summaryrefslogtreecommitdiffstats
path: root/src/compiler/codegen/x86/GenInvoke.cc
blob: 2f095f130bdf8cb2b7f608375d1429ab680dd332 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

namespace art {

/*
 * This source files contains "gen" codegen routines that should
 * be applicable to most targets.  Only mid-level support utilities
 * and "op" calls may be used here.
 */


/*
 * x86 targets will likely be different enough to need their own
 * invoke gen routies.
 */
typedef int (*NextCallInsn)(CompilationUnit*, MIR*, int, uint32_t dexIdx,
                            uint32_t methodIdx);
/*
 * If there are any ins passed in registers that have not been promoted
 * to a callee-save register, flush them to the frame.  Perform intial
 * assignment of promoted arguments.
 */
void flushIns(CompilationUnit* cUnit)
{
    UNIMPLEMENTED(WARNING) << "flushIns";
#if 0
    if (cUnit->numIns == 0)
        return;
    int firstArgReg = rARG1;
    int lastArgReg = rARG3;
    int startVReg = cUnit->numDalvikRegisters - cUnit->numIns;
    /*
     * Arguments passed in registers should be flushed
     * to their backing locations in the frame for now.
     * Also, we need to do initial assignment for promoted
     * arguments.  NOTE: an older version of dx had an issue
     * in which it would reuse static method argument registers.
     * This could result in the same Dalvik virtual register
     * being promoted to both core and fp regs.  In those
     * cases, copy argument to both.  This will be uncommon
     * enough that it isn't worth attempting to optimize.
     */
    for (int i = 0; i < cUnit->numIns; i++) {
        PromotionMap vMap = cUnit->promotionMap[startVReg + i];
        if (i <= (lastArgReg - firstArgReg)) {
            // If arriving in register
            if (vMap.coreLocation == kLocPhysReg) {
                opRegCopy(cUnit, vMap.coreReg, firstArgReg + i);
            }
            if (vMap.fpLocation == kLocPhysReg) {
                opRegCopy(cUnit, vMap.fpReg, firstArgReg + i);
            }
            // Also put a copy in memory in case we're partially promoted
            storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
                          firstArgReg + i, kWord);
        } else {
            // If arriving in frame & promoted
            if (vMap.coreLocation == kLocPhysReg) {
                loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
                             vMap.coreReg);
            }
            if (vMap.fpLocation == kLocPhysReg) {
                loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
                             vMap.fpReg);
            }
        }
    }
#endif
}

/*
 * Bit of a hack here - in leiu of a real scheduling pass,
 * emit the next instruction in static & direct invoke sequences.
 */
int nextSDCallInsn(CompilationUnit* cUnit, MIR* mir,
                   int state, uint32_t dexIdx, uint32_t unused)
{
    UNIMPLEMENTED(WARNING) << "nextSDCallInsn";
    return 0;
#if 0
    switch(state) {
        case 0:  // Get the current Method* [sets rARG0]
            loadCurrMethodDirect(cUnit, rARG0);
            break;
        case 1:  // Get method->dex_cache_resolved_methods_
            loadWordDisp(cUnit, rARG0,
                Method::DexCacheResolvedMethodsOffset().Int32Value(),
                rARG0);
            break;
        case 2:  // Grab target method*
            loadWordDisp(cUnit, rARG0,
                Array::DataOffset(sizeof(Object*)).Int32Value() + dexIdx * 4,
                rARG0);
            break;
        case 3:  // Grab the code from the method*
            loadWordDisp(cUnit, rARG0, Method::GetCodeOffset().Int32Value(),
                         rINVOKE_TGT);
            break;
        default:
            return -1;
    }
    return state + 1;
#endif
}

/*
 * Bit of a hack here - in leiu of a real scheduling pass,
 * emit the next instruction in a virtual invoke sequence.
 * We can use rLR as a temp prior to target address loading
 * Note also that we'll load the first argument ("this") into
 * rARG1 here rather than the standard loadArgRegs.
 */
int nextVCallInsn(CompilationUnit* cUnit, MIR* mir,
                  int state, uint32_t dexIdx, uint32_t methodIdx)
{
    UNIMPLEMENTED(WARNING) << "nextVCallInsn";
    return 0;
#if 0
    RegLocation rlArg;
    /*
     * This is the fast path in which the target virtual method is
     * fully resolved at compile time.
     */
    switch(state) {
        case 0:  // Get "this" [set rARG1]
            rlArg = oatGetSrc(cUnit, mir, 0);
            loadValueDirectFixed(cUnit, rlArg, rARG1);
            break;
        case 1: // Is "this" null? [use rARG1]
            genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir);
            // get this->klass_ [use rARG1, set rINVOKE_TGT]
            loadWordDisp(cUnit, rARG1, Object::ClassOffset().Int32Value(),
                         rINVOKE_TGT);
            break;
        case 2: // Get this->klass_->vtable [usr rINVOKE_TGT, set rINVOKE_TGT]
            loadWordDisp(cUnit, rINVOKE_TGT, Class::VTableOffset().Int32Value(),
                         rINVOKE_TGT);
            break;
        case 3: // Get target method [use rINVOKE_TGT, set rARG0]
            loadWordDisp(cUnit, rINVOKE_TGT, (methodIdx * 4) +
                         Array::DataOffset(sizeof(Object*)).Int32Value(),
                         rARG0);
            break;
        case 4: // Get the compiled code address [uses rARG0, sets rINVOKE_TGT]
            loadWordDisp(cUnit, rARG0, Method::GetCodeOffset().Int32Value(),
                         rINVOKE_TGT);
            break;
        default:
            return -1;
    }
    return state + 1;
#endif
}

/*
 * Interleave launch code for INVOKE_SUPER.  See comments
 * for nextVCallIns.
 */
int nextSuperCallInsn(CompilationUnit* cUnit, MIR* mir,
                      int state, uint32_t dexIdx, uint32_t methodIdx)
{
    UNIMPLEMENTED(WARNING) << "nextSuperCallInsn";
    return 0;
#if 0
    /*
     * This is the fast path in which the target virtual method is
     * fully resolved at compile time.  Note also that this path assumes
     * that the check to verify that the target method index falls
     * within the size of the super's vtable has been done at compile-time.
     */
    RegLocation rlArg;
    switch(state) {
        case 0: // Get current Method* [set rARG0]
            loadCurrMethodDirect(cUnit, rARG0);
            // Load "this" [set rARG1]
            rlArg = oatGetSrc(cUnit, mir, 0);
            loadValueDirectFixed(cUnit, rlArg, rARG1);
            // Get method->declaring_class_ [use rARG0, set rINVOKE_TGT]
            loadWordDisp(cUnit, rARG0,
                         Method::DeclaringClassOffset().Int32Value(),
                         rINVOKE_TGT);
            // Is "this" null? [use rARG1]
            genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir);
            break;
        case 1: // method->declaring_class_->super_class [use/set rINVOKE_TGT]
            loadWordDisp(cUnit, rINVOKE_TGT,
                         Class::SuperClassOffset().Int32Value(), rINVOKE_TGT);
            break;
        case 2: // Get ...->super_class_->vtable [u/s rINVOKE_TGT]
            loadWordDisp(cUnit, rINVOKE_TGT,
                         Class::VTableOffset().Int32Value(), rINVOKE_TGT);
            break;
        case 3: // Get target method [use rINVOKE_TGT, set rARG0]
            loadWordDisp(cUnit, rINVOKE_TGT, (methodIdx * 4) +
                         Array::DataOffset(sizeof(Object*)).Int32Value(),
                         rARG0);
            break;
        case 4: // target compiled code address [uses rARG0, sets rINVOKE_TGT]
            loadWordDisp(cUnit, rARG0, Method::GetCodeOffset().Int32Value(),
                         rINVOKE_TGT);
            break;
        default:
            return -1;
    }
    return state + 1;
#endif
}

int nextInvokeInsnSP(CompilationUnit* cUnit, MIR* mir, int trampoline,
                     int state, uint32_t dexIdx, uint32_t methodIdx)
{
    UNIMPLEMENTED(WARNING) << "nextInvokeInsnSP";
    return 0;
#if 0
    /*
     * This handles the case in which the base method is not fully
     * resolved at compile time, we bail to a runtime helper.
     */
    if (state == 0) {
        // Load trampoline target
        loadWordDisp(cUnit, rSELF, trampoline, rINVOKE_TGT);
        // Load rARG0 with method index
        loadConstant(cUnit, rARG0, dexIdx);
        return 1;
    }
    return -1;
#endif
}

int nextStaticCallInsnSP(CompilationUnit* cUnit, MIR* mir,
                         int state, uint32_t dexIdx, uint32_t methodIdx)
{
  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeStaticTrampolineWithAccessCheck);
  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}

int nextDirectCallInsnSP(CompilationUnit* cUnit, MIR* mir, int state,
                         uint32_t dexIdx, uint32_t methodIdx)
{
  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeDirectTrampolineWithAccessCheck);
  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}

int nextSuperCallInsnSP(CompilationUnit* cUnit, MIR* mir, int state,
                        uint32_t dexIdx, uint32_t methodIdx)
{
  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeSuperTrampolineWithAccessCheck);
  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}

int nextVCallInsnSP(CompilationUnit* cUnit, MIR* mir, int state,
                    uint32_t dexIdx, uint32_t methodIdx)
{
  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeVirtualTrampolineWithAccessCheck);
  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}

/*
 * All invoke-interface calls bounce off of art_invoke_interface_trampoline,
 * which will locate the target and continue on via a tail call.
 */
int nextInterfaceCallInsn(CompilationUnit* cUnit, MIR* mir, int state,
                          uint32_t dexIdx, uint32_t unused)
{
  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeInterfaceTrampoline);
  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}

int nextInterfaceCallInsnWithAccessCheck(CompilationUnit* cUnit, MIR* mir,
                                         int state, uint32_t dexIdx,
                                         uint32_t unused)
{
  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeInterfaceTrampolineWithAccessCheck);
  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}

int loadArgRegs(CompilationUnit* cUnit, MIR* mir, DecodedInstruction* dInsn,
                int callState, NextCallInsn nextCallInsn, uint32_t dexIdx,
                uint32_t methodIdx, bool skipThis)
{
    UNIMPLEMENTED(WARNING) << "loadArgRegs";
    return 0;
#if 0
    int nextReg = rARG1;
    int nextArg = 0;
    if (skipThis) {
        nextReg++;
        nextArg++;
    }
    for (; (nextReg <= rARG3) && (nextArg < mir->ssaRep->numUses); nextReg++) {
        RegLocation rlArg = oatGetRawSrc(cUnit, mir, nextArg++);
        rlArg = oatUpdateRawLoc(cUnit, rlArg);
        if (rlArg.wide && (nextReg <= rARG2)) {
            loadValueDirectWideFixed(cUnit, rlArg, nextReg, nextReg + 1);
            nextReg++;
            nextArg++;
        } else {
            rlArg.wide = false;
            loadValueDirectFixed(cUnit, rlArg, nextReg);
        }
        callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
    }
    return callState;
#endif
}

/*
 * Load up to 5 arguments, the first three of which will be in
 * rARG1 .. rARG3.  On entry rARG0 contains the current method pointer,
 * and as part of the load sequence, it must be replaced with
 * the target method pointer.  Note, this may also be called
 * for "range" variants if the number of arguments is 5 or fewer.
 */
int genDalvikArgsNoRange(CompilationUnit* cUnit, MIR* mir,
                         DecodedInstruction* dInsn, int callState,
                         LIR** pcrLabel, NextCallInsn nextCallInsn,
                         uint32_t dexIdx, uint32_t methodIdx, bool skipThis)
{
    UNIMPLEMENTED(WARNING) << "genDalvikArgsNoRange";
    return 0;
#if 0
    RegLocation rlArg;

    /* If no arguments, just return */
    if (dInsn->vA == 0)
        return callState;

    callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);

    DCHECK_LE(dInsn->vA, 5U);
    if (dInsn->vA > 3) {
        uint32_t nextUse = 3;
        //Detect special case of wide arg spanning arg3/arg4
        RegLocation rlUse0 = oatGetRawSrc(cUnit, mir, 0);
        RegLocation rlUse1 = oatGetRawSrc(cUnit, mir, 1);
        RegLocation rlUse2 = oatGetRawSrc(cUnit, mir, 2);
        if (((!rlUse0.wide && !rlUse1.wide) || rlUse0.wide) &&
            rlUse2.wide) {
            int reg;
            // Wide spans, we need the 2nd half of uses[2].
            rlArg = oatUpdateLocWide(cUnit, rlUse2);
            if (rlArg.location == kLocPhysReg) {
                reg = rlArg.highReg;
            } else {
                // rARG2 & rARG3 can safely be used here
                reg = rARG3;
                loadWordDisp(cUnit, rSP,
                             oatSRegOffset(cUnit, rlArg.sRegLow) + 4, reg);
                callState = nextCallInsn(cUnit, mir, callState, dexIdx,
                                         methodIdx);
            }
            storeBaseDisp(cUnit, rSP, (nextUse + 1) * 4, reg, kWord);
            storeBaseDisp(cUnit, rSP, 16 /* (3+1)*4 */, reg, kWord);
            callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
            nextUse++;
        }
        // Loop through the rest
        while (nextUse < dInsn->vA) {
            int lowReg;
            int highReg;
            rlArg = oatGetRawSrc(cUnit, mir, nextUse);
            rlArg = oatUpdateRawLoc(cUnit, rlArg);
            if (rlArg.location == kLocPhysReg) {
                lowReg = rlArg.lowReg;
                highReg = rlArg.highReg;
            } else {
                lowReg = rARG2;
                highReg = rARG3;
                if (rlArg.wide) {
                    loadValueDirectWideFixed(cUnit, rlArg, lowReg, highReg);
                } else {
                    loadValueDirectFixed(cUnit, rlArg, lowReg);
                }
                callState = nextCallInsn(cUnit, mir, callState, dexIdx,
                                         methodIdx);
            }
            int outsOffset = (nextUse + 1) * 4;
            if (rlArg.wide) {
                storeBaseDispWide(cUnit, rSP, outsOffset, lowReg, highReg);
                nextUse += 2;
            } else {
                storeWordDisp(cUnit, rSP, outsOffset, lowReg);
                nextUse++;
            }
            callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
        }
    }

    callState = loadArgRegs(cUnit, mir, dInsn, callState, nextCallInsn,
                            dexIdx, methodIdx, skipThis);

    if (pcrLabel) {
        *pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir);
    }
    return callState;
#endif
}

/*
 * May have 0+ arguments (also used for jumbo).  Note that
 * source virtual registers may be in physical registers, so may
 * need to be flushed to home location before copying.  This
 * applies to arg3 and above (see below).
 *
 * Two general strategies:
 *    If < 20 arguments
 *       Pass args 3-18 using vldm/vstm block copy
 *       Pass arg0, arg1 & arg2 in rARG1-rARG3
 *    If 20+ arguments
 *       Pass args arg19+ using memcpy block copy
 *       Pass arg0, arg1 & arg2 in rARG1-rARG3
 *
 */
int genDalvikArgsRange(CompilationUnit* cUnit, MIR* mir,
                       DecodedInstruction* dInsn, int callState,
                       LIR** pcrLabel, NextCallInsn nextCallInsn,
                       uint32_t dexIdx, uint32_t methodIdx, bool skipThis)
{
    UNIMPLEMENTED(WARNING) << "genDalvikArgsRange";
    return 0;
#if 0
    int firstArg = dInsn->vC;
    int numArgs = dInsn->vA;

    // If we can treat it as non-range (Jumbo ops will use range form)
    if (numArgs <= 5)
        return genDalvikArgsNoRange(cUnit, mir, dInsn, callState, pcrLabel,
                                    nextCallInsn, dexIdx, methodIdx,
                                    skipThis);
    /*
     * Make sure range list doesn't span the break between in normal
     * Dalvik vRegs and the ins.
     */
    int highestArg = oatGetSrc(cUnit, mir, numArgs-1).sRegLow;
    int boundaryReg = cUnit->numDalvikRegisters - cUnit->numIns;
    if ((firstArg < boundaryReg) && (highestArg >= boundaryReg)) {
        LOG(FATAL) << "Argument list spanned locals & args";
    }

    /*
     * First load the non-register arguments.  Both forms expect all
     * of the source arguments to be in their home frame location, so
     * scan the sReg names and flush any that have been promoted to
     * frame backing storage.
     */
    // Scan the rest of the args - if in physReg flush to memory
    for (int nextArg = 0; nextArg < numArgs;) {
        RegLocation loc = oatGetRawSrc(cUnit, mir, nextArg);
        if (loc.wide) {
            loc = oatUpdateLocWide(cUnit, loc);
            if ((nextArg >= 2) && (loc.location == kLocPhysReg)) {
                storeBaseDispWide(cUnit, rSP,
                                  oatSRegOffset(cUnit, loc.sRegLow),
                                  loc.lowReg, loc.highReg);
            }
            nextArg += 2;
        } else {
            loc = oatUpdateLoc(cUnit, loc);
            if ((nextArg >= 3) && (loc.location == kLocPhysReg)) {
                storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow),
                              loc.lowReg, kWord);
            }
            nextArg++;
        }
    }

    int startOffset = oatSRegOffset(cUnit,
        cUnit->regLocation[mir->ssaRep->uses[3]].sRegLow);
    int outsOffset = 4 /* Method* */ + (3 * 4);
#if defined(TARGET_MIPS)
    // Generate memcpy
    opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset);
    opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset);
    int rTgt = loadHelper(cUnit, OFFSETOF_MEMBER(Thread, pMemcpy));
    loadConstant(cUnit, rARG2, (numArgs - 3) * 4);
    callRuntimeHelper(cUnit, rTgt);
    // Restore Method*
    loadCurrMethodDirect(cUnit, rARG0);
#else
    if (numArgs >= 20) {
        // Generate memcpy
        opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset);
        opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset);
        int rTgt = loadHelper(cUnit, OFFSETOF_MEMBER(Thread, pMemcpy));
        loadConstant(cUnit, rARG2, (numArgs - 3) * 4);
        callRuntimeHelper(cUnit, rTgt);
        // Restore Method*
        loadCurrMethodDirect(cUnit, rARG0);
    } else {
        // Use vldm/vstm pair using rARG3 as a temp
        int regsLeft = std::min(numArgs - 3, 16);
        callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
        opRegRegImm(cUnit, kOpAdd, rARG3, rSP, startOffset);
        LIR* ld = newLIR3(cUnit, kThumb2Vldms, rARG3, fr0, regsLeft);
        //TUNING: loosen barrier
        ld->defMask = ENCODE_ALL;
        setMemRefType(ld, true /* isLoad */, kDalvikReg);
        callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
        opRegRegImm(cUnit, kOpAdd, rARG3, rSP, 4 /* Method* */ + (3 * 4));
        callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
        LIR* st = newLIR3(cUnit, kThumb2Vstms, rARG3, fr0, regsLeft);
        setMemRefType(st, false /* isLoad */, kDalvikReg);
        st->defMask = ENCODE_ALL;
        callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
    }
#endif

    callState = loadArgRegs(cUnit, mir, dInsn, callState, nextCallInsn,
                            dexIdx, methodIdx, skipThis);

    callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
    if (pcrLabel) {
        *pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir);
    }
    return callState;
#endif
}

}  // namespace art