diff options
-rw-r--r-- | libstdc++/src/one_time_construction.cpp | 92 |
1 files changed, 74 insertions, 18 deletions
diff --git a/libstdc++/src/one_time_construction.cpp b/libstdc++/src/one_time_construction.cpp index 2a44c79..00adce9 100644 --- a/libstdc++/src/one_time_construction.cpp +++ b/libstdc++/src/one_time_construction.cpp @@ -10,46 +10,102 @@ #include <stddef.h> #include <sys/atomics.h> +#include <endian.h> #include <bionic_futex.h> #include <bionic_atomic_inline.h> -extern "C" int __cxa_guard_acquire(int volatile * gv) +// ARM C++ ABI and Itanium/x86 C++ ABI has different definition for +// one time construction: +// +// ARM C++ ABI defines the LSB of guard variable should be tested +// by compiler-generated code before calling __cxa_guard_acquire et al. +// +// The Itanium/x86 C++ ABI defines the low-order _byte_ should be +// tested instead. +// +// Meanwhile, guard variable are 32bit aligned for ARM, and 64bit +// aligned for x86. +// +// Reference documentation: +// +// section 3.2.3 of ARM IHI 0041C (for ARM) +// section 3.3.2 of the Itanium C++ ABI specification v1.83 (for x86). +// +// There is no C++ ABI available for other ARCH. But the gcc source +// shows all other ARCH follow the definition of Itanium/x86 C++ ABI. + + +#if defined(__arm__) +// The ARM C++ ABI mandates that guard variable are +// 32-bit aligned, 32-bit values. And only its LSB is tested by +// the compiler-generated code before calling +// __cxa_guard_acquire. +// +typedef union { + int volatile state; + int32_t aligner; +} _guard_t; + +const static int ready = 0x1; +const static int pending = 0x2; +const static int waiting = 0x6; + +#else // GCC sources indicates all none-arm follow the same ABI +// The Itanium/x86 C++ ABI mandates that guard variables +// are 64-bit aligned, 64-bit values. Also, the least-significant +// byte is tested by the compiler-generated code before, we calling +// __cxa_guard_acquire. We can access it through the first +// 32-bit word in the union below. +// +typedef union { + int volatile state; + int64_t aligner; +} _guard_t; + +const static int ready = letoh32(0x1); +const static int pending = letoh32(0x100); +const static int waiting = letoh32(0x10000); +#endif + +extern "C" int __cxa_guard_acquire(_guard_t* gv) { - // 0 -> 2, return 1 - // 2 -> 6, wait and return 0 - // 6 untouched, wait and return 0 - // 1 untouched, return 0 + // 0 -> pending, return 1 + // pending -> waiting, wait and return 0 + // waiting: untouched, wait and return 0 + // ready: untouched, return 0 + retry: - if (__atomic_cmpxchg(0, 0x2, gv) == 0) { + if (__atomic_cmpxchg(0, pending, &gv->state) == 0) { ANDROID_MEMBAR_FULL(); return 1; } - __atomic_cmpxchg(0x2, 0x6, gv); // Indicate there is a waiter - __futex_wait(gv, 0x6, NULL); + __atomic_cmpxchg(pending, waiting, &gv->state); // Indicate there is a waiter + __futex_wait(&gv->state, waiting, NULL); - if(*gv != 1) // __cxa_guard_abort was called, let every thread try since there is no return code for this condition + if (gv->state != ready) // __cxa_guard_abort was called, let every thread try since there is no return code for this condition goto retry; ANDROID_MEMBAR_FULL(); return 0; } -extern "C" void __cxa_guard_release(int volatile * gv) +extern "C" void __cxa_guard_release(_guard_t* gv) { - // 2 -> 1 - // 6 -> 1, and wake + // pending -> ready + // waiting -> ready, and wake + ANDROID_MEMBAR_FULL(); - if (__atomic_cmpxchg(0x2, 0x1, gv) == 0) { + if (__atomic_cmpxchg(pending, ready, &gv->state) == 0) { return; } - *gv = 0x1; - __futex_wake(gv, 0x7fffffff); + gv->state = ready; + __futex_wake(&gv->state, 0x7fffffff); } -extern "C" void __cxa_guard_abort(int volatile * gv) +extern "C" void __cxa_guard_abort(_guard_t* gv) { ANDROID_MEMBAR_FULL(); - *gv = 0; - __futex_wake(gv, 0x7fffffff); + gv->state= 0; + __futex_wake(&gv->state, 0x7fffffff); } |