          " arguments, found " << sig_registers << " or more.";
      return nullptr;
    }

    const char* param_descriptor = it->GetDescriptor();

    if (param_descriptor == nullptr) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
          "component";
      return nullptr;
    }

    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
        arg[sig_registers];
    if (reg_type.IsIntegralTypes()) {
      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
      if (!src_type.IsIntegralTypes()) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
            << " but expected " << reg_type;
        return nullptr;
      }
    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
      // compiler.
      if (have_pending_hard_failure_) {
        return nullptr;
      }
    }
    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
  }
  if (expected_args != sig_registers) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
        " arguments, found " << sig_registers;
    return nullptr;
  }
  return res_method;
}

void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
                                                          MethodType method_type,
                                                          bool is_range) {
  // As the method may not have been resolved, make this static check against what we expect.
  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
  DexFileParameterIterator it(*dex_file_,
                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
                                                             nullptr);
}

class MethodParamListDescriptorIterator {
 public:
  explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
      params_size_(params_ == nullptr ? 0 : params_->Size()) {
  }

  bool HasNext() {
    return pos_ < params_size_;
  }

  void Next() {
    ++pos_;
  }

  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
  }

 private:
  ArtMethod* res_method_;
  size_t pos_;
  const DexFile::TypeList* params_;
  const size_t params_size_;
};

ArtMethod* MethodVerifier::VerifyInvocationArgs(
    const Instruction* inst, MethodType method_type, bool is_range, bool is_super) {
  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
  // we're making.
  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();

  ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
  if (res_method == nullptr) {  // error or class is unresolved
    // Check what we can statically.
    if (!have_pending_hard_failure_) {
      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
    }
    return nullptr;
  }

  // If we're using invoke-super(method), make sure that the executing method's class' superclass
  // has a vtable entry for the target method.
  if (is_super) {
    DCHECK(method_type == METHOD_VIRTUAL);
    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
    if (super.IsUnresolvedTypes()) {
      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
                                   << PrettyMethod(dex_method_idx_, *dex_file_)
                                   << " to super " << PrettyMethod(res_method);
      return nullptr;
    }
    mirror::Class* super_klass = super.GetClass();
    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
                                   << PrettyMethod(dex_method_idx_, *dex_file_)
                                   << " to super " << super
                                   << "." << res_method->GetName()
                                   << res_method->GetSignature();
      return nullptr;
    }
  }

  // Process the target method's signature. This signature may or may not
  MethodParamListDescriptorIterator it(res_method);
  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
                                                                             is_range, res_method);
}

ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line,
                                                 bool is_range, bool allow_failure) {
  if (is_range) {
    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
  } else {
    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
  }
  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
  if (!actual_arg_type.HasClass()) {
    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
    return nullptr;
  }
  mirror::Class* klass = actual_arg_type.GetClass();
  mirror::Class* dispatch_class;
  if (klass->IsInterface()) {
    // Derive Object.class from Class.class.getSuperclass().
    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
    if (FailOrAbort(this, object_klass->IsObjectClass(),
                    "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
      return nullptr;
    }
    dispatch_class = object_klass;
  } else {
    dispatch_class = klass;
  }
  if (!dispatch_class->HasVTable()) {
    FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
                work_insn_idx_);
    return nullptr;
  }
  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
  auto* cl = Runtime::Current()->GetClassLinker();
  auto pointer_size = cl->GetImagePointerSize();
  if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
    FailOrAbort(this, allow_failure,
                "Receiver class has not enough vtable slots for quickened invoke at ",
                work_insn_idx_);
    return nullptr;
  }
  ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size);
  if (self_->IsExceptionPending()) {
    FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
                work_insn_idx_);
    return nullptr;
  }
  return res_method;
}

ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) {
  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
      << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;

  ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
  if (res_method == nullptr) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
    return nullptr;
  }
  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
                  work_insn_idx_)) {
    return nullptr;
  }
  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
                  work_insn_idx_)) {
    return nullptr;
  }

  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
  // match the call to the signature. Also, we might be calling through an abstract method
  // definition (which doesn't have register count values).
  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
    return nullptr;
  }
  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
  /* caught by static verifier */
  DCHECK(is_range || expected_args <= 5);
  if (expected_args > code_item_->outs_size_) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
    return nullptr;
  }

  /*
   * Check the "this" argument, which must be an instance of the class that declared the method.
   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
   * rigorous check here (which is okay since we have to do it at runtime).
   */
  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
    return nullptr;
  }
  if (!actual_arg_type.IsZero()) {
    mirror::Class* klass = res_method->GetDeclaringClass();
    std::string temp;
    const RegType& res_method_class =
        FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
          << "' not instance of '" << res_method_class << "'";
      return nullptr;
    }
  }
  /*
   * Process the target method's signature. This signature may or may not
   * have been verified, so we can't assume it's properly formed.
   */
  const DexFile::TypeList* params = res_method->GetParameterTypeList();
  size_t params_size = params == nullptr ? 0 : params->Size();
  uint32_t arg[5];
  if (!is_range) {
    inst->GetVarArgs(arg);
  }
  size_t actual_args = 1;
  for (size_t param_index = 0; param_index < params_size; param_index++) {
    if (actual_args >= expected_args) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
                                        << "'. Expected " << expected_args
                                         << " arguments, processing argument " << actual_args
                                        << " (where longs/doubles count twice).";
      return nullptr;
    }
    const char* descriptor =
        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
    if (descriptor == nullptr) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
                                        << " missing signature component";
      return nullptr;
    }
    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
      return res_method;
    }
    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
  }
  if (actual_args != expected_args) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
              << " expected " << expected_args << " arguments, found " << actual_args;
    return nullptr;
  } else {
    return res_method;
  }
}

void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
  uint32_t type_idx;
  if (!is_filled) {
    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
    type_idx = inst->VRegC_22c();
  } else if (!is_range) {
    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
    type_idx = inst->VRegB_35c();
  } else {
    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
    type_idx = inst->VRegB_3rc();
  }
  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
  if (res_type.IsConflict()) {  // bad class
    DCHECK_NE(failures_.size(), 0U);
  } else {
    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
    if (!res_type.IsArrayTypes()) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
    } else if (!is_filled) {
      /* make sure "size" register is valid type */
      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
      /* set register type to array class */
      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
    } else {
      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
      // the list and fail. It's legal, if silly, for arg_count to be zero.
      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
      uint32_t arg[5];
      if (!is_range) {
        inst->GetVarArgs(arg);
      }
      for (size_t ui = 0; ui < arg_count; ui++) {
        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
          return;
        }
      }
      // filled-array result goes into "result" register
      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
      work_line_->SetResultRegisterType(this, precise_type);
    }
  }
}

void MethodVerifier::VerifyAGet(const Instruction* inst,
                                const RegType& insn_type, bool is_primitive) {
  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
  if (!index_type.IsArrayIndexTypes()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
  } else {
    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
    if (array_type.IsZero()) {
      have_pending_runtime_throw_failure_ = true;
      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
      // instruction type. TODO: have a proper notion of bottom here.
      if (!is_primitive || insn_type.IsCategory1Types()) {
        // Reference or category 1
        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
      } else {
        // Category 2
        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
                                        reg_types_.FromCat2ConstLo(0, false),
                                        reg_types_.FromCat2ConstHi(0, false));
      }
    } else if (!array_type.IsArrayTypes()) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
    } else {
      /* verify the class */
      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
      if (!component_type.IsReferenceTypes() && !is_primitive) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
            << " source for aget-object";
      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
            << " source for category 1 aget";
      } else if (is_primitive && !insn_type.Equals(component_type) &&
                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
                 (insn_type.IsLong() && component_type.IsDouble()))) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
            << " incompatible with aget of type " << insn_type;
      } else {
        // Use knowledge of the field type which is stronger than the type inferred from the
        // instruction, which can't differentiate object types and ints from floats, longs from
        // doubles.
        if (!component_type.IsLowHalf()) {
          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
        } else {
          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
                                          component_type.HighHalf(&reg_types_));
        }
      }
    }
  }
}

void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
                                        const uint32_t vregA) {
  // Primitive assignability rules are weaker than regular assignability rules.
  bool instruction_compatible;
  bool value_compatible;
  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
  if (target_type.IsIntegralTypes()) {
    instruction_compatible = target_type.Equals(insn_type);
    value_compatible = value_type.IsIntegralTypes();
  } else if (target_type.IsFloat()) {
    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
    value_compatible = value_type.IsFloatTypes();
  } else if (target_type.IsLong()) {
    instruction_compatible = insn_type.IsLong();
    // Additional register check: this is not checked statically (as part of VerifyInstructions),
    // as target_type depends on the resolved type of the field.
    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
    } else {
      value_compatible = false;
    }
  } else if (target_type.IsDouble()) {
    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
    // Additional register check: this is not checked statically (as part of VerifyInstructions),
    // as target_type depends on the resolved type of the field.
    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
    } else {
      value_compatible = false;
    }
  } else {
    instruction_compatible = false;  // reference with primitive store
    value_compatible = false;  // unused
  }
  if (!instruction_compatible) {
    // This is a global failure rather than a class change failure as the instructions and
    // the descriptors for the type should have been consistent within the same file at
    // compile time.
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
        << "' but expected type '" << target_type << "'";
    return;
  }
  if (!value_compatible) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
        << " of type " << value_type << " but expected " << target_type << " for put";
    return;
  }
}

void MethodVerifier::VerifyAPut(const Instruction* inst,
                                const RegType& insn_type, bool is_primitive) {
  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
  if (!index_type.IsArrayIndexTypes()) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
  } else {
    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
    if (array_type.IsZero()) {
      // Null array type; this code path will fail at runtime.
      // Still check that the given value matches the instruction's type.
      work_line_->VerifyRegisterType(this, inst->VRegA_23x(), insn_type);
    } else if (!array_type.IsArrayTypes()) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
    } else {
      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
      const uint32_t vregA = inst->VRegA_23x();
      if (is_primitive) {
        VerifyPrimitivePut(component_type, insn_type, vregA);
      } else {
        if (!component_type.IsReferenceTypes()) {
          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
              << " source for aput-object";
        } else {
          // The instruction agrees with the type of array, confirm the value to be stored does too
          // Note: we use the instruction type (rather than the component type) for aput-object as
          // incompatible classes will be caught at runtime as an array store exception
          work_line_->VerifyRegisterType(this, vregA, insn_type);
        }
      }
    }
  }
}

ArtField* MethodVerifier::GetStaticField(int field_idx) {
  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
  // Check access to class
  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
  if (klass_type.IsConflict()) {  // bad class
    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
                                         field_idx, dex_file_->GetFieldName(field_id),
                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
    return nullptr;
  }
  if (klass_type.IsUnresolvedTypes()) {
    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
  }
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
                                                  class_loader_);
  if (field == nullptr) {
    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
              << dex_file_->GetFieldName(field_id) << ") in "
              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
    DCHECK(self_->IsExceptionPending());
    self_->ClearException();
    return nullptr;
  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
                                                  field->GetAccessFlags())) {
    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
                                    << " from " << GetDeclaringClass();
    return nullptr;
  } else if (!field->IsStatic()) {
    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
    return nullptr;
  }
  return field;
}

ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
  // Check access to class
  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
  if (klass_type.IsConflict()) {
    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
                                         field_idx, dex_file_->GetFieldName(field_id),
                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
    return nullptr;
  }
  if (klass_type.IsUnresolvedTypes()) {
    return nullptr;  // Can't resolve Class so no more to do here
  }
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
                                                  class_loader_);
  if (field == nullptr) {
    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
              << dex_file_->GetFieldName(field_id) << ") in "
              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
    DCHECK(self_->IsExceptionPending());
    self_->ClearException();
    return nullptr;
  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
                                                  field->GetAccessFlags())) {
    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
                                    << " from " << GetDeclaringClass();
    return nullptr;
  } else if (field->IsStatic()) {
    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
                                    << " to not be static";
    return nullptr;
  } else if (obj_type.IsZero()) {
    // Cannot infer and check type, however, access will cause null pointer exception
    return field;
  } else if (!obj_type.IsReferenceTypes()) {
    // Trying to read a field from something that isn't a reference
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
                                      << "non-reference type " << obj_type;
    return nullptr;
  } else {
    mirror::Class* klass = field->GetDeclaringClass();
    const RegType& field_klass =
        FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
                  klass, klass->CannotBeAssignedFromOtherTypes());
    if (obj_type.IsUninitializedTypes() &&
        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
            !field_klass.Equals(GetDeclaringClass()))) {
      // Field accesses through uninitialized references are only allowable for constructors where
      // the field is declared in this class
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
                                        << " of a not fully initialized object within the context"
                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
      return nullptr;
    } else if (!field_klass.IsAssignableFrom(obj_type)) {
      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
      // of C1. For resolution to occur the declared class of the field must be compatible with
      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
                                  << " from object of type " << obj_type;
      return nullptr;
    } else {
      return field;
    }
  }
}

template <MethodVerifier::FieldAccessType kAccType>
void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
                                         bool is_primitive, bool is_static) {
  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
  ArtField* field;
  if (is_static) {
    field = GetStaticField(field_idx);
  } else {
    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
    field = GetInstanceField(object_type, field_idx);
    if (UNLIKELY(have_pending_hard_failure_)) {
      return;
    }
  }
  const RegType* field_type = nullptr;
  if (field != nullptr) {
    if (kAccType == FieldAccessType::kAccPut) {
      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
                                        << " from other class " << GetDeclaringClass();
        return;
      }
    }

    mirror::Class* field_type_class =
        can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
    if (field_type_class != nullptr) {
      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
                              field_type_class->CannotBeAssignedFromOtherTypes());
    } else {
      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
      self_->ClearException();
    }
  }
  if (field_type == nullptr) {
    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
  }
  DCHECK(field_type != nullptr);
  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
                "Unexpected third access type");
  if (kAccType == FieldAccessType::kAccPut) {
    // sput or iput.
    if (is_primitive) {
      VerifyPrimitivePut(*field_type, insn_type, vregA);
    } else {
      if (!insn_type.IsAssignableFrom(*field_type)) {
        // If the field type is not a reference, this is a global failure rather than
        // a class change failure as the instructions and the descriptors for the type
        // should have been consistent within the same file at compile time.
        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
        Fail(error) << "expected field " << PrettyField(field)
                    << " to be compatible with type '" << insn_type
                    << "' but found type '" << *field_type
                    << "' in put-object";
        return;
      }
      work_line_->VerifyRegisterType(this, vregA, *field_type);
    }
  } else if (kAccType == FieldAccessType::kAccGet) {
    // sget or iget.
    if (is_primitive) {
      if (field_type->Equals(insn_type) ||
          (field_type->IsFloat() && insn_type.IsInteger()) ||
          (field_type->IsDouble() && insn_type.IsLong())) {
        // expected that read is of the correct primitive type or that int reads are reading
        // floats or long reads are reading doubles
      } else {
        // This is a global failure rather than a class change failure as the instructions and
        // the descriptors for the type should have been consistent within the same file at
        // compile time
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
                                          << " to be of type '" << insn_type
                                          << "' but found type '" << *field_type << "' in get";
        return;
      }
    } else {
      if (!insn_type.IsAssignableFrom(*field_type)) {
        // If the field type is not a reference, this is a global failure rather than
        // a class change failure as the instructions and the descriptors for the type
        // should have been consistent within the same file at compile time.
        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
        Fail(error) << "expected field " << PrettyField(field)
                    << " to be compatible with type '" << insn_type
                    << "' but found type '" << *field_type
                    << "' in get-object";
        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
        return;
      }
    }
    if (!field_type->IsLowHalf()) {
      work_line_->SetRegisterType(this, vregA, *field_type);
    } else {
      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
    }
  } else {
    LOG(FATAL) << "Unexpected case.";
  }
}

ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
                                                      RegisterLine* reg_line) {
  DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
  if (!object_type.HasClass()) {
    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
    return nullptr;
  }
  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
  ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
  DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
  if (f == nullptr) {
    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
  }
  return f;
}

template <MethodVerifier::FieldAccessType kAccType>
void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
                                            bool is_primitive) {
  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);

  ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
  if (field == nullptr) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
    return;
  }

  // For an IPUT_QUICK, we now test for final flag of the field.
  if (kAccType == FieldAccessType::kAccPut) {
    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
                                      << " from other class " << GetDeclaringClass();
      return;
    }
  }

  // Get the field type.
  const RegType* field_type;
  {
    mirror::Class* field_type_class = can_load_classes_ ? field->GetType<true>() :
        field->GetType<false>();

    if (field_type_class != nullptr) {
      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
                              field_type_class->CannotBeAssignedFromOtherTypes());
    } else {
      Thread* self = Thread::Current();
      DCHECK(!can_load_classes_ || self->IsExceptionPending());
      self->ClearException();
      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
                                              field->GetTypeDescriptor(), false);
    }
    if (field_type == nullptr) {
      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
      return;
    }
  }

  const uint32_t vregA = inst->VRegA_22c();
  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
                "Unexpected third access type");
  if (kAccType == FieldAccessType::kAccPut) {
    if (is_primitive) {
      // Primitive field assignability rules are weaker than regular assignability rules
      bool instruction_compatible;
      bool value_compatible;
      const RegType& value_type = work_line_->GetRegisterType(this, vregA);
      if (field_type->IsIntegralTypes()) {
        instruction_compatible = insn_type.IsIntegralTypes();
        value_compatible = value_type.IsIntegralTypes();
      } else if (field_type->IsFloat()) {
        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
        value_compatible = value_type.IsFloatTypes();
      } else if (field_type->IsLong()) {
        instruction_compatible = insn_type.IsLong();
        value_compatible = value_type.IsLongTypes();
      } else if (field_type->IsDouble()) {
        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
        value_compatible = value_type.IsDoubleTypes();
      } else {
        instruction_compatible = false;  // reference field with primitive store
        value_compatible = false;  // unused
      }
      if (!instruction_compatible) {
        // This is a global failure rather than a class change failure as the instructions and
        // the descriptors for the type should have been consistent within the same file at
        // compile time
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
                                          << " to be of type '" << insn_type
                                          << "' but found type '" << *field_type
                                          << "' in put";
        return;
      }
      if (!value_compatible) {
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
            << " of type " << value_type
            << " but expected " << *field_type
            << " for store to " << PrettyField(field) << " in put";
        return;
      }
    } else {
      if (!insn_type.IsAssignableFrom(*field_type)) {
        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
                                          << " to be compatible with type '" << insn_type
                                          << "' but found type '" << *field_type
                                          << "' in put-object";
        return;
      }
      work_line_->VerifyRegisterType(this, vregA, *field_type);
    }
  } else if (kAccType == FieldAccessType::kAccGet) {
    if (is_primitive) {
      if (field_type->Equals(insn_type) ||
          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
          (field_type->IsDouble() && insn_type.IsLongTypes())) {
        // expected that read is of the correct primitive type or that int reads are reading
        // floats or long reads are reading doubles
      } else {
        // This is a global failure rather than a class change failure as the instructions and
        // the descriptors for the type should have been consistent within the same file at
        // compile time
        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
                                          << " to be of type '" << insn_type
                                          << "' but found type '" << *field_type << "' in Get";
        return;
      }
    } else {
      if (!insn_type.IsAssignableFrom(*field_type)) {
        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
                                          << " to be compatible with type '" << insn_type
                                          << "' but found type '" << *field_type
                                          << "' in get-object";
        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
        return;
      }
    }
    if (!field_type->IsLowHalf()) {
      work_line_->SetRegisterType(this, vregA, *field_type);
    } else {
      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
    }
  } else {
    LOG(FATAL) << "Unexpected case.";
  }
}

bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
    return false;
  }
  return true;
}

bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
    return false;
  }
  return true;
}

bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
}

bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
                                     bool update_merge_line) {
  bool changed = true;
  RegisterLine* target_line = reg_table_.GetLine(next_insn);
  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
    /*
     * We haven't processed this instruction before, and we haven't touched the registers here, so
     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
     * only way a register can transition out of "unknown", so this is not just an optimization.)
     */
    if (!insn_flags_[next_insn].IsReturn()) {
      target_line->CopyFromLine(merge_line);
    } else {
      // Verify that the monitor stack is empty on return.
      if (!merge_line->VerifyMonitorStackEmpty(this)) {
        return false;
      }
      // For returns we only care about the operand to the return, all other registers are dead.
      // Initialize them as conflicts so they don't add to GC and deoptimization information.
      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
      Instruction::Code opcode = ret_inst->Opcode();
      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
        SafelyMarkAllRegistersAsConflicts(this, target_line);
      } else {
        target_line->CopyFromLine(merge_line);
        if (opcode == Instruction::RETURN_WIDE) {
          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
        } else {
          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
        }
      }
    }
  } else {
    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
                                 RegisterLine::Create(target_line->NumRegs(), this) :
                                 nullptr);
    if (gDebugVerify) {
      copy->CopyFromLine(target_line);
    }
    changed = target_line->MergeRegisters(this, merge_line);
    if (have_pending_hard_failure_) {
      return false;
    }
    if (gDebugVerify && changed) {
      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
                      << copy->Dump(this) << "  MERGE\n"
                      << merge_line->Dump(this) << "  ==\n"
                      << target_line->Dump(this) << "\n";
    }
    if (update_merge_line && changed) {
      merge_line->CopyFromLine(target_line);
    }
  }
  if (changed) {
    insn_flags_[next_insn].SetChanged();
  }
  return true;
}

InstructionFlags* MethodVerifier::CurrentInsnFlags() {
  return &insn_flags_[work_insn_idx_];
}

const RegType& MethodVerifier::GetMethodReturnType() {
  if (return_type_ == nullptr) {
    if (mirror_method_ != nullptr) {
      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
      if (return_type_class != nullptr) {
        return_type_ = &FromClass(mirror_method_->GetReturnTypeDescriptor(),
                                  return_type_class,
                                  return_type_class->CannotBeAssignedFromOtherTypes());
      } else {
        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
        self_->ClearException();
      }
    }
    if (return_type_ == nullptr) {
      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
      uint16_t return_type_idx = proto_id.return_type_idx_;
      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
    }
  }
  return *return_type_;
}

const RegType& MethodVerifier::GetDeclaringClass() {
  if (declaring_class_ == nullptr) {
    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
    const char* descriptor
        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
    if (mirror_method_ != nullptr) {
      mirror::Class* klass = mirror_method_->GetDeclaringClass();
      declaring_class_ = &FromClass(descriptor, klass,
                                    klass->CannotBeAssignedFromOtherTypes());
    } else {
      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
    }
  }
  return *declaring_class_;
}

std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
  RegisterLine* line = reg_table_.GetLine(dex_pc);
  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
  std::vector<int32_t> result;
  for (size_t i = 0; i < line->NumRegs(); ++i) {
    const RegType& type = line->GetRegisterType(this, i);
    if (type.IsConstant()) {
      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
      result.push_back(const_val->ConstantValue());
    } else if (type.IsConstantLo()) {
      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
      result.push_back(const_val->ConstantValueLo());
    } else if (type.IsConstantHi()) {
      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
      result.push_back(const_val->ConstantValueHi());
    } else if (type.IsIntegralTypes()) {
      result.push_back(kIntVReg);
      result.push_back(0);
    } else if (type.IsFloat()) {
      result.push_back(kFloatVReg);
      result.push_back(0);
    } else if (type.IsLong()) {
      result.push_back(kLongLoVReg);
      result.push_back(0);
      result.push_back(kLongHiVReg);
      result.push_back(0);
      ++i;
    } else if (type.IsDouble()) {
      result.push_back(kDoubleLoVReg);
      result.push_back(0);
      result.push_back(kDoubleHiVReg);
      result.push_back(0);
      ++i;
    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
      result.push_back(kUndefined);
      result.push_back(0);
    } else {
      CHECK(type.IsNonZeroReferenceTypes());
      result.push_back(kReferenceVReg);
      result.push_back(0);
    }
  }
  return result;
}

const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
  if (precise) {
    // Precise constant type.
    return reg_types_.FromCat1Const(value, true);
  } else {
    // Imprecise constant type.
    if (value < -32768) {
      return reg_types_.IntConstant();
    } else if (value < -128) {
      return reg_types_.ShortConstant();
    } else if (value < 0) {
      return reg_types_.ByteConstant();
    } else if (value == 0) {
      return reg_types_.Zero();
    } else if (value == 1) {
      return reg_types_.One();
    } else if (value < 128) {
      return reg_types_.PosByteConstant();
    } else if (value < 32768) {
      return reg_types_.PosShortConstant();
    } else if (value < 65536) {
      return reg_types_.CharConstant();
    } else {
      return reg_types_.IntConstant();
    }
  }
}

void MethodVerifier::Init() {
  art::verifier::RegTypeCache::Init();
}

void MethodVerifier::Shutdown() {
  verifier::RegTypeCache::ShutDown();
}

void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
  RegTypeCache::VisitStaticRoots(visitor);
}

void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
  reg_types_.VisitRoots(visitor, root_info);
}

const RegType& MethodVerifier::FromClass(const char* descriptor,
                                         mirror::Class* klass,
                                         bool precise) {
  DCHECK(klass != nullptr);
  if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
    Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
        << "non-instantiable klass " << descriptor;
    precise = false;
  }
  return reg_types_.FromClass(descriptor, klass, precise);
}

}  // namespace verifier
}  // namespace art