summaryrefslogtreecommitdiffstats
path: root/src/assembler.h
blob: 30962664a6870706841baf09faf98ec0ed92350e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// Copyright 2011 Google Inc. All Rights Reserved.

#ifndef ART_SRC_ASSEMBLER_H_
#define ART_SRC_ASSEMBLER_H_

#include <vector>

#include "constants.h"
#include "logging.h"
#include "macros.h"
#include "managed_register.h"
#include "memory_region.h"
#include "offsets.h"

namespace art {

class Assembler;
class AssemblerBuffer;
class AssemblerFixup;

namespace arm {
  class ArmAssembler;
}
namespace x86 {
  class X86Assembler;
}

class Label {
 public:
  Label() : position_(0) {}

  ~Label() {
    // Assert if label is being destroyed with unresolved branches pending.
    CHECK(!IsLinked());
  }

  // Returns the position for bound and linked labels. Cannot be used
  // for unused labels.
  int Position() const {
    CHECK(!IsUnused());
    return IsBound() ? -position_ - kPointerSize : position_ - kPointerSize;
  }

  int LinkPosition() const {
    CHECK(IsLinked());
    return position_ - kWordSize;
  }

  bool IsBound() const { return position_ < 0; }
  bool IsUnused() const { return position_ == 0; }
  bool IsLinked() const { return position_ > 0; }

 private:
  int position_;

  void Reinitialize() {
    position_ = 0;
  }

  void BindTo(int position) {
    CHECK(!IsBound());
    position_ = -position - kPointerSize;
    CHECK(IsBound());
  }

  void LinkTo(int position) {
    CHECK(!IsBound());
    position_ = position + kPointerSize;
    CHECK(IsLinked());
  }

  friend class arm::ArmAssembler;
  friend class x86::X86Assembler;

  DISALLOW_COPY_AND_ASSIGN(Label);
};


// Assembler fixups are positions in generated code that require processing
// after the code has been copied to executable memory. This includes building
// relocation information.
class AssemblerFixup {
 public:
  virtual void Process(const MemoryRegion& region, int position) = 0;
  virtual ~AssemblerFixup() {}

 private:
  AssemblerFixup* previous_;
  int position_;

  AssemblerFixup* previous() const { return previous_; }
  void set_previous(AssemblerFixup* previous) { previous_ = previous; }

  int position() const { return position_; }
  void set_position(int position) { position_ = position; }

  friend class AssemblerBuffer;
};

// Parent of all queued slow paths, emitted during finalization
class SlowPath {
 public:
  SlowPath() : next_(NULL) {}
  virtual ~SlowPath() {}

  Label* Continuation() { return &continuation_; }
  Label* Entry() { return &entry_; }
  // Generate code for slow path
  virtual void Emit(Assembler *sp_asm) = 0;

 protected:
  // Entry branched to by fast path
  Label entry_;
  // Optional continuation that is branched to at the end of the slow path
  Label continuation_;
  // Next in linked list of slow paths
  SlowPath *next_;

  friend class AssemblerBuffer;
  DISALLOW_COPY_AND_ASSIGN(SlowPath);
};

class AssemblerBuffer {
 public:
  AssemblerBuffer();
  ~AssemblerBuffer();

  // Basic support for emitting, loading, and storing.
  template<typename T> void Emit(T value) {
    CHECK(HasEnsuredCapacity());
    *reinterpret_cast<T*>(cursor_) = value;
    cursor_ += sizeof(T);
  }

  template<typename T> T Load(size_t position) {
    CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
    return *reinterpret_cast<T*>(contents_ + position);
  }

  template<typename T> void Store(size_t position, T value) {
    CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
    *reinterpret_cast<T*>(contents_ + position) = value;
  }

  // Emit a fixup at the current location.
  void EmitFixup(AssemblerFixup* fixup) {
    fixup->set_previous(fixup_);
    fixup->set_position(Size());
    fixup_ = fixup;
  }

  void EnqueueSlowPath(SlowPath* slowpath) {
    if (slow_path_ == NULL) {
      slow_path_ = slowpath;
    } else {
      SlowPath* cur = slow_path_;
      for ( ; cur->next_ != NULL ; cur = cur->next_) {}
      cur->next_ = slowpath;
    }
  }

  void EmitSlowPaths(Assembler* sp_asm) {
    SlowPath* cur = slow_path_;
    SlowPath* next = NULL;
    slow_path_ = NULL;
    for ( ; cur != NULL ; cur = next) {
      cur->Emit(sp_asm);
      next = cur->next_;
      delete cur;
    }
  }

  // Get the size of the emitted code.
  size_t Size() const {
    CHECK_GE(cursor_, contents_);
    return cursor_ - contents_;
  }

  byte* contents() const { return contents_; }

  // Copy the assembled instructions into the specified memory block
  // and apply all fixups.
  void FinalizeInstructions(const MemoryRegion& region);

  // To emit an instruction to the assembler buffer, the EnsureCapacity helper
  // must be used to guarantee that the underlying data area is big enough to
  // hold the emitted instruction. Usage:
  //
  //     AssemblerBuffer buffer;
  //     AssemblerBuffer::EnsureCapacity ensured(&buffer);
  //     ... emit bytes for single instruction ...

#ifdef DEBUG

  class EnsureCapacity {
   public:
    explicit EnsureCapacity(AssemblerBuffer* buffer) {
      if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity();
      // In debug mode, we save the assembler buffer along with the gap
      // size before we start emitting to the buffer. This allows us to
      // check that any single generated instruction doesn't overflow the
      // limit implied by the minimum gap size.
      buffer_ = buffer;
      gap_ = ComputeGap();
      // Make sure that extending the capacity leaves a big enough gap
      // for any kind of instruction.
      CHECK_GE(gap_, kMinimumGap);
      // Mark the buffer as having ensured the capacity.
      CHECK(!buffer->HasEnsuredCapacity());  // Cannot nest.
      buffer->has_ensured_capacity_ = true;
    }

    ~EnsureCapacity() {
      // Unmark the buffer, so we cannot emit after this.
      buffer_->has_ensured_capacity_ = false;
      // Make sure the generated instruction doesn't take up more
      // space than the minimum gap.
      int delta = gap_ - ComputeGap();
      CHECK_LE(delta, kMinimumGap);
    }

   private:
    AssemblerBuffer* buffer_;
    int gap_;

    int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); }
  };

  bool has_ensured_capacity_;
  bool HasEnsuredCapacity() const { return has_ensured_capacity_; }

#else

  class EnsureCapacity {
   public:
    explicit EnsureCapacity(AssemblerBuffer* buffer) {
      if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity();
    }
  };

  // When building the C++ tests, assertion code is enabled. To allow
  // asserting that the user of the assembler buffer has ensured the
  // capacity needed for emitting, we add a dummy method in non-debug mode.
  bool HasEnsuredCapacity() const { return true; }

#endif

  // Returns the position in the instruction stream.
  int GetPosition() { return  cursor_ - contents_; }

 private:
  // The limit is set to kMinimumGap bytes before the end of the data area.
  // This leaves enough space for the longest possible instruction and allows
  // for a single, fast space check per instruction.
  static const int kMinimumGap = 32;

  byte* contents_;
  byte* cursor_;
  byte* limit_;
  AssemblerFixup* fixup_;
  bool fixups_processed_;

  // Head of linked list of slow paths
  SlowPath* slow_path_;

  byte* cursor() const { return cursor_; }
  byte* limit() const { return limit_; }
  size_t Capacity() const {
    CHECK_GE(limit_, contents_);
    return (limit_ - contents_) + kMinimumGap;
  }

  // Process the fixup chain starting at the given fixup. The offset is
  // non-zero for fixups in the body if the preamble is non-empty.
  void ProcessFixups(const MemoryRegion& region);

  // Compute the limit based on the data area and the capacity. See
  // description of kMinimumGap for the reasoning behind the value.
  static byte* ComputeLimit(byte* data, size_t capacity) {
    return data + capacity - kMinimumGap;
  }

  void ExtendCapacity();

  friend class AssemblerFixup;
};

class Assembler {
 public:
  static Assembler* Create(InstructionSet instruction_set);

  // Emit slow paths queued during assembly
  void EmitSlowPaths() { buffer_.EmitSlowPaths(this); }

  // Size of generated code
  size_t CodeSize() const { return buffer_.Size(); }

  // Copy instructions out of assembly buffer into the given region of memory
  void FinalizeInstructions(const MemoryRegion& region) {
    buffer_.FinalizeInstructions(region);
  }

  // Emit code that will create an activation on the stack
  virtual void BuildFrame(size_t frame_size, ManagedRegister method_reg,
                          const std::vector<ManagedRegister>& callee_save_regs) = 0;

  // Emit code that will remove an activation from the stack
  virtual void RemoveFrame(size_t frame_size,
                           const std::vector<ManagedRegister>& callee_save_regs) = 0;

  virtual void IncreaseFrameSize(size_t adjust) = 0;
  virtual void DecreaseFrameSize(size_t adjust) = 0;

  // Store routines
  virtual void Store(FrameOffset offs, ManagedRegister src, size_t size) = 0;
  virtual void StoreRef(FrameOffset dest, ManagedRegister src) = 0;
  virtual void StoreRawPtr(FrameOffset dest, ManagedRegister src) = 0;

  virtual void StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
                                     ManagedRegister scratch) = 0;

  virtual void StoreImmediateToThread(ThreadOffset dest, uint32_t imm,
                                      ManagedRegister scratch) = 0;

  virtual void StoreStackOffsetToThread(ThreadOffset thr_offs,
                                        FrameOffset fr_offs,
                                        ManagedRegister scratch) = 0;

  virtual void StoreStackPointerToThread(ThreadOffset thr_offs) = 0;

  virtual void StoreSpanning(FrameOffset dest, ManagedRegister src,
                             FrameOffset in_off, ManagedRegister scratch) = 0;

  // Load routines
  virtual void Load(ManagedRegister dest, FrameOffset src, size_t size) = 0;

  virtual void Load(ManagedRegister dest, ThreadOffset src, size_t size) = 0;

  virtual void LoadRef(ManagedRegister dest, FrameOffset  src) = 0;

  virtual void LoadRef(ManagedRegister dest, ManagedRegister base,
                       MemberOffset offs) = 0;

  virtual void LoadRawPtr(ManagedRegister dest, ManagedRegister base,
                          Offset offs) = 0;

  virtual void LoadRawPtrFromThread(ManagedRegister dest,
                                    ThreadOffset offs) = 0;

  // Copying routines
  virtual void Move(ManagedRegister dest, ManagedRegister src) = 0;

  virtual void CopyRawPtrFromThread(FrameOffset fr_offs, ThreadOffset thr_offs,
                                    ManagedRegister scratch) = 0;

  virtual void CopyRawPtrToThread(ThreadOffset thr_offs, FrameOffset fr_offs,
                                  ManagedRegister scratch) = 0;

  virtual void CopyRef(FrameOffset dest, FrameOffset src,
                       ManagedRegister scratch) = 0;

  virtual void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, size_t size) = 0;

  virtual void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
                    ManagedRegister scratch, size_t size) = 0;

  virtual void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
                    ManagedRegister scratch, size_t size) = 0;

  virtual void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset,
                    ManagedRegister scratch, size_t size) = 0;

  virtual void Copy(ManagedRegister dest, Offset dest_offset,
                    ManagedRegister src, Offset src_offset,
                    ManagedRegister scratch, size_t size) = 0;

  virtual void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset,
                    ManagedRegister scratch, size_t size) = 0;

  virtual void MemoryBarrier(ManagedRegister scratch) = 0;

  // Exploit fast access in managed code to Thread::Current()
  virtual void GetCurrentThread(ManagedRegister tr) = 0;
  virtual void GetCurrentThread(FrameOffset dest_offset,
                                ManagedRegister scratch) = 0;

  // Set up out_reg to hold a Object** into the SIRT, or to be NULL if the
  // value is null and null_allowed. in_reg holds a possibly stale reference
  // that can be used to avoid loading the SIRT entry to see if the value is
  // NULL.
  virtual void CreateSirtEntry(ManagedRegister out_reg, FrameOffset sirt_offset,
                               ManagedRegister in_reg, bool null_allowed) = 0;

  // Set up out_off to hold a Object** into the SIRT, or to be NULL if the
  // value is null and null_allowed.
  virtual void CreateSirtEntry(FrameOffset out_off, FrameOffset sirt_offset,
                               ManagedRegister scratch, bool null_allowed) = 0;

  // src holds a SIRT entry (Object**) load this into dst
  virtual void LoadReferenceFromSirt(ManagedRegister dst,
                                     ManagedRegister src) = 0;

  // Heap::VerifyObject on src. In some cases (such as a reference to this) we
  // know that src may not be null.
  virtual void VerifyObject(ManagedRegister src, bool could_be_null) = 0;
  virtual void VerifyObject(FrameOffset src, bool could_be_null) = 0;

  // Call to address held at [base+offset]
  virtual void Call(ManagedRegister base, Offset offset,
                    ManagedRegister scratch) = 0;
  virtual void Call(FrameOffset base, Offset offset,
                    ManagedRegister scratch) = 0;
  virtual void Call(ThreadOffset offset, ManagedRegister scratch) = 0;

  // Generate code to check if Thread::Current()->suspend_count_ is non-zero
  // and branch to a SuspendSlowPath if it is. The SuspendSlowPath will continue
  // at the next instruction.
  virtual void SuspendPoll(ManagedRegister scratch, ManagedRegister return_reg,
                           FrameOffset return_save_location,
                           size_t return_size) = 0;

  // Generate code to check if Thread::Current()->exception_ is non-null
  // and branch to a ExceptionSlowPath if it is.
  virtual void ExceptionPoll(ManagedRegister scratch) = 0;

  virtual ~Assembler() {}

 protected:
  Assembler() : buffer_() {}

  AssemblerBuffer buffer_;
};

}  // namespace art

#include "assembler_x86.h"
#include "assembler_arm.h"

#endif  // ART_SRC_ASSEMBLER_H_