1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
// Copyright 2011 Google Inc. All Rights Reserved.
#include "mark_sweep.h"
#include <climits>
#include <vector>
#include "class_loader.h"
#include "heap.h"
#include "indirect_reference_table.h"
#include "intern_table.h"
#include "logging.h"
#include "macros.h"
#include "mark_stack.h"
#include "object.h"
#include "runtime.h"
#include "space.h"
#include "thread.h"
namespace art {
bool MarkSweep::Init() {
mark_stack_ = MarkStack::Create();
if (mark_stack_ == NULL) {
return false;
}
mark_bitmap_ = Heap::GetMarkBits();
live_bitmap_ = Heap::GetLiveBits();
// TODO: if concurrent, clear the card table.
// TODO: check that the mark bitmap is entirely clear.
return true;
}
void MarkSweep::MarkObject0(const Object* obj, bool check_finger) {
DCHECK(obj != NULL);
if (obj < condemned_) {
DCHECK(IsMarked(obj));
return;
}
bool is_marked = mark_bitmap_->Test(obj);
// This object was not previously marked.
if (!is_marked) {
mark_bitmap_->Set(obj);
if (check_finger && obj < finger_) {
// The object must be pushed on to the mark stack.
mark_stack_->Push(obj);
}
}
}
// Used to mark objects when recursing. Recursion is done by moving
// the finger across the bitmaps in address order and marking child
// objects. Any newly-marked objects whose addresses are lower than
// the finger won't be visited by the bitmap scan, so those objects
// need to be added to the mark stack.
void MarkSweep::MarkObject(const Object* obj) {
if (obj != NULL) {
MarkObject0(obj, true);
}
}
void MarkSweep::MarkObjectVisitor(const Object* root, void* arg) {
DCHECK(root != NULL);
DCHECK(arg != NULL);
MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
mark_sweep->MarkObject0(root, true);
}
// Marks all objects in the root set.
void MarkSweep::MarkRoots() {
Runtime::Current()->VisitRoots(MarkObjectVisitor, this);
}
void MarkSweep::ScanBitmapCallback(Object* obj, void* finger, void* arg) {
MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
mark_sweep->finger_ = reinterpret_cast<Object*>(finger);
mark_sweep->ScanObject(obj);
}
// Populates the mark stack based on the set of marked objects and
// recursively marks until the mark stack is emptied.
void MarkSweep::RecursiveMark() {
// RecursiveMark will build the lists of known instances of the Reference classes.
// See DelayReferenceReferent for details.
CHECK(soft_reference_list_ == NULL);
CHECK(weak_reference_list_ == NULL);
CHECK(finalizer_reference_list_ == NULL);
CHECK(phantom_reference_list_ == NULL);
CHECK(cleared_reference_list_ == NULL);
void* arg = reinterpret_cast<void*>(this);
const std::vector<Space*>& spaces = Heap::GetSpaces();
for (size_t i = 0; i < spaces.size(); ++i) {
if (spaces[i]->IsCondemned()) {
uintptr_t base = reinterpret_cast<uintptr_t>(spaces[i]->GetBase());
mark_bitmap_->ScanWalk(base, &MarkSweep::ScanBitmapCallback, arg);
}
}
finger_ = reinterpret_cast<Object*>(~0);
ProcessMarkStack();
}
void MarkSweep::ReMarkRoots() {
UNIMPLEMENTED(FATAL);
}
void MarkSweep::SweepJniWeakGlobals() {
JavaVMExt* vm = Runtime::Current()->GetJavaVM();
MutexLock mu(vm->weak_globals_lock);
IndirectReferenceTable* table = &vm->weak_globals;
typedef IndirectReferenceTable::iterator It; // TODO: C++0x auto
for (It it = table->begin(), end = table->end(); it != end; ++it) {
const Object** entry = *it;
if (!IsMarked(*entry)) {
*entry = kClearedJniWeakGlobal;
}
}
}
struct InternTableEntryIsUnmarked : public InternTable::Predicate {
InternTableEntryIsUnmarked(MarkSweep* ms) : ms_(ms) { }
bool operator()(const String* s) const {
return !ms_->IsMarked(s);
}
MarkSweep* ms_;
};
void MarkSweep::SweepMonitorList() {
UNIMPLEMENTED(FATAL);
//dvmSweepMonitorList(&gDvm.monitorList, isUnmarkedObject);
}
void MarkSweep::SweepSystemWeaks() {
Runtime::Current()->GetInternTable()->RemoveWeakIf(InternTableEntryIsUnmarked(this));
SweepMonitorList();
SweepJniWeakGlobals();
}
void MarkSweep::SweepCallback(size_t num_ptrs, void **ptrs, void *arg) {
// TODO, lock heap if concurrent
Space* space = static_cast<Space*>(arg);
for (size_t i = 0; i < num_ptrs; ++i) {
Object* obj = static_cast<Object*>(ptrs[i]);
space->Free(obj);
}
// TODO, unlock heap if concurrent
}
void MarkSweep::Sweep() {
const std::vector<Space*>& spaces = Heap::GetSpaces();
for (size_t i = 0; i < spaces.size(); ++i) {
if (spaces[i]->IsCondemned()) {
uintptr_t base = reinterpret_cast<uintptr_t>(spaces[i]->GetBase());
uintptr_t limit = reinterpret_cast<uintptr_t>(spaces[i]->GetLimit());
void* arg = static_cast<void*>(spaces[i]);
HeapBitmap::SweepWalk(*live_bitmap_, *mark_bitmap_, base, limit,
&MarkSweep::SweepCallback, arg);
}
}
}
// Scans instance fields.
void MarkSweep::ScanInstanceFields(const Object* obj) {
DCHECK(obj != NULL);
Class* klass = obj->GetClass();
DCHECK(klass != NULL);
ScanFields(obj,
klass->GetReferenceInstanceOffsets(),
false);
}
// Scans static storage on a Class.
void MarkSweep::ScanStaticFields(const Class* klass) {
DCHECK(klass != NULL);
ScanFields(klass,
klass->GetReferenceStaticOffsets(),
true);
}
void MarkSweep::ScanFields(const Object* obj,
uint32_t ref_offsets,
bool is_static) {
if (ref_offsets != CLASS_WALK_SUPER) {
// Found a reference offset bitmap. Mark the specified offsets.
while (ref_offsets != 0) {
size_t right_shift = CLZ(ref_offsets);
MemberOffset byte_offset = CLASS_OFFSET_FROM_CLZ(right_shift);
const Object* ref = obj->GetFieldObject<const Object*>(byte_offset, false);
MarkObject(ref);
ref_offsets &= ~(CLASS_HIGH_BIT >> right_shift);
}
} else {
// There is no reference offset bitmap. In the non-static case,
// walk up the class inheritance hierarchy and find reference
// offsets the hard way. In the static case, just consider this
// class.
for (const Class* klass = is_static ? obj->AsClass() : obj->GetClass();
klass != NULL;
klass = is_static ? NULL : klass->GetSuperClass()) {
size_t num_reference_fields = (is_static
? klass->NumReferenceStaticFields()
: klass->NumReferenceInstanceFields());
for (size_t i = 0; i < num_reference_fields; ++i) {
Field* field = (is_static
? klass->GetStaticField(i)
: klass->GetInstanceField(i));
MemberOffset field_offset = field->GetOffset();
const Object* ref = obj->GetFieldObject<const Object*>(field_offset, false);
MarkObject(ref);
}
}
}
}
void MarkSweep::ScanInterfaces(const Class* klass) {
DCHECK(klass != NULL);
for (size_t i = 0; i < klass->NumInterfaces(); ++i) {
MarkObject(klass->GetInterface(i));
}
}
// Scans the header, static field references, and interface pointers
// of a class object.
void MarkSweep::ScanClass(const Object* obj) {
DCHECK(obj != NULL);
DCHECK(obj->IsClass());
const Class* klass = obj->AsClass();
MarkObject(klass->GetClass());
if (klass->IsArrayClass()) {
MarkObject(klass->GetComponentType());
}
if (klass->IsLoaded()) {
MarkObject(klass->GetSuperClass());
}
MarkObject(klass->GetClassLoader());
ScanInstanceFields(obj);
ScanStaticFields(klass);
// TODO: scan methods
// TODO: scan instance fields
if (klass->IsLoaded()) {
ScanInterfaces(klass);
}
}
// Scans the header of all array objects. If the array object is
// specialized to a reference type, scans the array data as well.
void MarkSweep::ScanArray(const Object* obj) {
DCHECK(obj != NULL);
DCHECK(obj->GetClass() != NULL);
MarkObject(obj->GetClass());
if (obj->IsObjectArray()) {
const ObjectArray<Object>* array = obj->AsObjectArray<Object>();
for (int32_t i = 0; i < array->GetLength(); ++i) {
const Object* element = array->Get(i);
MarkObject(element);
}
}
}
void MarkSweep::EnqueuePendingReference(Object* ref, Object** list) {
DCHECK(ref != NULL);
DCHECK(list != NULL);
MemberOffset offset = Heap::GetReferencePendingNextOffset();
if (*list == NULL) {
ref->SetFieldObject(offset, ref, false);
*list = ref;
} else {
Object* head = (*list)->GetFieldObject<Object*>(offset, false);
ref->SetFieldObject(offset, head, false);
(*list)->SetFieldObject(offset, ref, false);
}
}
Object* MarkSweep::DequeuePendingReference(Object** list) {
DCHECK(list != NULL);
DCHECK(*list != NULL);
MemberOffset offset = Heap::GetReferencePendingNextOffset();
Object* head = (*list)->GetFieldObject<Object*>(offset, false);
Object* ref;
if (*list == head) {
ref = *list;
*list = NULL;
} else {
Object* next = head->GetFieldObject<Object*>(offset, false);
(*list)->SetFieldObject(offset, next, false);
ref = head;
}
ref->SetFieldObject(offset, NULL, false);
return ref;
}
// Process the "referent" field in a java.lang.ref.Reference. If the
// referent has not yet been marked, put it on the appropriate list in
// the gcHeap for later processing.
void MarkSweep::DelayReferenceReferent(Object* obj) {
DCHECK(obj != NULL);
Class* klass = obj->GetClass();
DCHECK(klass != NULL);
DCHECK(klass->IsReferenceClass());
Object* pending = obj->GetFieldObject<Object*>(Heap::GetReferencePendingNextOffset(), false);
Object* referent = obj->GetFieldObject<Object*>(Heap::GetReferenceReferentOffset(), false);
if (pending == NULL && referent != NULL && !IsMarked(referent)) {
Object** list = NULL;
if (klass->IsSoftReferenceClass()) {
list = &soft_reference_list_;
} else if (klass->IsWeakReferenceClass()) {
list = &weak_reference_list_;
} else if (klass->IsFinalizerReferenceClass()) {
list = &finalizer_reference_list_;
} else if (klass->IsPhantomReferenceClass()) {
list = &phantom_reference_list_;
}
DCHECK(list != NULL);
EnqueuePendingReference(obj, list);
}
}
// Scans the header and field references of a data object. If the
// scanned object is a reference subclass, it is scheduled for later
// processing
void MarkSweep::ScanOther(const Object* obj) {
DCHECK(obj != NULL);
Class* klass = obj->GetClass();
DCHECK(klass != NULL);
MarkObject(klass);
ScanInstanceFields(obj);
if (klass->IsReferenceClass()) {
DelayReferenceReferent(const_cast<Object*>(obj));
}
}
// Scans an object reference. Determines the type of the reference
// and dispatches to a specialized scanning routine.
void MarkSweep::ScanObject(const Object* obj) {
DCHECK(obj != NULL);
DCHECK(obj->GetClass() != NULL);
DCHECK(IsMarked(obj));
if (obj->IsClass()) {
ScanClass(obj);
} else if (obj->IsArrayInstance()) {
ScanArray(obj);
} else {
ScanOther(obj);
}
}
// Scan anything that's on the mark stack. We can't use the bitmaps
// anymore, so use a finger that points past the end of them.
void MarkSweep::ProcessMarkStack() {
while (!mark_stack_->IsEmpty()) {
const Object* obj = mark_stack_->Pop();
ScanObject(obj);
}
}
void MarkSweep::ScanDirtyObjects() {
ProcessMarkStack();
}
void MarkSweep::ClearReference(Object* ref) {
DCHECK(ref != NULL);
ref->SetFieldObject(Heap::GetReferenceReferentOffset(), NULL, false);
}
bool MarkSweep::IsEnqueuable(const Object* ref) {
DCHECK(ref != NULL);
const Object* queue =
ref->GetFieldObject<Object*>(Heap::GetReferenceQueueOffset(), false);
const Object* queue_next =
ref->GetFieldObject<Object*>(Heap::GetReferenceQueueNextOffset(), false);
return (queue != NULL) && (queue_next == NULL);
}
void MarkSweep::EnqueueReference(Object* ref) {
DCHECK(ref != NULL);
CHECK(ref->GetFieldObject<Object*>(Heap::GetReferenceQueueOffset(), false) != NULL);
CHECK(ref->GetFieldObject<Object*>(Heap::GetReferenceQueueNextOffset(), false) == NULL);
EnqueuePendingReference(ref, &cleared_reference_list_);
}
// Walks the reference list marking any references subject to the
// reference clearing policy. References with a black referent are
// removed from the list. References with white referents biased
// toward saving are blackened and also removed from the list.
void MarkSweep::PreserveSomeSoftReferences(Object** list) {
DCHECK(list != NULL);
Object* clear = NULL;
size_t counter = 0;
while (*list != NULL) {
Object* ref = DequeuePendingReference(list);
Object* referent = ref->GetFieldObject<Object*>(Heap::GetReferenceReferentOffset(), false);
if (referent == NULL) {
// Referent was cleared by the user during marking.
continue;
}
bool is_marked = IsMarked(referent);
if (!is_marked && ((++counter) & 1)) {
// Referent is white and biased toward saving, mark it.
MarkObject(referent);
is_marked = true;
}
if (!is_marked) {
// Referent is white, queue it for clearing.
EnqueuePendingReference(ref, &clear);
}
}
*list = clear;
// Restart the mark with the newly black references added to the
// root set.
ProcessMarkStack();
}
// Unlink the reference list clearing references objects with white
// referents. Cleared references registered to a reference queue are
// scheduled for appending by the heap worker thread.
void MarkSweep::ClearWhiteReferences(Object** list) {
DCHECK(list != NULL);
MemberOffset offset = Heap::GetReferenceReferentOffset();
while (*list != NULL) {
Object* ref = DequeuePendingReference(list);
Object* referent = ref->GetFieldObject<Object*>(offset, false);
if (referent != NULL && !IsMarked(referent)) {
// Referent is white, clear it.
ClearReference(ref);
if (IsEnqueuable(ref)) {
EnqueueReference(ref);
}
}
}
DCHECK(*list == NULL);
}
// Enqueues finalizer references with white referents. White
// referents are blackened, moved to the zombie field, and the
// referent field is cleared.
void MarkSweep::EnqueueFinalizerReferences(Object** list) {
DCHECK(list != NULL);
MemberOffset referent_offset = Heap::GetReferenceReferentOffset();
MemberOffset zombie_offset = Heap::GetFinalizerReferenceZombieOffset();
bool has_enqueued = false;
while (*list != NULL) {
Object* ref = DequeuePendingReference(list);
Object* referent = ref->GetFieldObject<Object*>(referent_offset, false);
if (referent != NULL && !IsMarked(referent)) {
MarkObject(referent);
// If the referent is non-null the reference must queuable.
DCHECK(IsEnqueuable(ref));
ref->SetFieldObject(zombie_offset, referent, false);
ClearReference(ref);
EnqueueReference(ref);
has_enqueued = true;
}
}
if (has_enqueued) {
ProcessMarkStack();
}
DCHECK(*list == NULL);
}
// Process reference class instances and schedule finalizations.
void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft,
Object** weak_references,
Object** finalizer_references,
Object** phantom_references) {
DCHECK(soft_references != NULL);
DCHECK(weak_references != NULL);
DCHECK(finalizer_references != NULL);
DCHECK(phantom_references != NULL);
// Unless we are in the zygote or required to clear soft references
// with white references, preserve some white referents.
if (clear_soft) {
PreserveSomeSoftReferences(soft_references);
}
// Clear all remaining soft and weak references with white
// referents.
ClearWhiteReferences(soft_references);
ClearWhiteReferences(weak_references);
// Preserve all white objects with finalize methods and schedule
// them for finalization.
EnqueueFinalizerReferences(finalizer_references);
// Clear all f-reachable soft and weak references with white
// referents.
ClearWhiteReferences(soft_references);
ClearWhiteReferences(weak_references);
// Clear all phantom references with white referents.
ClearWhiteReferences(phantom_references);
// At this point all reference lists should be empty.
DCHECK(*soft_references == NULL);
DCHECK(*weak_references == NULL);
DCHECK(*finalizer_references == NULL);
DCHECK(*phantom_references == NULL);
}
// Pushes a list of cleared references out to the managed heap.
void MarkSweep::EnqueueClearedReferences(Object** cleared) {
DCHECK(cleared != NULL);
if (*cleared != NULL) {
Thread* self = Thread::Current();
DCHECK(self != NULL);
// TODO: Method *meth = gDvm.methJavaLangRefReferenceQueueAdd;
// DCHECK(meth != NULL);
// JValue unused;
// Object* reference = *cleared;
// TODO: dvmCallMethod(self, meth, NULL, &unused, reference);
UNIMPLEMENTED(FATAL);
*cleared = NULL;
}
}
MarkSweep::~MarkSweep() {
delete mark_stack_;
mark_bitmap_->Clear();
}
} // namespace art
|