summaryrefslogtreecommitdiffstats
path: root/src/heap.cc
blob: f4f299680a9ca408993f07824ed01dd5c7f72cb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "heap.h"

#include <sys/types.h>
#include <sys/wait.h>

#include <limits>
#include <vector>

#include "card_table.h"
#include "debugger.h"
#include "image.h"
#include "mark_sweep.h"
#include "object.h"
#include "object_utils.h"
#include "os.h"
#include "scoped_heap_lock.h"
#include "space.h"
#include "stl_util.h"
#include "thread_list.h"
#include "timing_logger.h"
#include "UniquePtr.h"

namespace art {

static void UpdateFirstAndLastSpace(Space** first_space, Space** last_space, Space* space) {
  if (*first_space == NULL) {
    *first_space = space;
    *last_space = space;
  } else {
    if ((*first_space)->Begin() > space->Begin()) {
      *first_space = space;
    } else if (space->Begin() > (*last_space)->Begin()) {
      *last_space = space;
    }
  }
}

static bool GenerateImage(const std::string image_file_name) {
  const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
  std::vector<std::string> boot_class_path;
  Split(boot_class_path_string, ':', boot_class_path);

  std::vector<char*> arg_vector;

  std::string dex2oat_string(GetAndroidRoot());
  dex2oat_string += "/bin/dex2oat";
#ifndef NDEBUG
  dex2oat_string += 'd';
#endif
  const char* dex2oat = dex2oat_string.c_str();
  arg_vector.push_back(strdup(dex2oat));

  std::string image_option_string("--image=");
  image_option_string += image_file_name;
  const char* image_option = image_option_string.c_str();
  arg_vector.push_back(strdup(image_option));

  arg_vector.push_back(strdup("--runtime-arg"));
  arg_vector.push_back(strdup("-Xms64m"));

  arg_vector.push_back(strdup("--runtime-arg"));
  arg_vector.push_back(strdup("-Xmx64m"));

  for (size_t i = 0; i < boot_class_path.size(); i++) {
    std::string dex_file_option_string("--dex-file=");
    dex_file_option_string += boot_class_path[i];
    const char* dex_file_option = dex_file_option_string.c_str();
    arg_vector.push_back(strdup(dex_file_option));
  }

  std::string oat_file_option_string("--oat-file=");
  oat_file_option_string += image_file_name;
  oat_file_option_string.erase(oat_file_option_string.size() - 3);
  oat_file_option_string += "oat";
  const char* oat_file_option = oat_file_option_string.c_str();
  arg_vector.push_back(strdup(oat_file_option));

  arg_vector.push_back(strdup("--base=0x60000000"));

  std::string command_line(Join(arg_vector, ' '));
  LOG(INFO) << command_line;

  arg_vector.push_back(NULL);
  char** argv = &arg_vector[0];

  // fork and exec dex2oat
  pid_t pid = fork();
  if (pid == 0) {
    // no allocation allowed between fork and exec

    // change process groups, so we don't get reaped by ProcessManager
    setpgid(0, 0);

    execv(dex2oat, argv);

    PLOG(FATAL) << "execv(" << dex2oat << ") failed";
    return false;
  } else {
    STLDeleteElements(&arg_vector);

    // wait for dex2oat to finish
    int status;
    pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
    if (got_pid != pid) {
      PLOG(ERROR) << "waitpid failed: wanted " << pid << ", got " << got_pid;
      return false;
    }
    if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
      LOG(ERROR) << dex2oat << " failed: " << command_line;
      return false;
    }
  }
  return true;
}

Heap::Heap(size_t initial_size, size_t growth_limit, size_t capacity,
           const std::string& original_image_file_name)
    : lock_(NULL),
      alloc_space_(NULL),
      mark_bitmap_(NULL),
      live_bitmap_(NULL),
      card_table_(NULL),
      card_marking_disabled_(false),
      is_gc_running_(false),
      num_bytes_allocated_(0),
      num_objects_allocated_(0),
      java_lang_ref_FinalizerReference_(NULL),
      java_lang_ref_ReferenceQueue_(NULL),
      reference_referent_offset_(0),
      reference_queue_offset_(0),
      reference_queueNext_offset_(0),
      reference_pendingNext_offset_(0),
      finalizer_reference_zombie_offset_(0),
      target_utilization_(0.5),
      verify_objects_(false)
{
  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    LOG(INFO) << "Heap() entering";
  }

  // Compute the bounds of all spaces for allocating live and mark bitmaps
  // there will be at least one space (the alloc space)
  Space* first_space = NULL;
  Space* last_space = NULL;

  // Requested begin for the alloc space, to follow the mapped image and oat files
  byte* requested_begin = NULL;
  std::string image_file_name(original_image_file_name);
  if (!image_file_name.empty()) {
    ImageSpace* space = NULL;
    if (OS::FileExists(image_file_name.c_str())) {
      // If the /system file exists, it should be up-to-date, don't try to generate
      space = Space::CreateImageSpace(image_file_name);
    } else {
      // If the /system file didn't exist, we need to use one from the art-cache.
      // If the cache file exists, try to open, but if it fails, regenerate.
      // If it does not exist, generate.
      image_file_name = GetArtCacheFilenameOrDie(image_file_name);
      if (OS::FileExists(image_file_name.c_str())) {
        space = Space::CreateImageSpace(image_file_name);
      }
      if (space == NULL) {
        if (!GenerateImage(image_file_name)) {
          LOG(FATAL) << "Failed to generate image: " << image_file_name;
        }
        space = Space::CreateImageSpace(image_file_name);
      }
    }
    if (space == NULL) {
      LOG(FATAL) << "Failed to create space from " << image_file_name;
    }

    AddSpace(space);
    UpdateFirstAndLastSpace(&first_space, &last_space, space);
    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
    // isn't going to get in the middle
    byte* oat_end_addr = space->GetImageHeader().GetOatEnd();
    CHECK(oat_end_addr > space->End());
    if (oat_end_addr > requested_begin) {
      requested_begin = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(oat_end_addr),
                                                        kPageSize));
    }
  }

  alloc_space_ = Space::CreateAllocSpace("alloc space", initial_size, growth_limit, capacity,
                                         requested_begin);
  if (alloc_space_ == NULL) {
    LOG(FATAL) << "Failed to create alloc space";
  }
  AddSpace(alloc_space_);
  UpdateFirstAndLastSpace(&first_space, &last_space, alloc_space_);
  byte* heap_begin = first_space->Begin();
  size_t heap_capacity = (last_space->Begin() - first_space->Begin()) + last_space->NonGrowthLimitCapacity();

  // Allocate the initial live bitmap.
  UniquePtr<HeapBitmap> live_bitmap(HeapBitmap::Create("dalvik-bitmap-1", heap_begin, heap_capacity));
  if (live_bitmap.get() == NULL) {
    LOG(FATAL) << "Failed to create live bitmap";
  }

  // Mark image objects in the live bitmap
  for (size_t i = 0; i < spaces_.size(); ++i) {
    Space* space = spaces_[i];
    if (space->IsImageSpace()) {
      space->AsImageSpace()->RecordImageAllocations(live_bitmap.get());
    }
  }

  // Allocate the initial mark bitmap.
  UniquePtr<HeapBitmap> mark_bitmap(HeapBitmap::Create("dalvik-bitmap-2", heap_begin, heap_capacity));
  if (mark_bitmap.get() == NULL) {
    LOG(FATAL) << "Failed to create mark bitmap";
  }

  // Allocate the card table.
  UniquePtr<CardTable> card_table(CardTable::Create(heap_begin, heap_capacity));
  if (card_table.get() == NULL) {
    LOG(FATAL) << "Failed to create card table";
  }

  live_bitmap_ = live_bitmap.release();
  mark_bitmap_ = mark_bitmap.release();
  card_table_ = card_table.release();

  num_bytes_allocated_ = 0;
  num_objects_allocated_ = 0;

  // It's still too early to take a lock because there are no threads yet,
  // but we can create the heap lock now. We don't create it earlier to
  // make it clear that you can't use locks during heap initialization.
  lock_ = new Mutex("Heap lock", kHeapLock);

  Heap::EnableObjectValidation();

  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    LOG(INFO) << "Heap() exiting";
  }
}

void Heap::AddSpace(Space* space) {
  spaces_.push_back(space);
}

Heap::~Heap() {
  VLOG(heap) << "~Heap()";
  // We can't take the heap lock here because there might be a daemon thread suspended with the
  // heap lock held. We know though that no non-daemon threads are executing, and we know that
  // all daemon threads are suspended, and we also know that the threads list have been deleted, so
  // those threads can't resume. We're the only running thread, and we can do whatever we like...
  STLDeleteElements(&spaces_);
  delete mark_bitmap_;
  delete live_bitmap_;
  delete card_table_;
  delete lock_;
}

Object* Heap::AllocObject(Class* klass, size_t byte_count) {
  {
    ScopedHeapLock heap_lock;
    DCHECK(klass == NULL || (klass->IsClassClass() && byte_count >= sizeof(Class)) ||
           (klass->IsVariableSize() || klass->GetObjectSize() == byte_count) ||
           strlen(ClassHelper(klass).GetDescriptor()) == 0);
    DCHECK_GE(byte_count, sizeof(Object));
    Object* obj = AllocateLocked(byte_count);
    if (obj != NULL) {
      obj->SetClass(klass);
      if (Dbg::IsAllocTrackingEnabled()) {
        Dbg::RecordAllocation(klass, byte_count);
      }
      return obj;
    }
  }

  Thread::Current()->ThrowOutOfMemoryError(klass, byte_count);
  return NULL;
}

bool Heap::IsHeapAddress(const Object* obj) {
  // Note: we deliberately don't take the lock here, and mustn't test anything that would
  // require taking the lock.
  if (obj == NULL || !IsAligned<kObjectAlignment>(obj)) {
    return false;
  }
  for (size_t i = 0; i < spaces_.size(); ++i) {
    if (spaces_[i]->Contains(obj)) {
      return true;
    }
  }
  return false;
}

bool Heap::IsLiveObjectLocked(const Object* obj) {
  lock_->AssertHeld();
  return IsHeapAddress(obj) && live_bitmap_->Test(obj);
}

#if VERIFY_OBJECT_ENABLED
void Heap::VerifyObject(const Object* obj) {
  if (!verify_objects_) {
    return;
  }
  ScopedHeapLock heap_lock;
  Heap::VerifyObjectLocked(obj);
}
#endif

void Heap::VerifyObjectLocked(const Object* obj) {
  lock_->AssertHeld();
  if (obj != NULL) {
    if (!IsAligned<kObjectAlignment>(obj)) {
      LOG(FATAL) << "Object isn't aligned: " << obj;
    } else if (!live_bitmap_->Test(obj)) {
      LOG(FATAL) << "Object is dead: " << obj;
    }
    // Ignore early dawn of the universe verifications
    if (num_objects_allocated_ > 10) {
      const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
          Object::ClassOffset().Int32Value();
      const Class* c = *reinterpret_cast<Class* const *>(raw_addr);
      if (c == NULL) {
        LOG(FATAL) << "Null class in object: " << obj;
      } else if (!IsAligned<kObjectAlignment>(c)) {
        LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
      } else if (!live_bitmap_->Test(c)) {
        LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
      }
      // Check obj.getClass().getClass() == obj.getClass().getClass().getClass()
      // Note: we don't use the accessors here as they have internal sanity checks
      // that we don't want to run
      raw_addr = reinterpret_cast<const byte*>(c) + Object::ClassOffset().Int32Value();
      const Class* c_c = *reinterpret_cast<Class* const *>(raw_addr);
      raw_addr = reinterpret_cast<const byte*>(c_c) + Object::ClassOffset().Int32Value();
      const Class* c_c_c = *reinterpret_cast<Class* const *>(raw_addr);
      CHECK_EQ(c_c, c_c_c);
    }
  }
}

void Heap::VerificationCallback(Object* obj, void* arg) {
  DCHECK(obj != NULL);
  reinterpret_cast<Heap*>(arg)->VerifyObjectLocked(obj);
}

void Heap::VerifyHeap() {
  ScopedHeapLock heap_lock;
  live_bitmap_->Walk(Heap::VerificationCallback, this);
}

void Heap::RecordAllocationLocked(AllocSpace* space, const Object* obj) {
#ifndef NDEBUG
  if (Runtime::Current()->IsStarted()) {
    lock_->AssertHeld();
  }
#endif
  size_t size = space->AllocationSize(obj);
  DCHECK_GT(size, 0u);
  num_bytes_allocated_ += size;
  num_objects_allocated_ += 1;

  if (Runtime::Current()->HasStatsEnabled()) {
    RuntimeStats* global_stats = Runtime::Current()->GetStats();
    RuntimeStats* thread_stats = Thread::Current()->GetStats();
    ++global_stats->allocated_objects;
    ++thread_stats->allocated_objects;
    global_stats->allocated_bytes += size;
    thread_stats->allocated_bytes += size;
  }

  live_bitmap_->Set(obj);
}

void Heap::RecordFreeLocked(size_t freed_objects, size_t freed_bytes) {
  lock_->AssertHeld();

  if (freed_objects < num_objects_allocated_) {
    num_objects_allocated_ -= freed_objects;
  } else {
    num_objects_allocated_ = 0;
  }
  if (freed_bytes < num_bytes_allocated_) {
    num_bytes_allocated_ -= freed_bytes;
  } else {
    num_bytes_allocated_ = 0;
  }

  if (Runtime::Current()->HasStatsEnabled()) {
    RuntimeStats* global_stats = Runtime::Current()->GetStats();
    RuntimeStats* thread_stats = Thread::Current()->GetStats();
    ++global_stats->freed_objects;
    ++thread_stats->freed_objects;
    global_stats->freed_bytes += freed_bytes;
    thread_stats->freed_bytes += freed_bytes;
  }
}

Object* Heap::AllocateLocked(size_t size) {
  lock_->AssertHeld();
  DCHECK(alloc_space_ != NULL);
  AllocSpace* space = alloc_space_;
  Object* obj = AllocateLocked(space, size);
  if (obj != NULL) {
    RecordAllocationLocked(space, obj);
  }
  return obj;
}

Object* Heap::AllocateLocked(AllocSpace* space, size_t alloc_size) {
  lock_->AssertHeld();

  // Since allocation can cause a GC which will need to SuspendAll,
  // make sure all allocators are in the kRunnable state.
  CHECK_EQ(Thread::Current()->GetState(), Thread::kRunnable);

  // Fail impossible allocations
  if (alloc_size > space->Capacity()) {
    // On failure collect soft references
    CollectGarbageInternal(true);
    return NULL;
  }

  Object* ptr = space->AllocWithoutGrowth(alloc_size);
  if (ptr != NULL) {
    return ptr;
  }

  // The allocation failed.  If the GC is running, block until it completes and retry.
  if (is_gc_running_) {
    // The GC is concurrently tracing the heap.  Release the heap lock, wait for the GC to
    // complete, and retrying allocating.
    WaitForConcurrentGcToComplete();
    ptr = space->AllocWithoutGrowth(alloc_size);
    if (ptr != NULL) {
      return ptr;
    }
  }

  // Another failure.  Our thread was starved or there may be too many
  // live objects.  Try a foreground GC.  This will have no effect if
  // the concurrent GC is already running.
  if (Runtime::Current()->HasStatsEnabled()) {
    ++Runtime::Current()->GetStats()->gc_for_alloc_count;
    ++Thread::Current()->GetStats()->gc_for_alloc_count;
  }
  CollectGarbageInternal(false);
  ptr = space->AllocWithoutGrowth(alloc_size);
  if (ptr != NULL) {
    return ptr;
  }

  // Even that didn't work;  this is an exceptional state.
  // Try harder, growing the heap if necessary.
  ptr = space->AllocWithGrowth(alloc_size);
  if (ptr != NULL) {
    //size_t new_footprint = dvmHeapSourceGetIdealFootprint();
    size_t new_footprint = space->GetFootprintLimit();
    // OLD-TODO: may want to grow a little bit more so that the amount of
    //       free space is equal to the old free space + the
    //       utilization slop for the new allocation.
    VLOG(gc) << "Grow heap (frag case) to " << PrettySize(new_footprint)
             << " for a " << PrettySize(alloc_size) << " allocation";
    return ptr;
  }

  // Most allocations should have succeeded by now, so the heap is
  // really full, really fragmented, or the requested size is really
  // big.  Do another GC, collecting SoftReferences this time.  The VM
  // spec requires that all SoftReferences have been collected and
  // cleared before throwing an OOME.

  // OLD-TODO: wait for the finalizers from the previous GC to finish
  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) << " allocation";
  CollectGarbageInternal(true);
  ptr = space->AllocWithGrowth(alloc_size);
  if (ptr != NULL) {
    return ptr;
  }

  LOG(ERROR) << "Out of memory on a " << PrettySize(alloc_size) << " allocation";

  // TODO: tell the HeapSource to dump its state
  // TODO: dump stack traces for all threads

  return NULL;
}

int64_t Heap::GetMaxMemory() {
  return alloc_space_->Capacity();
}

int64_t Heap::GetTotalMemory() {
  return alloc_space_->Capacity();
}

int64_t Heap::GetFreeMemory() {
  return alloc_space_->Capacity() - num_bytes_allocated_;
}

class InstanceCounter {
 public:
  InstanceCounter(Class* c, bool count_assignable)
      : class_(c), count_assignable_(count_assignable), count_(0) {
  }

  size_t GetCount() {
    return count_;
  }

  static void Callback(Object* o, void* arg) {
    reinterpret_cast<InstanceCounter*>(arg)->VisitInstance(o);
  }

 private:
  void VisitInstance(Object* o) {
    Class* instance_class = o->GetClass();
    if (count_assignable_) {
      if (instance_class == class_) {
        ++count_;
      }
    } else {
      if (instance_class != NULL && class_->IsAssignableFrom(instance_class)) {
        ++count_;
      }
    }
  }

  Class* class_;
  bool count_assignable_;
  size_t count_;
};

int64_t Heap::CountInstances(Class* c, bool count_assignable) {
  ScopedHeapLock heap_lock;
  InstanceCounter counter(c, count_assignable);
  live_bitmap_->Walk(InstanceCounter::Callback, &counter);
  return counter.GetCount();
}

void Heap::CollectGarbage(bool clear_soft_references) {
  ScopedHeapLock heap_lock;
  CollectGarbageInternal(clear_soft_references);
}

void Heap::CollectGarbageInternal(bool clear_soft_references) {
  lock_->AssertHeld();

  ThreadList* thread_list = Runtime::Current()->GetThreadList();
  thread_list->SuspendAll();

  size_t initial_size = num_bytes_allocated_;
  TimingLogger timings("CollectGarbageInternal");
  uint64_t t0 = NanoTime();
  Object* cleared_references = NULL;
  {
    MarkSweep mark_sweep;
    timings.AddSplit("ctor");

    mark_sweep.Init();
    timings.AddSplit("Init");

    mark_sweep.MarkRoots();
    timings.AddSplit("MarkRoots");

    mark_sweep.ScanDirtyImageRoots();
    timings.AddSplit("DirtyImageRoots");

    // Roots are marked on the bitmap and the mark_stack is empty
    DCHECK(mark_sweep.IsMarkStackEmpty());

    // TODO: if concurrent
    //   unlock heap
    //   thread_list->ResumeAll();

    // Recursively mark all bits set in the non-image mark bitmap
    mark_sweep.RecursiveMark();
    timings.AddSplit("RecursiveMark");

    // TODO: if concurrent
    //   lock heap
    //   thread_list->SuspendAll();
    //   re-mark root set
    //   scan dirty objects

    mark_sweep.ProcessReferences(clear_soft_references);
    timings.AddSplit("ProcessReferences");

    // TODO: if concurrent
    //    swap bitmaps

    mark_sweep.Sweep();
    timings.AddSplit("Sweep");

    cleared_references = mark_sweep.GetClearedReferences();
  }

  GrowForUtilization();
  timings.AddSplit("GrowForUtilization");
  uint64_t t1 = NanoTime();
  thread_list->ResumeAll();

  EnqueueClearedReferences(&cleared_references);
  RequestHeapTrim();

  uint64_t duration_ns = t1 - t0;
  bool gc_was_particularly_slow = duration_ns > MsToNs(50); // TODO: crank this down for concurrent.
  if (VLOG_IS_ON(gc) || gc_was_particularly_slow) {
    // TODO: somehow make the specific GC implementation (here MarkSweep) responsible for logging.
    size_t bytes_freed = initial_size - num_bytes_allocated_;
    if (bytes_freed > KB) {  // ignore freed bytes in output if > 1KB
      bytes_freed = RoundDown(bytes_freed, KB);
    }
    size_t bytes_allocated = RoundUp(num_bytes_allocated_, KB);
    // lose low nanoseconds in duration. TODO: make this part of PrettyDuration
    duration_ns = (duration_ns / 1000) * 1000;
    size_t total = GetTotalMemory();
    size_t percentFree = 100 - static_cast<size_t>(100.0f * static_cast<float>(num_bytes_allocated_) / total);
    LOG(INFO) << "GC freed " << PrettySize(bytes_freed) << ", " << percentFree << "% free, "
              << PrettySize(bytes_allocated) << "/" << PrettySize(total) << ", "
              << "paused " << PrettyDuration(duration_ns);
  }
  Dbg::GcDidFinish();
  if (VLOG_IS_ON(heap)) {
    timings.Dump();
  }
}

void Heap::WaitForConcurrentGcToComplete() {
  lock_->AssertHeld();
}

void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
  size_t alloc_space_capacity = alloc_space_->Capacity();
  if (max_allowed_footprint > alloc_space_capacity) {
    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint)
             << " to " << PrettySize(alloc_space_capacity);
    max_allowed_footprint = alloc_space_capacity;
  }
  alloc_space_->SetFootprintLimit(max_allowed_footprint);
}

// kHeapIdealFree is the ideal maximum free size, when we grow the heap for utilization.
static const size_t kHeapIdealFree = 2 * MB;
// kHeapMinFree guarantees that you always have at least 512 KB free, when you grow for utilization,
// regardless of target utilization ratio.
static const size_t kHeapMinFree = kHeapIdealFree / 4;

void Heap::GrowForUtilization() {
  lock_->AssertHeld();

  // We know what our utilization is at this moment.
  // This doesn't actually resize any memory. It just lets the heap grow more
  // when necessary.
  size_t target_size(num_bytes_allocated_ / Heap::GetTargetHeapUtilization());

  if (target_size > num_bytes_allocated_ + kHeapIdealFree) {
    target_size = num_bytes_allocated_ + kHeapIdealFree;
  } else if (target_size < num_bytes_allocated_ + kHeapMinFree) {
    target_size = num_bytes_allocated_ + kHeapMinFree;
  }

  SetIdealFootprint(target_size);
}

void Heap::ClearGrowthLimit() {
  ScopedHeapLock heap_lock;
  WaitForConcurrentGcToComplete();
  alloc_space_->ClearGrowthLimit();
}

pid_t Heap::GetLockOwner() {
  return lock_->GetOwner();
}

void Heap::Lock() {
  // Grab the lock, but put ourselves into Thread::kVmWait if it looks
  // like we're going to have to wait on the mutex. This prevents
  // deadlock if another thread is calling CollectGarbageInternal,
  // since they will have the heap lock and be waiting for mutators to
  // suspend.
  if (!lock_->TryLock()) {
    ScopedThreadStateChange tsc(Thread::Current(), Thread::kVmWait);
    lock_->Lock();
  }
}

void Heap::Unlock() {
  lock_->Unlock();
}

void Heap::SetWellKnownClasses(Class* java_lang_ref_FinalizerReference,
    Class* java_lang_ref_ReferenceQueue) {
  java_lang_ref_FinalizerReference_ = java_lang_ref_FinalizerReference;
  java_lang_ref_ReferenceQueue_ = java_lang_ref_ReferenceQueue;
  CHECK(java_lang_ref_FinalizerReference_ != NULL);
  CHECK(java_lang_ref_ReferenceQueue_ != NULL);
}

void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
    MemberOffset reference_queue_offset,
    MemberOffset reference_queueNext_offset,
    MemberOffset reference_pendingNext_offset,
    MemberOffset finalizer_reference_zombie_offset) {
  reference_referent_offset_ = reference_referent_offset;
  reference_queue_offset_ = reference_queue_offset;
  reference_queueNext_offset_ = reference_queueNext_offset;
  reference_pendingNext_offset_ = reference_pendingNext_offset;
  finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
  CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
  CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
  CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
  CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
  CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
}

Object* Heap::GetReferenceReferent(Object* reference) {
  DCHECK(reference != NULL);
  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
  return reference->GetFieldObject<Object*>(reference_referent_offset_, true);
}

void Heap::ClearReferenceReferent(Object* reference) {
  DCHECK(reference != NULL);
  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
  reference->SetFieldObject(reference_referent_offset_, NULL, true);
}

// Returns true if the reference object has not yet been enqueued.
bool Heap::IsEnqueuable(const Object* ref) {
  DCHECK(ref != NULL);
  const Object* queue = ref->GetFieldObject<Object*>(reference_queue_offset_, false);
  const Object* queue_next = ref->GetFieldObject<Object*>(reference_queueNext_offset_, false);
  return (queue != NULL) && (queue_next == NULL);
}

void Heap::EnqueueReference(Object* ref, Object** cleared_reference_list) {
  DCHECK(ref != NULL);
  CHECK(ref->GetFieldObject<Object*>(reference_queue_offset_, false) != NULL);
  CHECK(ref->GetFieldObject<Object*>(reference_queueNext_offset_, false) == NULL);
  EnqueuePendingReference(ref, cleared_reference_list);
}

void Heap::EnqueuePendingReference(Object* ref, Object** list) {
  DCHECK(ref != NULL);
  DCHECK(list != NULL);

  if (*list == NULL) {
    ref->SetFieldObject(reference_pendingNext_offset_, ref, false);
    *list = ref;
  } else {
    Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
    ref->SetFieldObject(reference_pendingNext_offset_, head, false);
    (*list)->SetFieldObject(reference_pendingNext_offset_, ref, false);
  }
}

Object* Heap::DequeuePendingReference(Object** list) {
  DCHECK(list != NULL);
  DCHECK(*list != NULL);
  Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
  Object* ref;
  if (*list == head) {
    ref = *list;
    *list = NULL;
  } else {
    Object* next = head->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
    (*list)->SetFieldObject(reference_pendingNext_offset_, next, false);
    ref = head;
  }
  ref->SetFieldObject(reference_pendingNext_offset_, NULL, false);
  return ref;
}

void Heap::AddFinalizerReference(Thread* self, Object* object) {
  ScopedThreadStateChange tsc(self, Thread::kRunnable);
  static Method* FinalizerReference_add =
      java_lang_ref_FinalizerReference_->FindDirectMethod("add", "(Ljava/lang/Object;)V");
  DCHECK(FinalizerReference_add != NULL);
  JValue args[1];
  args[0].l = object;
  FinalizerReference_add->Invoke(self, NULL, args, NULL);
}

void Heap::EnqueueClearedReferences(Object** cleared) {
  DCHECK(cleared != NULL);
  if (*cleared != NULL) {
    static Method* ReferenceQueue_add =
        java_lang_ref_ReferenceQueue_->FindDirectMethod("add", "(Ljava/lang/ref/Reference;)V");
    DCHECK(ReferenceQueue_add != NULL);

    Thread* self = Thread::Current();
    ScopedThreadStateChange tsc(self, Thread::kRunnable);
    JValue args[1];
    args[0].l = *cleared;
    ReferenceQueue_add->Invoke(self, NULL, args, NULL);
    *cleared = NULL;
  }
}

void Heap::RequestHeapTrim() {
  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
  // because that only marks object heads, so a large array looks like lots of empty space. We
  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
  // to utilization (which is probably inversely proportional to how much benefit we can expect).
  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
  // not how much use we're making of those pages.
  float utilization = static_cast<float>(num_bytes_allocated_) / alloc_space_->Size();
  if (utilization > 0.75f) {
    // Don't bother trimming the heap if it's more than 75% utilized.
    // (This percentage was picked arbitrarily.)
    return;
  }
  if (!Runtime::Current()->IsStarted()) {
    // Heap trimming isn't supported without a Java runtime (such as at dex2oat time)
    return;
  }
  JNIEnv* env = Thread::Current()->GetJniEnv();
  static jclass Daemons_class = CacheClass(env, "java/lang/Daemons");
  static jmethodID Daemons_requestHeapTrim = env->GetStaticMethodID(Daemons_class, "requestHeapTrim", "()V");
  env->CallStaticVoidMethod(Daemons_class, Daemons_requestHeapTrim);
  CHECK(!env->ExceptionCheck());
}

}  // namespace art