1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "jni_internal.h"
#include "object.h"
#include "JniConstants.h" // Last to avoid problems with LOG redefinition.
/*
* We make guarantees about the atomicity of accesses to primitive
* variables. These guarantees also apply to elements of arrays.
* In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and
* must not cause "word tearing". Accesses to 64-bit array elements must
* either be atomic or treated as two 32-bit operations. References are
* always read and written atomically, regardless of the number of bits
* used to represent them.
*
* We can't rely on standard libc functions like memcpy(3) and memmove(3)
* in our implementation of System.arraycopy, because they may copy
* byte-by-byte (either for the full run or for "unaligned" parts at the
* start or end). We need to use functions that guarantee 16-bit or 32-bit
* atomicity as appropriate.
*
* System.arraycopy() is heavily used, so having an efficient implementation
* is important. The bionic libc provides a platform-optimized memory move
* function that should be used when possible. If it's not available,
* the trivial "reference implementation" versions below can be used until
* a proper version can be written.
*
* For these functions, The caller must guarantee that dst/src are aligned
* appropriately for the element type, and that n is a multiple of the
* element size.
*/
#ifdef __BIONIC__
#define HAVE_MEMMOVE_WORDS
#endif
#ifdef HAVE_MEMMOVE_WORDS
extern "C" void _memmove_words(void* dst, const void* src, size_t n);
#define move16 _memmove_words
#define move32 _memmove_words
#else
static void move16(void* dst, const void* src, size_t n) {
DCHECK_EQ((((uintptr_t) dst | (uintptr_t) src | n) & 0x01), 0U);
uint16_t* d = reinterpret_cast<uint16_t*>(dst);
const uint16_t* s = reinterpret_cast<const uint16_t*>(src);
n /= sizeof(uint16_t);
if (d < s) {
// Copy forwards.
while (n--) {
*d++ = *s++;
}
} else {
// Copy backwards.
d += n;
s += n;
while (n--) {
*--d = *--s;
}
}
}
static void move32(void* dst, const void* src, size_t n) {
DCHECK_EQ((((uintptr_t) dst | (uintptr_t) src | n) & 0x03), 0U);
uint32_t* d = reinterpret_cast<uint32_t*>(dst);
const uint32_t* s = reinterpret_cast<const uint32_t*>(src);
n /= sizeof(uint32_t);
if (d < s) {
// Copy forwards.
while (n--) {
*d++ = *s++;
}
} else {
// Copy backwards.
d += n;
s += n;
while (n--) {
*--d = *--s;
}
}
}
#endif // HAVE_MEMMOVE_WORDS
namespace art {
static void ThrowArrayStoreException_NotAnArray(const char* identifier, Object* array) {
std::string actualType(PrettyTypeOf(array));
Thread::Current()->ThrowNewExceptionF("Ljava/lang/ArrayStoreException;",
"%s of type %s is not an array", identifier, actualType.c_str());
}
static void System_arraycopy(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, jint dstPos, jint length) {
ScopedThreadStateChange tsc(Thread::Current(), Thread::kRunnable);
Thread* self = Thread::Current();
// Null pointer checks.
if (javaSrc == NULL) {
self->ThrowNewException("Ljava/lang/NullPointerException;", "src == null");
return;
}
if (javaDst == NULL) {
self->ThrowNewException("Ljava/lang/NullPointerException;", "dst == null");
return;
}
// Make sure source and destination are both arrays.
Object* srcObject = Decode<Object*>(env, javaSrc);
Object* dstObject = Decode<Object*>(env, javaDst);
if (!srcObject->IsArrayInstance()) {
ThrowArrayStoreException_NotAnArray("source", srcObject);
return;
}
if (!dstObject->IsArrayInstance()) {
ThrowArrayStoreException_NotAnArray("destination", dstObject);
return;
}
Array* srcArray = srcObject->AsArray();
Array* dstArray = dstObject->AsArray();
Class* srcComponentType = srcArray->GetClass()->GetComponentType();
Class* dstComponentType = dstArray->GetClass()->GetComponentType();
// Bounds checking.
if (srcPos < 0 || dstPos < 0 || length < 0 || srcPos > srcArray->GetLength() - length || dstPos > dstArray->GetLength() - length) {
self->ThrowNewExceptionF("Ljava/lang/ArrayIndexOutOfBoundsException;",
"src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d",
srcArray->GetLength(), srcPos, dstArray->GetLength(), dstPos, length);
return;
}
// Handle primitive arrays.
if (srcComponentType->IsPrimitive() || dstComponentType->IsPrimitive()) {
// If one of the arrays holds a primitive type the other array must hold the exact same type.
if (srcComponentType->IsPrimitive() != dstComponentType->IsPrimitive() || srcComponentType != dstComponentType) {
std::string srcType(PrettyTypeOf(srcArray));
std::string dstType(PrettyTypeOf(dstArray));
self->ThrowNewExceptionF("Ljava/lang/ArrayStoreException;",
"Incompatible types: src=%s, dst=%s", srcType.c_str(), dstType.c_str());
return;
}
size_t width = srcArray->GetClass()->GetComponentSize();
uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width));
const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width));
switch (width) {
case 1:
memmove(dstBytes + dstPos, srcBytes + srcPos, length);
break;
case 2:
move16(dstBytes + dstPos * 2, srcBytes + srcPos * 2, length * 2);
break;
case 4:
move32(dstBytes + dstPos * 4, srcBytes + srcPos * 4, length * 4);
break;
case 8:
// We don't need to guarantee atomicity of the entire 64-bit word.
move32(dstBytes + dstPos * 8, srcBytes + srcPos * 8, length * 8);
break;
default:
LOG(FATAL) << "Unknown primitive array type: " << PrettyTypeOf(srcArray);
}
return;
}
// Neither class is primitive. Are the types trivially compatible?
const size_t width = sizeof(Object*);
uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width));
const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width));
if (dstArray == srcArray || dstComponentType->IsAssignableFrom(srcComponentType)) {
// Yes. Bulk copy.
COMPILE_ASSERT(sizeof(width) == sizeof(uint32_t), move32_assumes_Object_references_are_32_bit);
move32(dstBytes + dstPos * width, srcBytes + srcPos * width, length * width);
Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length);
return;
}
// The arrays are not trivially compatible. However, we may still be able to copy some or all of
// the elements if the source objects are compatible (for example, copying an Object[] to
// String[], the Objects being copied might actually be Strings).
// We can't do a bulk move because that would introduce a check-use race condition, so we copy
// elements one by one.
// We already dealt with overlapping copies, so we don't need to cope with that case below.
CHECK_NE(dstArray, srcArray);
Object* const * srcObjects = reinterpret_cast<Object* const *>(srcBytes + srcPos * width);
Object** dstObjects = reinterpret_cast<Object**>(dstBytes + dstPos * width);
Class* dstClass = dstArray->GetClass()->GetComponentType();
// We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that
// we know is assignable to the destination array's component type.
Class* lastAssignableElementClass = dstClass;
Object* o = NULL;
int i = 0;
for (; i < length; ++i) {
o = srcObjects[i];
if (o != NULL) {
Class* oClass = o->GetClass();
if (lastAssignableElementClass == oClass) {
dstObjects[i] = o;
} else if (dstClass->IsAssignableFrom(oClass)) {
lastAssignableElementClass = oClass;
dstObjects[i] = o;
} else {
// Can't put this element into the array.
break;
}
} else {
dstObjects[i] = NULL;
}
}
Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length);
if (i != length) {
std::string actualSrcType(PrettyTypeOf(o));
std::string dstType(PrettyTypeOf(dstArray));
self->ThrowNewExceptionF("Ljava/lang/ArrayStoreException;",
"source[%d] of type %s cannot be stored in destination array of type %s",
srcPos + i, actualSrcType.c_str(), dstType.c_str());
return;
}
}
static jint System_identityHashCode(JNIEnv* env, jclass, jobject javaObject) {
Object* o = Decode<Object*>(env, javaObject);
return static_cast<jint>(reinterpret_cast<uintptr_t>(o));
}
static JNINativeMethod gMethods[] = {
NATIVE_METHOD(System, arraycopy, "(Ljava/lang/Object;ILjava/lang/Object;II)V"),
NATIVE_METHOD(System, identityHashCode, "(Ljava/lang/Object;)I"),
};
void register_java_lang_System(JNIEnv* env) {
jniRegisterNativeMethods(env, "java/lang/System", gMethods, NELEM(gMethods));
}
} // namespace art
|