summaryrefslogtreecommitdiffstats
path: root/libc
diff options
context:
space:
mode:
authorThe Android Open Source Project <initial-contribution@android.com>2009-02-10 15:43:56 -0800
committerThe Android Open Source Project <initial-contribution@android.com>2009-02-10 15:43:56 -0800
commit9f65adf2ba3bb15feb8b7a7b3eef788df3fd270e (patch)
treec06064fc9022ef63a40f83a91292103784f49780 /libc
parentd37527501c85edcb3a6a7c8a0b6297d52d434897 (diff)
downloadbionic-9f65adf2ba3bb15feb8b7a7b3eef788df3fd270e.zip
bionic-9f65adf2ba3bb15feb8b7a7b3eef788df3fd270e.tar.gz
bionic-9f65adf2ba3bb15feb8b7a7b3eef788df3fd270e.tar.bz2
auto import from //branches/cupcake/...@130745
Diffstat (limited to 'libc')
-rw-r--r--libc/Android.mk4
-rw-r--r--libc/bionic/eabi.c5
-rw-r--r--libc/bionic/pthread.c15
-rw-r--r--libc/bionic/stubs.c172
-rw-r--r--libc/bionic/time64.c793
-rw-r--r--libc/bionic/time64_config.h75
-rw-r--r--libc/docs/OVERVIEW.TXT364
-rw-r--r--libc/include/pthread.h6
-rw-r--r--libc/include/string.h5
-rw-r--r--libc/include/sys/stat.h4
-rw-r--r--libc/include/sys/time.h2
-rw-r--r--libc/include/sys/types.h1
-rw-r--r--libc/include/time64.h54
-rw-r--r--libc/include/unistd.h4
-rwxr-xr-xlibc/string/strcoll.c40
-rwxr-xr-xlibc/string/strxfrm.c47
16 files changed, 1531 insertions, 60 deletions
diff --git a/libc/Android.mk b/libc/Android.mk
index f950c7e..330802a 100644
--- a/libc/Android.mk
+++ b/libc/Android.mk
@@ -66,6 +66,7 @@ libc_common_src_files := \
unistd/usleep.c \
unistd/wait.c \
stdio/asprintf.c \
+ stdio/clrerr.c \
stdio/fclose.c \
stdio/fdopen.c \
stdio/feof.c \
@@ -179,6 +180,7 @@ libc_common_src_files := \
string/strcat.c \
string/strchr.c \
string/strcmp.c \
+ string/strcoll.c \
string/strcpy.c \
string/strcspn.c \
string/strdup.c \
@@ -198,6 +200,7 @@ libc_common_src_files := \
string/strstr.c \
string/strtok.c \
string/strtotimeval.c \
+ string/strxfrm.c \
inet/bindresvport.c \
inet/inet_addr.c \
inet/inet_aton.c \
@@ -234,6 +237,7 @@ libc_common_src_files := \
bionic/ssp.c \
bionic/stubs.c \
bionic/system_properties.c \
+ bionic/time64.c \
bionic/thread_atexit.c \
bionic/utime.c \
bionic/utmp.c \
diff --git a/libc/bionic/eabi.c b/libc/bionic/eabi.c
index c491f05..f212d05 100644
--- a/libc/bionic/eabi.c
+++ b/libc/bionic/eabi.c
@@ -30,7 +30,10 @@
void* __dso_handle = 0;
-int __aeabi_atexit (void *object, void (*destructor) (void *), void *dso_handle)
+/* Make this a weak symbol to avoid a multiple definition error when linking
+ * with libstdc++-v3. */
+int __attribute__((weak))
+__aeabi_atexit (void *object, void (*destructor) (void *), void *dso_handle)
{
//return __cxa_atexit(destructor, object, dso_handle);
return 0;
diff --git a/libc/bionic/pthread.c b/libc/bionic/pthread.c
index 6114f40..ec3c459 100644
--- a/libc/bionic/pthread.c
+++ b/libc/bionic/pthread.c
@@ -488,6 +488,21 @@ int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
return 0;
}
+int pthread_attr_setscope(pthread_attr_t *attr, int scope)
+{
+ if (scope == PTHREAD_SCOPE_SYSTEM)
+ return 0;
+ if (scope == PTHREAD_SCOPE_PROCESS)
+ return ENOTSUP;
+
+ return EINVAL;
+}
+
+int pthread_attr_getscope(pthread_attr_t const *attr)
+{
+ return PTHREAD_SCOPE_SYSTEM;
+}
+
/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
* and thread cancelation
diff --git a/libc/bionic/stubs.c b/libc/bionic/stubs.c
index 1f76bba..365f21a 100644
--- a/libc/bionic/stubs.c
+++ b/libc/bionic/stubs.c
@@ -35,6 +35,7 @@
#include <pthread.h>
#include <stdlib.h>
#include <errno.h>
+#include <ctype.h>
/** Thread-specific state for the stubs functions
**/
@@ -95,8 +96,9 @@ __stubs_state(void)
return s;
}
-static struct passwd *android_iinfo_to_passwd(
- struct passwd *pw, struct android_id_info *iinfo)
+static struct passwd*
+android_iinfo_to_passwd( struct passwd *pw,
+ struct android_id_info *iinfo )
{
pw->pw_name = (char*)iinfo->name;
pw->pw_uid = iinfo->aid;
@@ -106,8 +108,9 @@ static struct passwd *android_iinfo_to_passwd(
return pw;
}
-static struct group *android_iinfo_to_group(
- struct group *gr, struct android_id_info *iinfo)
+static struct group*
+android_iinfo_to_group( struct group *gr,
+ struct android_id_info *iinfo )
{
gr->gr_name = (char*) iinfo->name;
gr->gr_gid = iinfo->aid;
@@ -116,8 +119,8 @@ static struct group *android_iinfo_to_group(
return gr;
}
-static struct passwd *android_id_to_passwd(
- struct passwd *pw, unsigned id)
+static struct passwd *
+android_id_to_passwd( struct passwd *pw, unsigned id)
{
struct android_id_info *iinfo = android_ids;
unsigned n;
@@ -126,11 +129,11 @@ static struct passwd *android_id_to_passwd(
return android_iinfo_to_passwd(pw, iinfo + n);
}
}
- return 0;
+ return NULL;
}
-static struct passwd *android_name_to_passwd(
- struct passwd *pw, const char *name)
+static struct passwd*
+android_name_to_passwd(struct passwd *pw, const char *name)
{
struct android_id_info *iinfo = android_ids;
unsigned n;
@@ -139,11 +142,11 @@ static struct passwd *android_name_to_passwd(
return android_iinfo_to_passwd(pw, iinfo + n);
}
}
- return 0;
+ return NULL;
}
-static struct group *android_id_to_group(
- struct group *gr, unsigned id)
+static struct group*
+android_id_to_group( struct group *gr, unsigned id )
{
struct android_id_info *iinfo = android_ids;
unsigned n;
@@ -152,11 +155,11 @@ static struct group *android_id_to_group(
return android_iinfo_to_group(gr, iinfo + n);
}
}
- return 0;
+ return NULL;
}
-static struct group *android_name_to_group(
- struct group *gr, const char *name)
+static struct group*
+android_name_to_group( struct group *gr, const char *name )
{
struct android_id_info *iinfo = android_ids;
unsigned n;
@@ -165,21 +168,47 @@ static struct group *android_name_to_group(
return android_iinfo_to_group(gr, iinfo + n);
}
}
- return 0;
+ return NULL;
}
-struct passwd* getpwuid(uid_t uid)
+/* translate a user/group name like app_1234 into the
+ * corresponding user/group id (AID_APP + 1234)
+ * returns 0 and sets errno to ENOENT in case of error
+ */
+static unsigned
+app_id_from_name( const char* name )
{
- stubs_state_t* state = __stubs_state();
- struct passwd* pw;
+ unsigned long id;
+ char* end;
- if (state == NULL)
- return NULL;
+ if (memcmp(name, "app_", 4) != 0 || !isdigit(name[4]))
+ goto FAIL;
- pw = &state->passwd;
+ id = strtoul(name+4, &end, 10);
+ if (id == 0 || *end != '\0')
+ goto FAIL;
- if ( android_id_to_passwd(pw, uid) != NULL )
- return pw;
+ id += AID_APP;
+
+ /* check for overflow and that the value can be
+ * stored in our 32-bit uid_t/gid_t */
+ if (id < AID_APP || (unsigned)id != id)
+ goto FAIL;
+
+ return (unsigned)id;
+
+FAIL:
+ errno = ENOENT;
+ return 0;
+}
+
+/* translate a uid into the corresponding app_<uid>
+ * passwd structure (sets errno to ENOENT on failure)
+ */
+static struct passwd*
+app_id_to_passwd(uid_t uid, stubs_state_t* state)
+{
+ struct passwd* pw = &state->passwd;
if (uid < AID_APP) {
errno = ENOENT;
@@ -187,7 +216,7 @@ struct passwd* getpwuid(uid_t uid)
}
snprintf( state->app_name_buffer, sizeof state->app_name_buffer,
- "app_%d", uid - AID_APP );
+ "app_%u", uid - AID_APP );
pw->pw_name = state->app_name_buffer;
pw->pw_dir = "/data";
@@ -198,18 +227,66 @@ struct passwd* getpwuid(uid_t uid)
return pw;
}
-struct passwd* getpwnam(const char *login)
+/* translate a gid into the corresponding app_<gid>
+ * group structure (sets errno to ENOENT on failure)
+ */
+static struct group*
+app_id_to_group(gid_t gid, stubs_state_t* state)
+{
+ struct group* gr = &state->group;
+
+ if (gid < AID_APP) {
+ errno = ENOENT;
+ return NULL;
+ }
+
+ snprintf(state->group_name_buffer, sizeof state->group_name_buffer,
+ "app_%u", gid - AID_APP);
+
+ gr->gr_name = state->group_name_buffer;
+ gr->gr_gid = gid;
+ gr->gr_mem[0] = gr->gr_name;
+ gr->gr_mem[1] = NULL;
+
+ return gr;
+}
+
+
+struct passwd*
+getpwuid(uid_t uid)
+{
+ stubs_state_t* state = __stubs_state();
+ struct passwd* pw;
+
+ if (state == NULL)
+ return NULL;
+
+ pw = &state->passwd;
+
+ if ( android_id_to_passwd(pw, uid) != NULL )
+ return pw;
+
+ return app_id_to_passwd(uid, state);
+}
+
+struct passwd*
+getpwnam(const char *login)
{
stubs_state_t* state = __stubs_state();
if (state == NULL)
return NULL;
- return android_name_to_passwd(&state->passwd, login);
+ if (android_name_to_passwd(&state->passwd, login) != NULL)
+ return &state->passwd;
+
+ return app_id_to_passwd( app_id_from_name(login), state );
}
-int getgrouplist (const char *user, gid_t group,
- gid_t *groups, int *ngroups) {
+int
+getgrouplist (const char *user, gid_t group,
+ gid_t *groups, int *ngroups)
+{
if (*ngroups < 1) {
*ngroups = 1;
return -1;
@@ -218,18 +295,20 @@ int getgrouplist (const char *user, gid_t group,
return (*ngroups = 1);
}
-char* getlogin(void)
+char*
+getlogin(void)
{
struct passwd *pw = getpwuid(getuid());
if(pw) {
return pw->pw_name;
} else {
- return 0;
+ return NULL;
}
}
-struct group* getgrgid(gid_t gid)
+struct group*
+getgrgid(gid_t gid)
{
stubs_state_t* state = __stubs_state();
struct group* gr;
@@ -241,34 +320,25 @@ struct group* getgrgid(gid_t gid)
if (gr != NULL)
return gr;
- if (gid < AID_APP) {
- errno = ENOENT;
- return NULL;
- }
-
- snprintf(state->group_name_buffer, sizeof state->group_name_buffer,
- "app_%d", gid - AID_APP);
-
- gr = &state->group;
-
- gr->gr_name = state->group_name_buffer;
- gr->gr_gid = gid;
- gr->gr_mem[0] = gr->gr_name;
- gr->gr_mem[1] = NULL;
-
- return gr;
+ return app_id_to_group(gid, state);
}
-struct group* getgrnam(const char *name)
+struct group*
+getgrnam(const char *name)
{
stubs_state_t* state = __stubs_state();
+ unsigned id;
if (state == NULL)
return NULL;
- return android_name_to_group(&state->group, name);
+ if (android_name_to_group(&state->group, name) != 0)
+ return &state->group;
+
+ return app_id_to_group( app_id_from_name(name), state );
}
+
struct netent* getnetbyname(const char *name)
{
fprintf(stderr, "FIX ME! implement getgrnam() %s:%d\n", __FILE__, __LINE__);
@@ -308,5 +378,3 @@ struct protoent *getprotobynumber(int proto)
fprintf(stderr, "FIX ME! implement %s() %s:%d\n", __FUNCTION__, __FILE__, __LINE__);
return NULL;
}
-
-
diff --git a/libc/bionic/time64.c b/libc/bionic/time64.c
new file mode 100644
index 0000000..1e1f881
--- /dev/null
+++ b/libc/bionic/time64.c
@@ -0,0 +1,793 @@
+/*
+
+Copyright (c) 2007-2008 Michael G Schwern
+
+This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
+
+The MIT License:
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
+
+*/
+
+/* See http://code.google.com/p/y2038 for this code's origin */
+
+/*
+
+Programmers who have available to them 64-bit time values as a 'long
+long' type can use localtime64_r() and gmtime64_r() which correctly
+converts the time even on 32-bit systems. Whether you have 64-bit time
+values will depend on the operating system.
+
+localtime64_r() is a 64-bit equivalent of localtime_r().
+
+gmtime64_r() is a 64-bit equivalent of gmtime_r().
+
+*/
+
+#include <assert.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <time.h>
+#include <errno.h>
+#include "time64.h"
+
+/* BIONIC_BEGIN */
+/* the following are here to avoid exposing time64_config.h and
+ * other types in our public time64.h header
+ */
+#include "time64_config.h"
+
+/* Not everyone has gm/localtime_r(), provide a replacement */
+#ifdef HAS_LOCALTIME_R
+# define LOCALTIME_R(clock, result) localtime_r(clock, result)
+#else
+# define LOCALTIME_R(clock, result) fake_localtime_r(clock, result)
+#endif
+#ifdef HAS_GMTIME_R
+# define GMTIME_R(clock, result) gmtime_r(clock, result)
+#else
+# define GMTIME_R(clock, result) fake_gmtime_r(clock, result)
+#endif
+
+typedef int64_t Int64;
+typedef time64_t Time64_T;
+typedef int64_t Year;
+#define TM tm
+/* BIONIC_END */
+
+/* Spec says except for stftime() and the _r() functions, these
+ all return static memory. Stabbings! */
+static struct TM Static_Return_Date;
+static char Static_Return_String[35];
+
+static const int days_in_month[2][12] = {
+ {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
+ {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
+};
+
+static const int julian_days_by_month[2][12] = {
+ {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
+ {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
+};
+
+static char const wday_name[7][3] = {
+ "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
+};
+
+static char const mon_name[12][3] = {
+ "Jan", "Feb", "Mar", "Apr", "May", "Jun",
+ "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
+};
+
+static const int length_of_year[2] = { 365, 366 };
+
+/* Some numbers relating to the gregorian cycle */
+static const Year years_in_gregorian_cycle = 400;
+#define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1)
+static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL;
+
+/* Year range we can trust the time funcitons with */
+#define MAX_SAFE_YEAR 2037
+#define MIN_SAFE_YEAR 1971
+
+/* 28 year Julian calendar cycle */
+#define SOLAR_CYCLE_LENGTH 28
+
+/* Year cycle from MAX_SAFE_YEAR down. */
+static const int safe_years_high[SOLAR_CYCLE_LENGTH] = {
+ 2016, 2017, 2018, 2019,
+ 2020, 2021, 2022, 2023,
+ 2024, 2025, 2026, 2027,
+ 2028, 2029, 2030, 2031,
+ 2032, 2033, 2034, 2035,
+ 2036, 2037, 2010, 2011,
+ 2012, 2013, 2014, 2015
+};
+
+/* Year cycle from MIN_SAFE_YEAR up */
+static const int safe_years_low[SOLAR_CYCLE_LENGTH] = {
+ 1996, 1997, 1998, 1971,
+ 1972, 1973, 1974, 1975,
+ 1976, 1977, 1978, 1979,
+ 1980, 1981, 1982, 1983,
+ 1984, 1985, 1986, 1987,
+ 1988, 1989, 1990, 1991,
+ 1992, 1993, 1994, 1995,
+};
+
+/* This isn't used, but it's handy to look at */
+static const int dow_year_start[SOLAR_CYCLE_LENGTH] = {
+ 5, 0, 1, 2, /* 0 2016 - 2019 */
+ 3, 5, 6, 0, /* 4 */
+ 1, 3, 4, 5, /* 8 1996 - 1998, 1971*/
+ 6, 1, 2, 3, /* 12 1972 - 1975 */
+ 4, 6, 0, 1, /* 16 */
+ 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */
+ 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */
+};
+
+/* Let's assume people are going to be looking for dates in the future.
+ Let's provide some cheats so you can skip ahead.
+ This has a 4x speed boost when near 2008.
+*/
+/* Number of days since epoch on Jan 1st, 2008 GMT */
+#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
+#define CHEAT_YEARS 108
+
+#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
+#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
+
+#ifdef USE_SYSTEM_LOCALTIME
+# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
+ (a) <= SYSTEM_LOCALTIME_MAX && \
+ (a) >= SYSTEM_LOCALTIME_MIN \
+)
+#else
+# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
+#endif
+
+#ifdef USE_SYSTEM_GMTIME
+# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
+ (a) <= SYSTEM_GMTIME_MAX && \
+ (a) >= SYSTEM_GMTIME_MIN \
+)
+#else
+# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
+#endif
+
+/* Multi varadic macros are a C99 thing, alas */
+#ifdef TIME_64_DEBUG
+# define TRACE(format) (fprintf(stderr, format))
+# define TRACE1(format, var1) (fprintf(stderr, format, var1))
+# define TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
+# define TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
+#else
+# define TRACE(format) ((void)0)
+# define TRACE1(format, var1) ((void)0)
+# define TRACE2(format, var1, var2) ((void)0)
+# define TRACE3(format, var1, var2, var3) ((void)0)
+#endif
+
+
+static int is_exception_century(Year year)
+{
+ int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
+ TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
+
+ return(is_exception);
+}
+
+
+/* timegm() is not in the C or POSIX spec, but it is such a useful
+ extension I would be remiss in leaving it out. Also I need it
+ for localtime64()
+*/
+Time64_T timegm64(const struct TM *date) {
+ Time64_T days = 0;
+ Time64_T seconds = 0;
+ Year year;
+ Year orig_year = (Year)date->tm_year;
+ int cycles = 0;
+
+ if( orig_year > 100 ) {
+ cycles = (orig_year - 100) / 400;
+ orig_year -= cycles * 400;
+ days += (Time64_T)cycles * days_in_gregorian_cycle;
+ }
+ else if( orig_year < -300 ) {
+ cycles = (orig_year - 100) / 400;
+ orig_year -= cycles * 400;
+ days += (Time64_T)cycles * days_in_gregorian_cycle;
+ }
+ TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year);
+
+ if( orig_year > 70 ) {
+ year = 70;
+ while( year < orig_year ) {
+ days += length_of_year[IS_LEAP(year)];
+ year++;
+ }
+ }
+ else if ( orig_year < 70 ) {
+ year = 69;
+ do {
+ days -= length_of_year[IS_LEAP(year)];
+ year--;
+ } while( year >= orig_year );
+ }
+
+
+ days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon];
+ days += date->tm_mday - 1;
+
+ seconds = days * 60 * 60 * 24;
+
+ seconds += date->tm_hour * 60 * 60;
+ seconds += date->tm_min * 60;
+ seconds += date->tm_sec;
+
+ return(seconds);
+}
+
+
+static int check_tm(struct TM *tm)
+{
+ /* Don't forget leap seconds */
+ assert(tm->tm_sec >= 0);
+ assert(tm->tm_sec <= 61);
+
+ assert(tm->tm_min >= 0);
+ assert(tm->tm_min <= 59);
+
+ assert(tm->tm_hour >= 0);
+ assert(tm->tm_hour <= 23);
+
+ assert(tm->tm_mday >= 1);
+ assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
+
+ assert(tm->tm_mon >= 0);
+ assert(tm->tm_mon <= 11);
+
+ assert(tm->tm_wday >= 0);
+ assert(tm->tm_wday <= 6);
+
+ assert(tm->tm_yday >= 0);
+ assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
+
+#ifdef HAS_TM_TM_GMTOFF
+ assert(tm->tm_gmtoff >= -24 * 60 * 60);
+ assert(tm->tm_gmtoff <= 24 * 60 * 60);
+#endif
+
+ return 1;
+}
+
+
+/* The exceptional centuries without leap years cause the cycle to
+ shift by 16
+*/
+static Year cycle_offset(Year year)
+{
+ const Year start_year = 2000;
+ Year year_diff = year - start_year;
+ Year exceptions;
+
+ if( year > start_year )
+ year_diff--;
+
+ exceptions = year_diff / 100;
+ exceptions -= year_diff / 400;
+
+ TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
+ year, exceptions, year_diff);
+
+ return exceptions * 16;
+}
+
+/* For a given year after 2038, pick the latest possible matching
+ year in the 28 year calendar cycle.
+
+ A matching year...
+ 1) Starts on the same day of the week.
+ 2) Has the same leap year status.
+
+ This is so the calendars match up.
+
+ Also the previous year must match. When doing Jan 1st you might
+ wind up on Dec 31st the previous year when doing a -UTC time zone.
+
+ Finally, the next year must have the same start day of week. This
+ is for Dec 31st with a +UTC time zone.
+ It doesn't need the same leap year status since we only care about
+ January 1st.
+*/
+static int safe_year(const Year year)
+{
+ int safe_year = 0;
+ Year year_cycle;
+
+ if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) {
+ return (int)year;
+ }
+
+ year_cycle = year + cycle_offset(year);
+
+ /* safe_years_low is off from safe_years_high by 8 years */
+ if( year < MIN_SAFE_YEAR )
+ year_cycle -= 8;
+
+ /* Change non-leap xx00 years to an equivalent */
+ if( is_exception_century(year) )
+ year_cycle += 11;
+
+ /* Also xx01 years, since the previous year will be wrong */
+ if( is_exception_century(year - 1) )
+ year_cycle += 17;
+
+ year_cycle %= SOLAR_CYCLE_LENGTH;
+ if( year_cycle < 0 )
+ year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
+
+ assert( year_cycle >= 0 );
+ assert( year_cycle < SOLAR_CYCLE_LENGTH );
+ if( year < MIN_SAFE_YEAR )
+ safe_year = safe_years_low[year_cycle];
+ else if( year > MAX_SAFE_YEAR )
+ safe_year = safe_years_high[year_cycle];
+ else
+ assert(0);
+
+ TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
+ year, year_cycle, safe_year);
+
+ assert(safe_year <= MAX_SAFE_YEAR && safe_year >= MIN_SAFE_YEAR);
+
+ return safe_year;
+}
+
+
+void copy_tm_to_TM(const struct tm *src, struct TM *dest) {
+ if( src == NULL ) {
+ memset(dest, 0, sizeof(*dest));
+ }
+ else {
+# ifdef USE_TM64
+ dest->tm_sec = src->tm_sec;
+ dest->tm_min = src->tm_min;
+ dest->tm_hour = src->tm_hour;
+ dest->tm_mday = src->tm_mday;
+ dest->tm_mon = src->tm_mon;
+ dest->tm_year = (Year)src->tm_year;
+ dest->tm_wday = src->tm_wday;
+ dest->tm_yday = src->tm_yday;
+ dest->tm_isdst = src->tm_isdst;
+
+# ifdef HAS_TM_TM_GMTOFF
+ dest->tm_gmtoff = src->tm_gmtoff;
+# endif
+
+# ifdef HAS_TM_TM_ZONE
+ dest->tm_zone = src->tm_zone;
+# endif
+
+# else
+ /* They're the same type */
+ memcpy(dest, src, sizeof(*dest));
+# endif
+ }
+}
+
+
+void copy_TM_to_tm(const struct TM *src, struct tm *dest) {
+ if( src == NULL ) {
+ memset(dest, 0, sizeof(*dest));
+ }
+ else {
+# ifdef USE_TM64
+ dest->tm_sec = src->tm_sec;
+ dest->tm_min = src->tm_min;
+ dest->tm_hour = src->tm_hour;
+ dest->tm_mday = src->tm_mday;
+ dest->tm_mon = src->tm_mon;
+ dest->tm_year = (int)src->tm_year;
+ dest->tm_wday = src->tm_wday;
+ dest->tm_yday = src->tm_yday;
+ dest->tm_isdst = src->tm_isdst;
+
+# ifdef HAS_TM_TM_GMTOFF
+ dest->tm_gmtoff = src->tm_gmtoff;
+# endif
+
+# ifdef HAS_TM_TM_ZONE
+ dest->tm_zone = src->tm_zone;
+# endif
+
+# else
+ /* They're the same type */
+ memcpy(dest, src, sizeof(*dest));
+# endif
+ }
+}
+
+
+/* Simulate localtime_r() to the best of our ability */
+struct tm * fake_localtime_r(const time_t *clock, struct tm *result) {
+ const struct tm *static_result = localtime(clock);
+
+ assert(result != NULL);
+
+ if( static_result == NULL ) {
+ memset(result, 0, sizeof(*result));
+ return NULL;
+ }
+ else {
+ memcpy(result, static_result, sizeof(*result));
+ return result;
+ }
+}
+
+
+
+/* Simulate gmtime_r() to the best of our ability */
+struct tm * fake_gmtime_r(const time_t *clock, struct tm *result) {
+ const struct tm *static_result = gmtime(clock);
+
+ assert(result != NULL);
+
+ if( static_result == NULL ) {
+ memset(result, 0, sizeof(*result));
+ return NULL;
+ }
+ else {
+ memcpy(result, static_result, sizeof(*result));
+ return result;
+ }
+}
+
+
+static Time64_T seconds_between_years(Year left_year, Year right_year) {
+ int increment = (left_year > right_year) ? 1 : -1;
+ Time64_T seconds = 0;
+ int cycles;
+
+ if( left_year > 2400 ) {
+ cycles = (left_year - 2400) / 400;
+ left_year -= cycles * 400;
+ seconds += cycles * seconds_in_gregorian_cycle;
+ }
+ else if( left_year < 1600 ) {
+ cycles = (left_year - 1600) / 400;
+ left_year += cycles * 400;
+ seconds += cycles * seconds_in_gregorian_cycle;
+ }
+
+ while( left_year != right_year ) {
+ seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24;
+ right_year += increment;
+ }
+
+ return seconds * increment;
+}
+
+
+Time64_T mktime64(const struct TM *input_date) {
+ struct tm safe_date;
+ struct TM date;
+ Time64_T time;
+ Year year = input_date->tm_year + 1900;
+
+ if( MIN_SAFE_YEAR <= year && year <= MAX_SAFE_YEAR ) {
+ copy_TM_to_tm(input_date, &safe_date);
+ return (Time64_T)mktime(&safe_date);
+ }
+
+ /* Have to make the year safe in date else it won't fit in safe_date */
+ date = *input_date;
+ date.tm_year = safe_year(year) - 1900;
+ copy_TM_to_tm(&date, &safe_date);
+
+ time = (Time64_T)mktime(&safe_date);
+
+ time += seconds_between_years(year, (Year)(safe_date.tm_year + 1900));
+
+ return time;
+}
+
+
+/* Because I think mktime() is a crappy name */
+Time64_T timelocal64(const struct TM *date) {
+ return mktime64(date);
+}
+
+
+struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p)
+{
+ int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
+ Time64_T v_tm_tday;
+ int leap;
+ Time64_T m;
+ Time64_T time = *in_time;
+ Year year = 70;
+ int cycles = 0;
+
+ assert(p != NULL);
+
+ /* Use the system gmtime() if time_t is small enough */
+ if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
+ time_t safe_time = *in_time;
+ struct tm safe_date;
+ GMTIME_R(&safe_time, &safe_date);
+
+ copy_tm_to_TM(&safe_date, p);
+ assert(check_tm(p));
+
+ return p;
+ }
+
+#ifdef HAS_TM_TM_GMTOFF
+ p->tm_gmtoff = 0;
+#endif
+ p->tm_isdst = 0;
+
+#ifdef HAS_TM_TM_ZONE
+ p->tm_zone = "UTC";
+#endif
+
+ v_tm_sec = (int)(time % 60);
+ time /= 60;
+ v_tm_min = (int)(time % 60);
+ time /= 60;
+ v_tm_hour = (int)(time % 24);
+ time /= 24;
+ v_tm_tday = time;
+
+ WRAP (v_tm_sec, v_tm_min, 60);
+ WRAP (v_tm_min, v_tm_hour, 60);
+ WRAP (v_tm_hour, v_tm_tday, 24);
+
+ v_tm_wday = (int)((v_tm_tday + 4) % 7);
+ if (v_tm_wday < 0)
+ v_tm_wday += 7;
+ m = v_tm_tday;
+
+ if (m >= CHEAT_DAYS) {
+ year = CHEAT_YEARS;
+ m -= CHEAT_DAYS;
+ }
+
+ if (m >= 0) {
+ /* Gregorian cycles, this is huge optimization for distant times */
+ cycles = (int)(m / (Time64_T) days_in_gregorian_cycle);
+ if( cycles ) {
+ m -= (cycles * (Time64_T) days_in_gregorian_cycle);
+ year += (cycles * years_in_gregorian_cycle);
+ }
+
+ /* Years */
+ leap = IS_LEAP (year);
+ while (m >= (Time64_T) length_of_year[leap]) {
+ m -= (Time64_T) length_of_year[leap];
+ year++;
+ leap = IS_LEAP (year);
+ }
+
+ /* Months */
+ v_tm_mon = 0;
+ while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
+ m -= (Time64_T) days_in_month[leap][v_tm_mon];
+ v_tm_mon++;
+ }
+ } else {
+ year--;
+
+ /* Gregorian cycles */
+ cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1);
+ if( cycles ) {
+ m -= (cycles * (Time64_T) days_in_gregorian_cycle);
+ year += (cycles * years_in_gregorian_cycle);
+ }
+
+ /* Years */
+ leap = IS_LEAP (year);
+ while (m < (Time64_T) -length_of_year[leap]) {
+ m += (Time64_T) length_of_year[leap];
+ year--;
+ leap = IS_LEAP (year);
+ }
+
+ /* Months */
+ v_tm_mon = 11;
+ while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
+ m += (Time64_T) days_in_month[leap][v_tm_mon];
+ v_tm_mon--;
+ }
+ m += (Time64_T) days_in_month[leap][v_tm_mon];
+ }
+
+ p->tm_year = year;
+ if( p->tm_year != year ) {
+#ifdef EOVERFLOW
+ errno = EOVERFLOW;
+#endif
+ return NULL;
+ }
+
+ /* At this point m is less than a year so casting to an int is safe */
+ p->tm_mday = (int) m + 1;
+ p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
+ p->tm_sec = v_tm_sec;
+ p->tm_min = v_tm_min;
+ p->tm_hour = v_tm_hour;
+ p->tm_mon = v_tm_mon;
+ p->tm_wday = v_tm_wday;
+
+ assert(check_tm(p));
+
+ return p;
+}
+
+
+struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm)
+{
+ time_t safe_time;
+ struct tm safe_date;
+ struct TM gm_tm;
+ Year orig_year;
+ int month_diff;
+
+ assert(local_tm != NULL);
+
+ /* Use the system localtime() if time_t is small enough */
+ if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
+ safe_time = *time;
+
+ TRACE1("Using system localtime for %lld\n", *time);
+
+ LOCALTIME_R(&safe_time, &safe_date);
+
+ copy_tm_to_TM(&safe_date, local_tm);
+ assert(check_tm(local_tm));
+
+ return local_tm;
+ }
+
+ if( gmtime64_r(time, &gm_tm) == NULL ) {
+ TRACE1("gmtime64_r returned null for %lld\n", *time);
+ return NULL;
+ }
+
+ orig_year = gm_tm.tm_year;
+
+ if (gm_tm.tm_year > (2037 - 1900) ||
+ gm_tm.tm_year < (1970 - 1900)
+ )
+ {
+ TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
+ gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
+ }
+
+ safe_time = timegm64(&gm_tm);
+ if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
+ TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
+ return NULL;
+ }
+
+ copy_tm_to_TM(&safe_date, local_tm);
+
+ local_tm->tm_year = orig_year;
+ if( local_tm->tm_year != orig_year ) {
+ TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
+ (Year)local_tm->tm_year, (Year)orig_year);
+
+#ifdef EOVERFLOW
+ errno = EOVERFLOW;
+#endif
+ return NULL;
+ }
+
+
+ month_diff = local_tm->tm_mon - gm_tm.tm_mon;
+
+ /* When localtime is Dec 31st previous year and
+ gmtime is Jan 1st next year.
+ */
+ if( month_diff == 11 ) {
+ local_tm->tm_year--;
+ }
+
+ /* When localtime is Jan 1st, next year and
+ gmtime is Dec 31st, previous year.
+ */
+ if( month_diff == -11 ) {
+ local_tm->tm_year++;
+ }
+
+ /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
+ in a non-leap xx00. There is one point in the cycle
+ we can't account for which the safe xx00 year is a leap
+ year. So we need to correct for Dec 31st comming out as
+ the 366th day of the year.
+ */
+ if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
+ local_tm->tm_yday--;
+
+ assert(check_tm(local_tm));
+
+ return local_tm;
+}
+
+
+int valid_tm_wday( const struct TM* date ) {
+ if( 0 <= date->tm_wday && date->tm_wday <= 6 )
+ return 1;
+ else
+ return 0;
+}
+
+int valid_tm_mon( const struct TM* date ) {
+ if( 0 <= date->tm_mon && date->tm_mon <= 11 )
+ return 1;
+ else
+ return 0;
+}
+
+
+char *asctime64_r( const struct TM* date, char *result ) {
+ /* I figure everything else can be displayed, even hour 25, but if
+ these are out of range we walk off the name arrays */
+ if( !valid_tm_wday(date) || !valid_tm_mon(date) )
+ return NULL;
+
+ sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
+ wday_name[date->tm_wday],
+ mon_name[date->tm_mon],
+ date->tm_mday, date->tm_hour,
+ date->tm_min, date->tm_sec,
+ 1900 + date->tm_year);
+
+ return result;
+}
+
+
+char *ctime64_r( const Time64_T* time, char* result ) {
+ struct TM date;
+
+ localtime64_r( time, &date );
+ return asctime64_r( &date, result );
+}
+
+
+/* Non-thread safe versions of the above */
+struct TM *localtime64(const Time64_T *time) {
+ return localtime64_r(time, &Static_Return_Date);
+}
+
+struct TM *gmtime64(const Time64_T *time) {
+ return gmtime64_r(time, &Static_Return_Date);
+}
+
+char *asctime64( const struct TM* date ) {
+ return asctime64_r( date, Static_Return_String );
+}
+
+char *ctime64( const Time64_T* time ) {
+ return asctime64(localtime64(time));
+}
diff --git a/libc/bionic/time64_config.h b/libc/bionic/time64_config.h
new file mode 100644
index 0000000..53bcecf
--- /dev/null
+++ b/libc/bionic/time64_config.h
@@ -0,0 +1,75 @@
+/* Debugging
+ TIME_64_DEBUG
+ Define if you want debugging messages
+*/
+/* #define TIME_64_DEBUG */
+
+
+/* INT_64_T
+ A 64 bit integer type to use to store time and others.
+ Must be defined.
+*/
+#define INT_64_T long long
+
+
+/* USE_TM64
+ Should we use a 64 bit safe replacement for tm? This will
+ let you go past year 2 billion but the struct will be incompatible
+ with tm. Conversion functions will be provided.
+*/
+/* #define USE_TM64 */
+
+
+/* Availability of system functions.
+
+ HAS_GMTIME_R
+ Define if your system has gmtime_r()
+
+ HAS_LOCALTIME_R
+ Define if your system has localtime_r()
+
+ HAS_TIMEGM
+ Define if your system has timegm(), a GNU extension.
+*/
+#define HAS_GMTIME_R
+#define HAS_LOCALTIME_R
+/*#define HAS_TIMEGM */
+
+
+/* Details of non-standard tm struct elements.
+
+ HAS_TM_TM_GMTOFF
+ True if your tm struct has a "tm_gmtoff" element.
+ A BSD extension.
+
+ HAS_TM_TM_ZONE
+ True if your tm struct has a "tm_zone" element.
+ A BSD extension.
+*/
+#define HAS_TM_TM_GMTOFF
+#define HAS_TM_TM_ZONE
+
+
+/* USE_SYSTEM_LOCALTIME
+ USE_SYSTEM_GMTIME
+ Should we use the system functions if the time is inside their range?
+ Your system localtime() is probably more accurate, but our gmtime() is
+ fast and safe.
+*/
+#define USE_SYSTEM_LOCALTIME
+/* #define USE_SYSTEM_GMTIME */
+
+
+/* SYSTEM_LOCALTIME_MAX
+ SYSTEM_LOCALTIME_MIN
+ SYSTEM_GMTIME_MAX
+ SYSTEM_GMTIME_MIN
+ Maximum and minimum values your system's gmtime() and localtime()
+ can handle. We will use your system functions if the time falls
+ inside these ranges.
+*/
+#define SYSTEM_LOCALTIME_MAX 2147483647
+#define SYSTEM_LOCALTIME_MIN -2147483647
+#define SYSTEM_GMTIME_MAX 2147483647
+#define SYSTEM_GMTIME_MIN -2147483647
+
diff --git a/libc/docs/OVERVIEW.TXT b/libc/docs/OVERVIEW.TXT
new file mode 100644
index 0000000..4d40df6
--- /dev/null
+++ b/libc/docs/OVERVIEW.TXT
@@ -0,0 +1,364 @@
+Bionic C Library Overview:
+==========================
+
+Introduction:
+
+Core Philosophy:
+
+ The core idea behind Bionic's design is: KEEP IT REALLY SIMPLE.
+
+ This implies that the C library should only provide lightweight wrappers around kernel
+ facilities and not try to be too smart to deal with edge cases.
+
+ The name "Bionic" comes from the fact that it is part-BSD and part-Linux: its source
+ code consists in a mix of BSD C library pieces with custom Linux-specific bits used
+ to deal with threads, processes, signals and a few others things.
+
+ All original BSD pieces carry the BSD copyright disclaimer. Bionic-specific bits
+ carry the Android Open Source Project copyright disclaimer. And everything is released
+ under the BSD license.
+
+Architectures:
+
+ Bionic currently supports the ARM and x86 instruction sets. In theory, it should be
+ possible to support more, but this may require a little work (e.g. adding system
+ call IDs to SYSCALLS.TXT, described below, or modifying the dynamic linker).
+
+ The ARM-specific code is under arch-arm/ and the x86-specific one is under arch-x86/
+
+ Note that the x86 version is only meant to run on an x86 Android device. We make
+ absolutely no claim that you could build and use Bionic on a stock x86 Linux
+ distribution (though that would be cool, so patches are welcomed :-))
+
+Syscall stubs:
+
+ Each system call function is implemented by a tiny assembler source fragment
+ (called a "syscall stub"), which is generated automatically by tools/gensyscalls.py
+ which reads the SYSCALLS.TXT file for input.
+
+ SYSCALLS.TXT contains the list of all syscall stubs to generate, along with
+ the corresponding syscall numeric identifier (which may differ between ARM and x86),
+ and its signature
+
+ If you modify this file, you may want to use tools/checksyscalls.py which checks
+ its content against official Linux kernel header files, and will report errors when
+ invalid syscall ids are used.
+
+ Sometimes, the C library function is really a wrapper that calls the corresponding
+ syscall with another name. For example, the exit() function is provided by the C
+ library and calls the _exit() syscall stub.
+
+ See SYSCALLS.TXT for documentation and details.
+
+
+time_t:
+
+ time_t is 32-bit as defined by the kernel on 32-bit CPUs. A 64-bit version would
+ be preferrable to avoid the Y2038 bug, but the kernel maintainers consider that
+ this is not needed at the moment.
+
+ Instead, Bionic provides a <time64.h> header that defines a time64_t type, and
+ related functions like mktime64(), localtime64(), etc...
+
+
+Timezone management:
+
+ The name of the current timezone is taken from the TZ environment variable, if defined.
+ Otherwise, the system property named 'persist.sys.timezone' is checked instead.
+
+ The zoneinfo timezone database and index files are located under directory
+ /system/usr/share/zoneinfo, instead of the more Posix path of /usr/share/zoneinfo
+
+
+off_t:
+
+ For similar reasons, off_t is 32-bit. We define loff_t as the 64-bit variant due
+ to BSD inheritance, but off64_t should be available as a typedef to ease porting of
+ current Linux-specific code.
+
+
+
+Linux kernel headers:
+
+ Bionic comes with its own set of "clean" Linux kernel headers to allow user-space
+ code to use kernel-specific declarations (e.g. IOCTLs, structure declarations,
+ constants, etc...). They are located in:
+
+ ./kernel/common,
+ ./kernel/arch-arm
+ ./kernel/arch-x86
+
+ These headers have been generated by a tool (kernel/tools/update-all.py) to only
+ include the public definitions from the original Linux kernel headers.
+
+ If you want to know why and how this is done, read kernel/README.TXT to get
+ all the (gory) details.
+
+
+PThread implementation:
+
+ Bionic's C library comes with its own pthread implementation bundled in. This is
+ different from other historical C libraries which:
+
+ - place it in an external library (-lpthread)
+ - play linker tricks with weak symbols at dynamic link time
+
+ The support for real-time features (a.k.a. -lrt) is also bundled in the C library.
+
+ The implementation is based on futexes and strives to provide *very* short code paths
+ for common operations. Notable features are the following:
+
+ - pthread_mutex_t, pthread_cond_t are only 4 bytes each.
+
+ - Normal, recursive and error-check mutexes are supported, and the code path
+ is heavily optimized for the normal case, which is used most of the time.
+
+ - Process-shared mutexes and condition variables are not supported.
+ Their implementation requires far more complexity and was absolutely
+ not needed for Android (which uses other inter-process synchronization
+ capabilities).
+
+ Note that they could be added in the future without breaking the ABI
+ by specifying more sophisticated code paths (which may make the common
+ paths slightly slower though).
+
+ - There is currently no support for read/write locks, priority-ceiling in
+ mutexes and other more advanced features. Again, the main idea being that
+ this was not needed for Android at all but could be added in the future.
+
+pthread_cancel():
+
+ pthread_cancel() will *not* be supported in Bionic, because doing this would
+ involve making the C library significantly bigger for very little benefit.
+
+ Consider that:
+
+ - A proper implementation must insert pthread cancellation checks in a lot
+ of different places of the C library. And conformance is very difficult to
+ test properly.
+
+ - A proper implementation must also clean up resources, like releasing memory,
+ or unlocking mutexes, properly if the cancellation happens in a complex
+ function (e.g. inside gethostbyname() or fprintf() + complex formatting
+ rules). This tends to slow down the path of many functions.
+
+ - pthread cancellation cannot stop all threads: e.g. it can't do anything
+ against an infinite loop
+
+ - pthread cancellation itself has short-comings and isn't very portable
+ (see http://advogato.org/person/slamb/diary.html?start=49 for example).
+
+ All of this is contrary to the Bionic design goals. If your code depends on
+ thread cancellation, please consider alternatives.
+
+ Note however that Bionic does implement pthread_cleanup_push() and pthread_cleanup_pop(),
+ which can be used to handle cleanups that happen when a thread voluntarily exits
+ through pthread_exit() or returning from its main function.
+
+
+pthread_once():
+
+ Do not call fork() within a callback provided to pthread_once(). Doing this
+ may result in a deadlock in the child process the next time it calls pthread_once().
+
+ Also, you can't throw a C++ Exception from the callback (see C++ Exception Support
+ below).
+
+ The current implementation of pthread_once() lacks the necessary support of
+ multi-core-safe double-checked-locking (read and write barriers).
+
+
+Thread-specific data
+
+ The thread-specific storage only provides for a bit less than 64 pthread_key_t
+ objects to each process. The implementation provides 64 real slots but also
+ uses about 5 of them (exact number may depend on implementation) for its
+ own use (e.g. two slots are pre-allocated by the C library to speed-up the
+ Android OpenGL sub-system).
+
+ Note that Posix mandates a minimum of 128 slots, but we do not claim to be
+ Posix-compliant.
+
+ Except for the main thread, the TLS area is stored at the top of the stack. See
+ comments in bionic/libc/bionic/pthread.c for details.
+
+ At the moment, thread-local storage defined through the __thread compiler keyword
+ is not supported by the Bionic C library and dynamic linker.
+
+
+Multi-core support
+
+ At the moment, Bionic does not provide or use read/write memory barriers.
+ This means that using it on certain multi-core systems might not be supported,
+ depending on its exact CPU architecture.
+
+
+Android-specific features:
+
+ Bionic provides a small number of Android-specific features to its clients:
+
+ - access to system properties:
+
+ Android provides a simple shared value/key space to all processes on the
+ system. It stores a liberal number of 'properties', each of them being a
+ simple size-limited string that can be associated to a size-limited string
+ value.
+
+ The header <sys/system_properties.h> can be used to read system properties
+ and also defines the maximum size of keys and values.
+
+ - Android-specific user/group management:
+
+ There is no /etc/passwd or /etc/groups in Android. By design, it is meant to
+ be used by a single handset user. On the other hand, Android uses the Linux
+ user/group management features extensively to secure process permissions,
+ like access to various filesystem directories.
+
+ In the Android scheme, each installed application gets its own uid_t/gid_t
+ starting from 10000; lower numerical ids are reserved for system daemons.
+
+ getpwnam() recognizes some hard-coded subsystems names (e.g. "radio") and
+ will translate them to their low-user-id values. It also recognizes "app_1234"
+ as the synthetic name of the application that was installed with uid 10000 + 1234,
+ which is 11234. getgrnam() works similarly
+
+ getgrouplist() will always return a single group for any user name, which is
+ the one passed as an input parameter.
+
+ getgrgid() will similarly only return a structure that contains a single-element
+ members list, corresponding to the user with the same numerical value than the
+ group.
+
+ See bionic/libc/bionic/stubs.c for more details.
+
+ - getservent()
+
+ There is no /etc/services on Android. Instead the C library embeds a constant
+ list of services in its executable, which is parsed on demand by the various
+ functions that depend on it. See bionic/libc/netbsd/net/getservent.c and
+ bionic/libc/netbsd/net/services.h
+
+ The list of services defined internally might change liberally in the future.
+ This feature is mostly historically and is very rarely used.
+
+ The getservent() returns thread-local data. getservbyport() and getservbyname()
+ are also implemented in a similar fashion.
+
+ - getprotoent()
+
+ There is no /etc/protocol on Android. Bionic does not currently implement
+ getprotoent() and related functions. If we add it, it will likely be done
+ in a way similar to getservent()
+
+DNS resolver:
+
+ Bionic uses a NetBSD-derived resolver library which has been modified in the following
+ ways:
+
+ - don't implement the name-server-switch feature (a.k.a. <nsswitch.h>)
+
+ - read /system/etc/resolv.conf instead of /etc/resolv.conf
+
+ - read the list of servers from system properties. the code looks for
+ 'net.dns1', 'net.dns2', etc.. Each property should contain the IP address
+ of a DNS server.
+
+ these properties are set/modified by other parts of the Android system
+ (e.g. the dhcpd daemon).
+
+ the implementation also supports per-process DNS server list, using the
+ properties 'net.dns1.<pid>', 'net.dns2.<pid>', etc... Where <pid> stands
+ for the numerical ID of the current process.
+
+ - when performing a query, use a properly randomized Query ID (instead of
+ a incremented one), for increased security.
+
+ - when performing a query, bind the local client socket to a random port
+ for increased security.
+
+ - get rid of *many* unfortunate thread-safety issues in the original code
+
+ Bionic does *not* expose implementation details of its DNS resolver; the content
+ of <arpa/nameser.h> is intentionally blank. The resolver implementation might
+ change completely in the future.
+
+
+PThread Real-Time Timers:
+
+ timer_create(), timer_gettime(), timer_settime() and timer_getoverrun() are
+ supported.
+
+ Bionic also now supports SIGEV_THREAD real-time timers (see timer_create()).
+ The implementation simply uses a single thread per timer, unlike GLibc which
+ uses complex heuristics to try to use the less threads possible when several
+ timers with compatible properties are used.
+
+ This means that if your code uses a lot of SIGEV_THREAD timers, your program
+ may consume a lot of memory. However, if your program needs many of these timers,
+ it'd better handle timeout events directly instead.
+
+ Other timers (e.g. SIGEV_SIGNAL) are handled by the kernel and use much less
+ system resources.
+
+
+Binary Compatibility:
+
+ Bionic is *not* in any way binary-compatible with the GNU C Library, ucLibc or any
+ known Linux C library. This means several things:
+
+ - You cannot expect to build something against the GNU C Library headers and have
+ it dynamically link properly to Bionic later.
+
+ - You should *really* use the Android toolchain to build your program against Bionic.
+ The toolchain deals with many important details that are crucial to get something
+ working properly.
+
+ Failure to do so will usually result in the inability to run or link your program,
+ or even runtime crashes. Several random web pages on the Internet describe how you
+ can succesfully write a "hello-world" program with the ARM GNU toolchain. These
+ examples usually work by chance, if anything else, and you should not follow these
+ instructions unless you want to waste a lot of your time in the process.
+
+ Note however that you *can* generate a binary that is built against the GNU C Library
+ headers and then statically linked to it. The corresponding executable should be able
+ to run (if it doesn't use dlopen()/dlsym())
+
+Dynamic Linker:
+
+ Bionic comes with its own dynamic linker (just like ld.so on Linux really comes from
+ GLibc). This linker does not support all the relocations generated by other GCC ARM
+ toolchains.
+
+C++ Exceptions Support:
+
+ At the moment, Bionic doesn't support C++ exceptions, what this really means is the
+ following:
+
+ - If pthread_once() is called with a C++ callback that throws an exception,
+ then the C library will keep the corresponding pthread_once_t mutex locked.
+ Any further call to pthread_once() will result in a deadlock.
+
+ A proper implementation should be able to register a C++ exception cleanup
+ handler before the callback to properly unlock the pthread_once_t. Unfortunately
+ this requires tricky assembly code that is highly dependent on the compiler.
+
+ This feature is not planned to be supported anytime soon.
+
+ - The same problem may arise if you throw an exception within a callback called
+ from the C library. Fortunately, these cases are very rare in the real-world,
+ but any callback you provide to the C library should *not* throw an exception.
+
+ - Bionic lacks a few support functions to have exception support work properly.
+
+Include Paths:
+
+ The Android build system should automatically provide the necessary include paths
+ required to build against the C library headers. However, if you want to do that
+ yourself, you will need to add:
+
+ libc/arch-$ARCH/include
+ libc/include
+ libc/kernel/common
+ libc/kernel/arch-$ARCH
+
+ to your C include path.
diff --git a/libc/include/pthread.h b/libc/include/pthread.h
index 9c40099..e3afdae 100644
--- a/libc/include/pthread.h
+++ b/libc/include/pthread.h
@@ -97,6 +97,9 @@ typedef volatile int pthread_once_t;
#define PTHREAD_PROCESS_PRIVATE 0
#define PTHREAD_PROCESS_SHARED 1
+#define PTHREAD_SCOPE_SYSTEM 0
+#define PTHREAD_SCOPE_PROCESS 1
+
/*
* Prototypes
*/
@@ -128,6 +131,9 @@ int pthread_attr_getstack(pthread_attr_t const * attr, void ** stackaddr, size_t
int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size);
int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size);
+int pthread_attr_setscope(pthread_attr_t *attr, int scope);
+int pthread_attr_getscope(pthread_attr_t const *attr);
+
int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr);
int pthread_create(pthread_t *thread, pthread_attr_t const * attr,
diff --git a/libc/include/string.h b/libc/include/string.h
index 435923b..613dcd7 100644
--- a/libc/include/string.h
+++ b/libc/include/string.h
@@ -82,9 +82,8 @@ extern size_t strspn(const char *, const char *);
extern char* strsignal(int sig);
-/* Just declared to make libstdc++-v3 happy. */
-extern int strcoll (const char *, const char *);
-extern size_t strxfrm (char *, const char *, size_t);
+extern int strcoll(const char *, const char *);
+extern size_t strxfrm(char *, const char *, size_t);
__END_DECLS
diff --git a/libc/include/sys/stat.h b/libc/include/sys/stat.h
index 5e6363f..23ab5ae 100644
--- a/libc/include/sys/stat.h
+++ b/libc/include/sys/stat.h
@@ -71,6 +71,10 @@ struct stat {
unsigned long long st_ino;
};
+extern int chmod(const char *, mode_t);
+extern int fchmod(int, mode_t);
+extern int mkdir(const char *, mode_t);
+
extern int stat(const char *, struct stat *);
extern int fstat(int, struct stat *);
extern int lstat(const char *, struct stat *);
diff --git a/libc/include/sys/time.h b/libc/include/sys/time.h
index 4dee4da..1f010d4 100644
--- a/libc/include/sys/time.h
+++ b/libc/include/sys/time.h
@@ -56,7 +56,7 @@ extern int utimes(const char *, const struct timeval *);
#define timeradd(a, b, res) \
do { \
(res)->tv_sec = (a)->tv_sec + (b)->tv_sec; \
- (res)->tv_usec = (a)->tv_usec - (b)->tv_usec; \
+ (res)->tv_usec = (a)->tv_usec + (b)->tv_usec; \
if ((res)->tv_usec >= 1000000) { \
(res)->tv_usec -= 1000000; \
(res)->tv_sec += 1; \
diff --git a/libc/include/sys/types.h b/libc/include/sys/types.h
index 92b452c..b071ee9 100644
--- a/libc/include/sys/types.h
+++ b/libc/include/sys/types.h
@@ -65,6 +65,7 @@ typedef __kernel_nlink_t nlink_t;
#define _OFF_T_DEFINED_
typedef __kernel_off_t off_t;
typedef __kernel_loff_t loff_t;
+typedef loff_t off64_t; /* GLibc-specific */
typedef __kernel_pid_t pid_t;
diff --git a/libc/include/time64.h b/libc/include/time64.h
new file mode 100644
index 0000000..9da4bc7
--- /dev/null
+++ b/libc/include/time64.h
@@ -0,0 +1,54 @@
+/*
+
+Copyright (c) 2007-2008 Michael G Schwern
+
+This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
+
+The MIT License:
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
+
+Origin: http://code.google.com/p/y2038
+Modified for Bionic by the Android Open Source Project
+
+*/
+#ifndef TIME64_H
+#define TIME64_H
+
+#include <time.h>
+#include <stdint.h>
+
+typedef int64_t time64_t;
+
+struct tm *gmtime64_r (const time64_t *, struct tm *);
+struct tm *localtime64_r (const time64_t *, struct tm *);
+struct tm *gmtime64 (const time64_t *);
+struct tm *localtime64 (const time64_t *);
+
+char *asctime64 (const struct tm *);
+char *asctime64_r (const struct tm *, char *);
+
+char *ctime64 (const time64_t*);
+char *ctime64_r (const time64_t*, char*);
+
+time64_t timegm64 (const struct tm *);
+time64_t mktime64 (const struct tm *);
+time64_t timelocal64 (const struct tm *);
+
+#endif /* TIME64_H */
diff --git a/libc/include/unistd.h b/libc/include/unistd.h
index b6d70cc..1ada37e 100644
--- a/libc/include/unistd.h
+++ b/libc/include/unistd.h
@@ -34,6 +34,7 @@
#include <sys/select.h>
#include <sys/sysconf.h>
#include <linux/capability.h>
+#include <pathconf.h>
__BEGIN_DECLS
@@ -111,9 +112,6 @@ extern int link(const char *, const char *);
extern int unlink(const char *);
extern int chdir(const char *);
extern int fchdir(int);
-extern int chmod(const char *, mode_t);
-extern int fchmod(int, mode_t);
-extern int mkdir(const char *, mode_t);
extern int rmdir(const char *);
extern int pipe(int *);
extern int chroot(const char *);
diff --git a/libc/string/strcoll.c b/libc/string/strcoll.c
new file mode 100755
index 0000000..365cad5
--- /dev/null
+++ b/libc/string/strcoll.c
@@ -0,0 +1,40 @@
+/*
+ * Copyright (C) 2009 The Android Open Source Project
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+#include <string.h>
+
+/*
+ * Compare strings using the current locale. Since Bionic really does not
+ * support locales, we assume we always use the C locale and call strcmp.
+ *
+ * This function is provided to make libstdc++-v3 usable.
+ */
+int
+strcoll(const char *s1, const char *s2)
+{
+ return strcmp (s1, s2);
+}
diff --git a/libc/string/strxfrm.c b/libc/string/strxfrm.c
new file mode 100755
index 0000000..f1843b5
--- /dev/null
+++ b/libc/string/strxfrm.c
@@ -0,0 +1,47 @@
+/*
+ * Copyright (C) 2009 The Android Open Source Project
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+#include <string.h>
+
+/*
+ * Transform string s2 to string s1 using the current locale so that
+ * strcmp of transformed strings yields the same result as strcoll.
+ * Since Bionic really does not support locales, we assume we always use
+ * the C locale.
+ *
+ * This function is provided to make libstdc++-v3 usable.
+ */
+size_t
+strxfrm(char *s1, const char *s2, size_t n)
+{
+ size_t len = strlen(s2) + 1;
+
+ if (len < n)
+ n = len;
+ memcpy(s1, s2, n);
+ return len;
+}