summaryrefslogtreecommitdiffstats
path: root/libc/bionic/pthread.c
diff options
context:
space:
mode:
Diffstat (limited to 'libc/bionic/pthread.c')
-rw-r--r--libc/bionic/pthread.c1587
1 files changed, 0 insertions, 1587 deletions
diff --git a/libc/bionic/pthread.c b/libc/bionic/pthread.c
deleted file mode 100644
index ec3c459..0000000
--- a/libc/bionic/pthread.c
+++ /dev/null
@@ -1,1587 +0,0 @@
-/*
- * Copyright (C) 2008 The Android Open Source Project
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
- * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
- * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
- * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
-#include <sys/types.h>
-#include <unistd.h>
-#include <signal.h>
-#include <stdint.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <errno.h>
-#include <sys/atomics.h>
-#include <bionic_tls.h>
-#include <sys/mman.h>
-#include <pthread.h>
-#include <time.h>
-#include "pthread_internal.h"
-#include "thread_private.h"
-#include <limits.h>
-#include <memory.h>
-#include <assert.h>
-#include <malloc.h>
-
-extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
-extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
-extern void _exit_thread(int retCode);
-extern int __set_errno(int);
-
-void _thread_created_hook(pid_t thread_id) __attribute__((noinline));
-
-#define PTHREAD_ATTR_FLAG_DETACHED 0x00000001
-#define PTHREAD_ATTR_FLAG_USER_STACK 0x00000002
-
-#define DEFAULT_STACKSIZE (1024 * 1024)
-#define STACKBASE 0x10000000
-
-static uint8_t * gStackBase = (uint8_t *)STACKBASE;
-
-static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
-
-
-static const pthread_attr_t gDefaultPthreadAttr = {
- .flags = 0,
- .stack_base = NULL,
- .stack_size = DEFAULT_STACKSIZE,
- .guard_size = PAGE_SIZE,
- .sched_policy = SCHED_NORMAL,
- .sched_priority = 0
-};
-
-#define INIT_THREADS 1
-
-static pthread_internal_t* gThreadList = NULL;
-static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
-static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
-
-
-/* we simply malloc/free the internal pthread_internal_t structures. we may
- * want to use a different allocation scheme in the future, but this one should
- * be largely enough
- */
-static pthread_internal_t*
-_pthread_internal_alloc(void)
-{
- pthread_internal_t* thread;
-
- thread = calloc( sizeof(*thread), 1 );
- if (thread)
- thread->intern = 1;
-
- return thread;
-}
-
-static void
-_pthread_internal_free( pthread_internal_t* thread )
-{
- if (thread && thread->intern) {
- thread->intern = 0; /* just in case */
- free (thread);
- }
-}
-
-
-static void
-_pthread_internal_remove_locked( pthread_internal_t* thread )
-{
- thread->next->pref = thread->pref;
- thread->pref[0] = thread->next;
-}
-
-static void
-_pthread_internal_remove( pthread_internal_t* thread )
-{
- pthread_mutex_lock(&gThreadListLock);
- _pthread_internal_remove_locked(thread);
- pthread_mutex_unlock(&gThreadListLock);
-}
-
-static void
-_pthread_internal_add( pthread_internal_t* thread )
-{
- pthread_mutex_lock(&gThreadListLock);
- thread->pref = &gThreadList;
- thread->next = thread->pref[0];
- if (thread->next)
- thread->next->pref = &thread->next;
- thread->pref[0] = thread;
- pthread_mutex_unlock(&gThreadListLock);
-}
-
-pthread_internal_t*
-__get_thread(void)
-{
- void** tls = (void**)__get_tls();
-
- return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
-}
-
-
-void*
-__get_stack_base(int *p_stack_size)
-{
- pthread_internal_t* thread = __get_thread();
-
- *p_stack_size = thread->attr.stack_size;
- return thread->attr.stack_base;
-}
-
-
-void __init_tls(void** tls, void* thread)
-{
- int nn;
-
- ((pthread_internal_t*)thread)->tls = tls;
-
- // slot 0 must point to the tls area, this is required by the implementation
- // of the x86 Linux kernel thread-local-storage
- tls[TLS_SLOT_SELF] = (void*)tls;
- tls[TLS_SLOT_THREAD_ID] = thread;
- for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
- tls[nn] = 0;
-
- __set_tls( (void*)tls );
-}
-
-
-/*
- * This trampoline is called from the assembly clone() function
- */
-void __thread_entry(int (*func)(void*), void *arg, void **tls)
-{
- int retValue;
- pthread_internal_t * thrInfo;
-
- // Wait for our creating thread to release us. This lets it have time to
- // notify gdb about this thread before it starts doing anything.
- pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
- pthread_mutex_lock(start_mutex);
- pthread_mutex_destroy(start_mutex);
-
- thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
-
- __init_tls( tls, thrInfo );
-
- pthread_exit( (void*)func(arg) );
-}
-
-void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
-{
- if (attr == NULL) {
- thread->attr = gDefaultPthreadAttr;
- } else {
- thread->attr = *attr;
- }
- thread->attr.stack_base = stack_base;
- thread->kernel_id = kernel_id;
-
- // set the scheduling policy/priority of the thread
- if (thread->attr.sched_policy != SCHED_NORMAL) {
- struct sched_param param;
- param.sched_priority = thread->attr.sched_priority;
- sched_setscheduler(kernel_id, thread->attr.sched_policy, &param);
- }
-
- pthread_cond_init(&thread->join_cond, NULL);
- thread->join_count = 0;
-
- thread->cleanup_stack = NULL;
-
- _pthread_internal_add(thread);
-}
-
-
-/* XXX stacks not reclaimed if thread spawn fails */
-/* XXX stacks address spaces should be reused if available again */
-
-static void *mkstack(size_t size, size_t guard_size)
-{
- void * stack;
-
- pthread_mutex_lock(&mmap_lock);
-
- stack = mmap((void *)gStackBase, size,
- PROT_READ | PROT_WRITE,
- MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
- -1, 0);
-
- if(stack == MAP_FAILED) {
- stack = NULL;
- goto done;
- }
-
- if(mprotect(stack, guard_size, PROT_NONE)){
- munmap(stack, size);
- stack = NULL;
- goto done;
- }
-
-done:
- pthread_mutex_unlock(&mmap_lock);
- return stack;
-}
-
-/*
- * Create a new thread. The thread's stack is layed out like so:
- *
- * +---------------------------+
- * | pthread_internal_t |
- * +---------------------------+
- * | |
- * | TLS area |
- * | |
- * +---------------------------+
- * | |
- * . .
- * . stack area .
- * . .
- * | |
- * +---------------------------+
- * | guard page |
- * +---------------------------+
- *
- * note that TLS[0] must be a pointer to itself, this is required
- * by the thread-local storage implementation of the x86 Linux
- * kernel, where the TLS pointer is read by reading fs:[0]
- */
-int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
- void *(*start_routine)(void *), void * arg)
-{
- char* stack;
- void** tls;
- int tid;
- pthread_mutex_t * start_mutex;
- pthread_internal_t * thread;
- int madestack = 0;
- int old_errno = errno;
-
- /* this will inform the rest of the C library that at least one thread
- * was created. this will enforce certain functions to acquire/release
- * locks (e.g. atexit()) to protect shared global structures.
- *
- * this works because pthread_create() is not called by the C library
- * initialization routine that sets up the main thread's data structures.
- */
- __isthreaded = 1;
-
- thread = _pthread_internal_alloc();
- if (thread == NULL)
- return ENOMEM;
-
- if (attr == NULL) {
- attr = &gDefaultPthreadAttr;
- }
-
- // make sure the stack is PAGE_SIZE aligned
- size_t stackSize = (attr->stack_size +
- (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
-
- if (!attr->stack_base) {
- stack = mkstack(stackSize, attr->guard_size);
- if(stack == NULL) {
- _pthread_internal_free(thread);
- return ENOMEM;
- }
- madestack = 1;
- } else {
- stack = attr->stack_base;
- }
-
- // Make room for TLS
- tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
-
- // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
- // it from doing anything until after we notify the debugger about it
- start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
- pthread_mutex_init(start_mutex, NULL);
- pthread_mutex_lock(start_mutex);
-
- tls[TLS_SLOT_THREAD_ID] = thread;
-
- tid = __pthread_clone((int(*)(void*))start_routine, tls,
- CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
- | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
- arg);
-
- if(tid < 0) {
- int result;
- if (madestack)
- munmap(stack, stackSize);
- _pthread_internal_free(thread);
- result = errno;
- errno = old_errno;
- return result;
- }
-
- _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
-
- if (!madestack)
- thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
-
- // Notify any debuggers about the new thread
- pthread_mutex_lock(&gDebuggerNotificationLock);
- _thread_created_hook(tid);
- pthread_mutex_unlock(&gDebuggerNotificationLock);
-
- // Let the thread do it's thing
- pthread_mutex_unlock(start_mutex);
-
- *thread_out = (pthread_t)thread;
- return 0;
-}
-
-
-int pthread_attr_init(pthread_attr_t * attr)
-{
- *attr = gDefaultPthreadAttr;
- return 0;
-}
-
-int pthread_attr_destroy(pthread_attr_t * attr)
-{
- memset(attr, 0x42, sizeof(pthread_attr_t));
- return 0;
-}
-
-int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
-{
- if (state == PTHREAD_CREATE_DETACHED) {
- attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
- } else if (state == PTHREAD_CREATE_JOINABLE) {
- attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
- } else {
- return EINVAL;
- }
- return 0;
-}
-
-int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
-{
- *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
- ? PTHREAD_CREATE_DETACHED
- : PTHREAD_CREATE_JOINABLE;
- return 0;
-}
-
-int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
-{
- attr->sched_policy = policy;
- return 0;
-}
-
-int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
-{
- *policy = attr->sched_policy;
- return 0;
-}
-
-int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
-{
- attr->sched_priority = param->sched_priority;
- return 0;
-}
-
-int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
-{
- param->sched_priority = attr->sched_priority;
- return 0;
-}
-
-int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
-{
- if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
- return EINVAL;
- }
- attr->stack_size = stack_size;
- return 0;
-}
-
-int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
-{
- *stack_size = attr->stack_size;
- return 0;
-}
-
-int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
-{
-#if 1
- // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
- return ENOSYS;
-#else
- if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
- return EINVAL;
- }
- attr->stack_base = stack_addr;
- return 0;
-#endif
-}
-
-int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
-{
- *stack_addr = attr->stack_base + attr->stack_size;
- return 0;
-}
-
-int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
-{
- if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
- return EINVAL;
- }
- if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
- return EINVAL;
- }
- attr->stack_base = stack_base;
- attr->stack_size = stack_size;
- return 0;
-}
-
-int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
-{
- *stack_base = attr->stack_base;
- *stack_size = attr->stack_size;
- return 0;
-}
-
-int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
-{
- if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
- return EINVAL;
- }
-
- attr->guard_size = guard_size;
- return 0;
-}
-
-int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
-{
- *guard_size = attr->guard_size;
- return 0;
-}
-
-int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
-{
- pthread_internal_t * thread = (pthread_internal_t *)thid;
- *attr = thread->attr;
- return 0;
-}
-
-int pthread_attr_setscope(pthread_attr_t *attr, int scope)
-{
- if (scope == PTHREAD_SCOPE_SYSTEM)
- return 0;
- if (scope == PTHREAD_SCOPE_PROCESS)
- return ENOTSUP;
-
- return EINVAL;
-}
-
-int pthread_attr_getscope(pthread_attr_t const *attr)
-{
- return PTHREAD_SCOPE_SYSTEM;
-}
-
-
-/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
- * and thread cancelation
- */
-
-void __pthread_cleanup_push( __pthread_cleanup_t* c,
- __pthread_cleanup_func_t routine,
- void* arg )
-{
- pthread_internal_t* thread = __get_thread();
-
- c->__cleanup_routine = routine;
- c->__cleanup_arg = arg;
- c->__cleanup_prev = thread->cleanup_stack;
- thread->cleanup_stack = c;
-}
-
-void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute )
-{
- pthread_internal_t* thread = __get_thread();
-
- thread->cleanup_stack = c->__cleanup_prev;
- if (execute)
- c->__cleanup_routine(c->__cleanup_arg);
-}
-
-/* used by pthread_exit() to clean all TLS keys of the current thread */
-static void pthread_key_clean_all(void);
-
-void pthread_exit(void * retval)
-{
- pthread_internal_t* thread = __get_thread();
- void* stack_base = thread->attr.stack_base;
- int stack_size = thread->attr.stack_size;
- int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
-
- // call the cleanup handlers first
- while (thread->cleanup_stack) {
- __pthread_cleanup_t* c = thread->cleanup_stack;
- thread->cleanup_stack = c->__cleanup_prev;
- c->__cleanup_routine(c->__cleanup_arg);
- }
-
- // call the TLS destructors, it is important to do that before removing this
- // thread from the global list. this will ensure that if someone else deletes
- // a TLS key, the corresponding value will be set to NULL in this thread's TLS
- // space (see pthread_key_delete)
- pthread_key_clean_all();
-
- // if the thread is detached, destroy the pthread_internal_t
- // otherwise, keep it in memory and signal any joiners
- if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
- _pthread_internal_remove(thread);
- _pthread_internal_free(thread);
- } else {
- /* the join_count field is used to store the number of threads waiting for
- * the termination of this thread with pthread_join(),
- *
- * if it is positive we need to signal the waiters, and we do not touch
- * the count (it will be decremented by the waiters, the last one will
- * also remove/free the thread structure
- *
- * if it is zero, we set the count value to -1 to indicate that the
- * thread is in 'zombie' state: it has stopped executing, and its stack
- * is gone (as well as its TLS area). when another thread calls pthread_join()
- * on it, it will immediately free the thread and return.
- */
- pthread_mutex_lock(&gThreadListLock);
- thread->return_value = retval;
- if (thread->join_count > 0) {
- pthread_cond_broadcast(&thread->join_cond);
- } else {
- thread->join_count = -1; /* zombie thread */
- }
- pthread_mutex_unlock(&gThreadListLock);
- }
-
- // destroy the thread stack
- if (user_stack)
- _exit_thread((int)retval);
- else
- _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
-}
-
-int pthread_join(pthread_t thid, void ** ret_val)
-{
- pthread_internal_t* thread = (pthread_internal_t*)thid;
- int count;
-
- // check that the thread still exists and is not detached
- pthread_mutex_lock(&gThreadListLock);
-
- for (thread = gThreadList; thread != NULL; thread = thread->next)
- if (thread == (pthread_internal_t*)thid)
- break;
-
- if (!thread) {
- pthread_mutex_unlock(&gThreadListLock);
- return ESRCH;
- }
-
- if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
- pthread_mutex_unlock(&gThreadListLock);
- return EINVAL;
- }
-
- /* wait for thread death when needed
- *
- * if the 'join_count' is negative, this is a 'zombie' thread that
- * is already dead and without stack/TLS
- *
- * otherwise, we need to increment 'join-count' and wait to be signaled
- */
- count = thread->join_count;
- if (count >= 0) {
- thread->join_count += 1;
- pthread_cond_wait( &thread->join_cond, &gThreadListLock );
- count = --thread->join_count;
- }
- if (ret_val)
- *ret_val = thread->return_value;
-
- /* remove thread descriptor when we're the last joiner or when the
- * thread was already a zombie.
- */
- if (count <= 0) {
- _pthread_internal_remove_locked(thread);
- _pthread_internal_free(thread);
- }
- pthread_mutex_unlock(&gThreadListLock);
- return 0;
-}
-
-int pthread_detach( pthread_t thid )
-{
- pthread_internal_t* thread;
- int result = 0;
- int flags;
-
- pthread_mutex_lock(&gThreadListLock);
- for (thread = gThreadList; thread != NULL; thread = thread->next)
- if (thread == (pthread_internal_t*)thid)
- goto FoundIt;
-
- result = ESRCH;
- goto Exit;
-
-FoundIt:
- do {
- flags = thread->attr.flags;
-
- if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
- /* thread is not joinable ! */
- result = EINVAL;
- goto Exit;
- }
- }
- while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
- (volatile int*)&thread->attr.flags ) != 0 );
-Exit:
- pthread_mutex_unlock(&gThreadListLock);
- return result;
-}
-
-pthread_t pthread_self(void)
-{
- return (pthread_t)__get_thread();
-}
-
-int pthread_equal(pthread_t one, pthread_t two)
-{
- return (one == two ? 1 : 0);
-}
-
-int pthread_getschedparam(pthread_t thid, int * policy,
- struct sched_param * param)
-{
- int old_errno = errno;
-
- pthread_internal_t * thread = (pthread_internal_t *)thid;
- int err = sched_getparam(thread->kernel_id, param);
- if (!err) {
- *policy = sched_getscheduler(thread->kernel_id);
- } else {
- err = errno;
- errno = old_errno;
- }
- return err;
-}
-
-int pthread_setschedparam(pthread_t thid, int policy,
- struct sched_param const * param)
-{
- pthread_internal_t * thread = (pthread_internal_t *)thid;
- int old_errno = errno;
- int ret;
-
- ret = sched_setscheduler(thread->kernel_id, policy, param);
- if (ret < 0) {
- ret = errno;
- errno = old_errno;
- }
- return ret;
-}
-
-
-int __futex_wait(volatile void *ftx, int val, const struct timespec *timeout);
-int __futex_wake(volatile void *ftx, int count);
-
-// mutex lock states
-//
-// 0: unlocked
-// 1: locked, no waiters
-// 2: locked, maybe waiters
-
-/* a mutex is implemented as a 32-bit integer holding the following fields
- *
- * bits: name description
- * 31-16 tid owner thread's kernel id (recursive and errorcheck only)
- * 15-14 type mutex type
- * 13-2 counter counter of recursive mutexes
- * 1-0 state lock state (0, 1 or 2)
- */
-
-
-#define MUTEX_OWNER(m) (((m)->value >> 16) & 0xffff)
-#define MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff)
-
-#define MUTEX_TYPE_MASK 0xc000
-#define MUTEX_TYPE_NORMAL 0x0000
-#define MUTEX_TYPE_RECURSIVE 0x4000
-#define MUTEX_TYPE_ERRORCHECK 0x8000
-
-#define MUTEX_COUNTER_SHIFT 2
-#define MUTEX_COUNTER_MASK 0x3ffc
-
-
-
-
-int pthread_mutexattr_init(pthread_mutexattr_t *attr)
-{
- if (attr) {
- *attr = PTHREAD_MUTEX_DEFAULT;
- return 0;
- } else {
- return EINVAL;
- }
-}
-
-int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
-{
- if (attr) {
- *attr = -1;
- return 0;
- } else {
- return EINVAL;
- }
-}
-
-int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
-{
- if (attr && *attr >= PTHREAD_MUTEX_NORMAL &&
- *attr <= PTHREAD_MUTEX_ERRORCHECK ) {
- *type = *attr;
- return 0;
- }
- return EINVAL;
-}
-
-int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
-{
- if (attr && type >= PTHREAD_MUTEX_NORMAL &&
- type <= PTHREAD_MUTEX_ERRORCHECK ) {
- *attr = type;
- return 0;
- }
- return EINVAL;
-}
-
-/* process-shared mutexes are not supported at the moment */
-
-int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
-{
- if (!attr)
- return EINVAL;
-
- return (pshared == PTHREAD_PROCESS_PRIVATE) ? 0 : ENOTSUP;
-}
-
-int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
-{
- if (!attr)
- return EINVAL;
-
- *pshared = PTHREAD_PROCESS_PRIVATE;
- return 0;
-}
-
-int pthread_mutex_init(pthread_mutex_t *mutex,
- const pthread_mutexattr_t *attr)
-{
- if ( mutex ) {
- if (attr == NULL) {
- mutex->value = MUTEX_TYPE_NORMAL;
- return 0;
- }
- switch ( *attr ) {
- case PTHREAD_MUTEX_NORMAL:
- mutex->value = MUTEX_TYPE_NORMAL;
- return 0;
-
- case PTHREAD_MUTEX_RECURSIVE:
- mutex->value = MUTEX_TYPE_RECURSIVE;
- return 0;
-
- case PTHREAD_MUTEX_ERRORCHECK:
- mutex->value = MUTEX_TYPE_ERRORCHECK;
- return 0;
- }
- }
- return EINVAL;
-}
-
-int pthread_mutex_destroy(pthread_mutex_t *mutex)
-{
- mutex->value = 0xdead10cc;
- return 0;
-}
-
-
-/*
- * Lock a non-recursive mutex.
- *
- * As noted above, there are three states:
- * 0 (unlocked, no contention)
- * 1 (locked, no contention)
- * 2 (locked, contention)
- *
- * Non-recursive mutexes don't use the thread-id or counter fields, and the
- * "type" value is zero, so the only bits that will be set are the ones in
- * the lock state field.
- */
-static __inline__ void
-_normal_lock(pthread_mutex_t* mutex)
-{
- /*
- * The common case is an unlocked mutex, so we begin by trying to
- * change the lock's state from 0 to 1. __atomic_cmpxchg() returns 0
- * if it made the swap successfully. If the result is nonzero, this
- * lock is already held by another thread.
- */
- if (__atomic_cmpxchg(0, 1, &mutex->value ) != 0) {
- /*
- * We want to go to sleep until the mutex is available, which
- * requires promoting it to state 2. We need to swap in the new
- * state value and then wait until somebody wakes us up.
- *
- * __atomic_swap() returns the previous value. We swap 2 in and
- * see if we got zero back; if so, we have acquired the lock. If
- * not, another thread still holds the lock and we wait again.
- *
- * The second argument to the __futex_wait() call is compared
- * against the current value. If it doesn't match, __futex_wait()
- * returns immediately (otherwise, it sleeps for a time specified
- * by the third argument; 0 means sleep forever). This ensures
- * that the mutex is in state 2 when we go to sleep on it, which
- * guarantees a wake-up call.
- */
- while (__atomic_swap(2, &mutex->value ) != 0)
- __futex_wait(&mutex->value, 2, 0);
- }
-}
-
-/*
- * Release a non-recursive mutex. The caller is responsible for determining
- * that we are in fact the owner of this lock.
- */
-static __inline__ void
-_normal_unlock(pthread_mutex_t* mutex)
-{
- /*
- * The mutex value will be 1 or (rarely) 2. We use an atomic decrement
- * to release the lock. __atomic_dec() returns the previous value;
- * if it wasn't 1 we have to do some additional work.
- */
- if (__atomic_dec(&mutex->value) != 1) {
- /*
- * Start by releasing the lock. The decrement changed it from
- * "contended lock" to "uncontended lock", which means we still
- * hold it, and anybody who tries to sneak in will push it back
- * to state 2.
- *
- * Once we set it to zero the lock is up for grabs. We follow
- * this with a __futex_wake() to ensure that one of the waiting
- * threads has a chance to grab it.
- *
- * This doesn't cause a race with the swap/wait pair in
- * _normal_lock(), because the __futex_wait() call there will
- * return immediately if the mutex value isn't 2.
- */
- mutex->value = 0;
-
- /*
- * Wake up one waiting thread. We don't know which thread will be
- * woken or when it'll start executing -- futexes make no guarantees
- * here. There may not even be a thread waiting.
- *
- * The newly-woken thread will replace the 0 we just set above
- * with 2, which means that when it eventually releases the mutex
- * it will also call FUTEX_WAKE. This results in one extra wake
- * call whenever a lock is contended, but lets us avoid forgetting
- * anyone without requiring us to track the number of sleepers.
- *
- * It's possible for another thread to sneak in and grab the lock
- * between the zero assignment above and the wake call below. If
- * the new thread is "slow" and holds the lock for a while, we'll
- * wake up a sleeper, which will swap in a 2 and then go back to
- * sleep since the lock is still held. If the new thread is "fast",
- * running to completion before we call wake, the thread we
- * eventually wake will find an unlocked mutex and will execute.
- * Either way we have correct behavior and nobody is orphaned on
- * the wait queue.
- */
- __futex_wake(&mutex->value, 1);
- }
-}
-
-static pthread_mutex_t __recursive_lock = PTHREAD_MUTEX_INITIALIZER;
-
-static void
-_recursive_lock(void)
-{
- _normal_lock( &__recursive_lock);
-}
-
-static void
-_recursive_unlock(void)
-{
- _normal_unlock( &__recursive_lock );
-}
-
-#define __likely(cond) __builtin_expect(!!(cond), 1)
-#define __unlikely(cond) __builtin_expect(!!(cond), 0)
-
-int pthread_mutex_lock(pthread_mutex_t *mutex)
-{
- if (__likely(mutex != NULL))
- {
- int mtype = (mutex->value & MUTEX_TYPE_MASK);
-
- if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
- _normal_lock(mutex);
- }
- else
- {
- int tid = __get_thread()->kernel_id;
-
- if ( tid == MUTEX_OWNER(mutex) )
- {
- int oldv, counter;
-
- if (mtype == MUTEX_TYPE_ERRORCHECK) {
- /* trying to re-lock a mutex we already acquired */
- return EDEADLK;
- }
- /*
- * We own the mutex, but other threads are able to change
- * the contents (e.g. promoting it to "contended"), so we
- * need to hold the global lock.
- */
- _recursive_lock();
- oldv = mutex->value;
- counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
- mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
- _recursive_unlock();
- }
- else
- {
- /*
- * If the new lock is available immediately, we grab it in
- * the "uncontended" state.
- */
- int new_lock_type = 1;
-
- for (;;) {
- int oldv;
-
- _recursive_lock();
- oldv = mutex->value;
- if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
- mutex->value = ((tid << 16) | mtype | new_lock_type);
- } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
- oldv ^= 3;
- mutex->value = oldv;
- }
- _recursive_unlock();
-
- if (oldv == mtype)
- break;
-
- /*
- * The lock was held, possibly contended by others. From
- * now on, if we manage to acquire the lock, we have to
- * assume that others are still contending for it so that
- * we'll wake them when we unlock it.
- */
- new_lock_type = 2;
-
- __futex_wait( &mutex->value, oldv, 0 );
- }
- }
- }
- return 0;
- }
- return EINVAL;
-}
-
-
-int pthread_mutex_unlock(pthread_mutex_t *mutex)
-{
- if (__likely(mutex != NULL))
- {
- int mtype = (mutex->value & MUTEX_TYPE_MASK);
-
- if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
- _normal_unlock(mutex);
- }
- else
- {
- int tid = __get_thread()->kernel_id;
-
- if ( tid == MUTEX_OWNER(mutex) )
- {
- int oldv;
-
- _recursive_lock();
- oldv = mutex->value;
- if (oldv & MUTEX_COUNTER_MASK) {
- mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
- oldv = 0;
- } else {
- mutex->value = mtype;
- }
- _recursive_unlock();
-
- if ((oldv & 3) == 2)
- __futex_wake( &mutex->value, 1 );
- }
- else {
- /* trying to unlock a lock we do not own */
- return EPERM;
- }
- }
- return 0;
- }
- return EINVAL;
-}
-
-
-int pthread_mutex_trylock(pthread_mutex_t *mutex)
-{
- if (__likely(mutex != NULL))
- {
- int mtype = (mutex->value & MUTEX_TYPE_MASK);
-
- if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
- {
- if (__atomic_cmpxchg(0, 1, &mutex->value) == 0)
- return 0;
-
- return EBUSY;
- }
- else
- {
- int tid = __get_thread()->kernel_id;
- int oldv;
-
- if ( tid == MUTEX_OWNER(mutex) )
- {
- int oldv, counter;
-
- if (mtype == MUTEX_TYPE_ERRORCHECK) {
- /* already locked by ourselves */
- return EDEADLK;
- }
-
- _recursive_lock();
- oldv = mutex->value;
- counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
- mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
- _recursive_unlock();
- return 0;
- }
-
- /* try to lock it */
- _recursive_lock();
- oldv = mutex->value;
- if (oldv == mtype) /* uncontended released lock => state 1 */
- mutex->value = ((tid << 16) | mtype | 1);
- _recursive_unlock();
-
- if (oldv != mtype)
- return EBUSY;
-
- return 0;
- }
- }
- return EINVAL;
-}
-
-
-/* XXX *technically* there is a race condition that could allow
- * XXX a signal to be missed. If thread A is preempted in _wait()
- * XXX after unlocking the mutex and before waiting, and if other
- * XXX threads call signal or broadcast UINT_MAX times (exactly),
- * XXX before thread A is scheduled again and calls futex_wait(),
- * XXX then the signal will be lost.
- */
-
-int pthread_cond_init(pthread_cond_t *cond,
- const pthread_condattr_t *attr)
-{
- cond->value = 0;
- return 0;
-}
-
-int pthread_cond_destroy(pthread_cond_t *cond)
-{
- cond->value = 0xdeadc04d;
- return 0;
-}
-
-int pthread_cond_broadcast(pthread_cond_t *cond)
-{
- __atomic_dec(&cond->value);
- __futex_wake(&cond->value, INT_MAX);
- return 0;
-}
-
-int pthread_cond_signal(pthread_cond_t *cond)
-{
- __atomic_dec(&cond->value);
- __futex_wake(&cond->value, 1);
- return 0;
-}
-
-int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
-{
- return pthread_cond_timedwait(cond, mutex, NULL);
-}
-
-int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
- pthread_mutex_t * mutex,
- const struct timespec *reltime)
-{
- int status;
- int oldvalue = cond->value;
-
- pthread_mutex_unlock(mutex);
- status = __futex_wait(&cond->value, oldvalue, reltime);
- pthread_mutex_lock(mutex);
-
- if (status == (-ETIMEDOUT)) return ETIMEDOUT;
- return 0;
-}
-
-int __pthread_cond_timedwait(pthread_cond_t *cond,
- pthread_mutex_t * mutex,
- const struct timespec *abstime,
- clockid_t clock)
-{
- struct timespec ts;
- struct timespec * tsp;
-
- if (abstime != NULL) {
- clock_gettime(clock, &ts);
- ts.tv_sec = abstime->tv_sec - ts.tv_sec;
- ts.tv_nsec = abstime->tv_nsec - ts.tv_nsec;
- if (ts.tv_nsec < 0) {
- ts.tv_sec--;
- ts.tv_nsec += 1000000000;
- }
- if((ts.tv_nsec < 0) || (ts.tv_sec < 0)) {
- return ETIMEDOUT;
- }
- tsp = &ts;
- } else {
- tsp = NULL;
- }
-
- return __pthread_cond_timedwait_relative(cond, mutex, tsp);
-}
-
-int pthread_cond_timedwait(pthread_cond_t *cond,
- pthread_mutex_t * mutex,
- const struct timespec *abstime)
-{
- return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
-}
-
-
-int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
- pthread_mutex_t * mutex,
- const struct timespec *abstime)
-{
- return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
-}
-
-int pthread_cond_timeout_np(pthread_cond_t *cond,
- pthread_mutex_t * mutex,
- unsigned msecs)
-{
- int oldvalue;
- struct timespec ts;
- int status;
-
- ts.tv_sec = msecs / 1000;
- ts.tv_nsec = (msecs % 1000) * 1000000;
-
- oldvalue = cond->value;
-
- pthread_mutex_unlock(mutex);
- status = __futex_wait(&cond->value, oldvalue, &ts);
- pthread_mutex_lock(mutex);
-
- if(status == (-ETIMEDOUT)) return ETIMEDOUT;
-
- return 0;
-}
-
-
-
-/* A technical note regarding our thread-local-storage (TLS) implementation:
- *
- * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
- * though the first TLSMAP_START keys are reserved for Bionic to hold
- * special thread-specific variables like errno or a pointer to
- * the current thread's descriptor.
- *
- * while stored in the TLS area, these entries cannot be accessed through
- * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
- *
- * also, some entries in the key table are pre-allocated (see tlsmap_lock)
- * to greatly simplify and speedup some OpenGL-related operations. though the
- * initialy value will be NULL on all threads.
- *
- * you can use pthread_getspecific()/setspecific() on these, and in theory
- * you could also call pthread_key_delete() as well, though this would
- * probably break some apps.
- *
- * The 'tlsmap_t' type defined below implements a shared global map of
- * currently created/allocated TLS keys and the destructors associated
- * with them. You should use tlsmap_lock/unlock to access it to avoid
- * any race condition.
- *
- * the global TLS map simply contains a bitmap of allocated keys, and
- * an array of destructors.
- *
- * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
- * pointers. the TLS area of the main thread is stack-allocated in
- * __libc_init_common, while the TLS area of other threads is placed at
- * the top of their stack in pthread_create.
- *
- * when pthread_key_create() is called, it finds the first free key in the
- * bitmap, then set it to 1, saving the destructor altogether
- *
- * when pthread_key_delete() is called. it will erase the key's bitmap bit
- * and its destructor, and will also clear the key data in the TLS area of
- * all created threads. As mandated by Posix, it is the responsability of
- * the caller of pthread_key_delete() to properly reclaim the objects that
- * were pointed to by these data fields (either before or after the call).
- *
- */
-
-/* TLS Map implementation
- */
-
-#define TLSMAP_START (TLS_SLOT_MAX_WELL_KNOWN+1)
-#define TLSMAP_SIZE BIONIC_TLS_SLOTS
-#define TLSMAP_BITS 32
-#define TLSMAP_WORDS ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
-#define TLSMAP_WORD(m,k) (m)->map[(k)/TLSMAP_BITS]
-#define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1)))
-
-/* this macro is used to quickly check that a key belongs to a reasonable range */
-#define TLSMAP_VALIDATE_KEY(key) \
- ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
-
-/* the type of tls key destructor functions */
-typedef void (*tls_dtor_t)(void*);
-
-typedef struct {
- int init; /* see comment in tlsmap_lock() */
- uint32_t map[TLSMAP_WORDS]; /* bitmap of allocated keys */
- tls_dtor_t dtors[TLSMAP_SIZE]; /* key destructors */
-} tlsmap_t;
-
-static pthread_mutex_t _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
-static tlsmap_t _tlsmap;
-
-/* lock the global TLS map lock and return a handle to it */
-static __inline__ tlsmap_t* tlsmap_lock(void)
-{
- tlsmap_t* m = &_tlsmap;
-
- pthread_mutex_lock(&_tlsmap_lock);
- /* we need to initialize the first entry of the 'map' array
- * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
- * when declaring _tlsmap is a bit awkward and is going to
- * produce warnings, so do it the first time we use the map
- * instead
- */
- if (__unlikely(!m->init)) {
- TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
- m->init = 1;
- }
- return m;
-}
-
-/* unlock the global TLS map */
-static __inline__ void tlsmap_unlock(tlsmap_t* m)
-{
- pthread_mutex_unlock(&_tlsmap_lock);
- (void)m; /* a good compiler is a happy compiler */
-}
-
-/* test to see wether a key is allocated */
-static __inline__ int tlsmap_test(tlsmap_t* m, int key)
-{
- return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
-}
-
-/* set the destructor and bit flag on a newly allocated key */
-static __inline__ void tlsmap_set(tlsmap_t* m, int key, tls_dtor_t dtor)
-{
- TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
- m->dtors[key] = dtor;
-}
-
-/* clear the destructor and bit flag on an existing key */
-static __inline__ void tlsmap_clear(tlsmap_t* m, int key)
-{
- TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
- m->dtors[key] = NULL;
-}
-
-/* allocate a new TLS key, return -1 if no room left */
-static int tlsmap_alloc(tlsmap_t* m, tls_dtor_t dtor)
-{
- int key;
-
- for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
- if ( !tlsmap_test(m, key) ) {
- tlsmap_set(m, key, dtor);
- return key;
- }
- }
- return -1;
-}
-
-
-int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
-{
- uint32_t err = ENOMEM;
- tlsmap_t* map = tlsmap_lock();
- int k = tlsmap_alloc(map, destructor_function);
-
- if (k >= 0) {
- *key = k;
- err = 0;
- }
- tlsmap_unlock(map);
- return err;
-}
-
-
-/* This deletes a pthread_key_t. note that the standard mandates that this does
- * not call the destructor of non-NULL key values. Instead, it is the
- * responsability of the caller to properly dispose of the corresponding data
- * and resources, using any mean it finds suitable.
- *
- * On the other hand, this function will clear the corresponding key data
- * values in all known threads. this prevents later (invalid) calls to
- * pthread_getspecific() to receive invalid/stale values.
- */
-int pthread_key_delete(pthread_key_t key)
-{
- uint32_t err;
- pthread_internal_t* thr;
- tlsmap_t* map;
-
- if (!TLSMAP_VALIDATE_KEY(key)) {
- return EINVAL;
- }
-
- map = tlsmap_lock();
-
- if (!tlsmap_test(map, key)) {
- err = EINVAL;
- goto err1;
- }
-
- /* clear value in all threads */
- pthread_mutex_lock(&gThreadListLock);
- for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
- /* avoid zombie threads with a negative 'join_count'. these are really
- * already dead and don't have a TLS area anymore.
- *
- * similarly, it is possible to have thr->tls == NULL for threads that
- * were just recently created through pthread_create() but whose
- * startup trampoline (__thread_entry) hasn't been run yet by the
- * scheduler. so check for this too.
- */
- if (thr->join_count < 0 || !thr->tls)
- continue;
-
- thr->tls[key] = NULL;
- }
- tlsmap_clear(map, key);
-
- pthread_mutex_unlock(&gThreadListLock);
- err = 0;
-
-err1:
- tlsmap_unlock(map);
- return err;
-}
-
-
-int pthread_setspecific(pthread_key_t key, const void *ptr)
-{
- int err = EINVAL;
- tlsmap_t* map;
-
- if (TLSMAP_VALIDATE_KEY(key)) {
- /* check that we're trying to set data for an allocated key */
- map = tlsmap_lock();
- if (tlsmap_test(map, key)) {
- ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
- err = 0;
- }
- tlsmap_unlock(map);
- }
- return err;
-}
-
-void * pthread_getspecific(pthread_key_t key)
-{
- if (!TLSMAP_VALIDATE_KEY(key)) {
- return NULL;
- }
-
- /* for performance reason, we do not lock/unlock the global TLS map
- * to check that the key is properly allocated. if the key was not
- * allocated, the value read from the TLS should always be NULL
- * due to pthread_key_delete() clearing the values for all threads.
- */
- return (void *)(((unsigned *)__get_tls())[key]);
-}
-
-/* Posix mandates that this be defined in <limits.h> but we don't have
- * it just yet.
- */
-#ifndef PTHREAD_DESTRUCTOR_ITERATIONS
-# define PTHREAD_DESTRUCTOR_ITERATIONS 4
-#endif
-
-/* this function is called from pthread_exit() to remove all TLS key data
- * from this thread's TLS area. this must call the destructor of all keys
- * that have a non-NULL data value (and a non-NULL destructor).
- *
- * because destructors can do funky things like deleting/creating other
- * keys, we need to implement this in a loop
- */
-static void pthread_key_clean_all(void)
-{
- tlsmap_t* map;
- void** tls = (void**)__get_tls();
- int rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
-
- map = tlsmap_lock();
-
- for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
- {
- int kk, count = 0;
-
- for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
- if ( tlsmap_test(map, kk) )
- {
- void* data = tls[kk];
- tls_dtor_t dtor = map->dtors[kk];
-
- if (data != NULL && dtor != NULL)
- {
- /* we need to clear the key data now, this will prevent the
- * destructor (or a later one) from seeing the old value if
- * it calls pthread_getspecific() for some odd reason
- *
- * we do not do this if 'dtor == NULL' just in case another
- * destructor function might be responsible for manually
- * releasing the corresponding data.
- */
- tls[kk] = NULL;
-
- /* because the destructor is free to call pthread_key_create
- * and/or pthread_key_delete, we need to temporarily unlock
- * the TLS map
- */
- tlsmap_unlock(map);
- (*dtor)(data);
- map = tlsmap_lock();
-
- count += 1;
- }
- }
- }
-
- /* if we didn't call any destructor, there is no need to check the
- * TLS data again
- */
- if (count == 0)
- break;
- }
- tlsmap_unlock(map);
-}
-
-// man says this should be in <linux/unistd.h>, but it isn't
-extern int tkill(int tid, int sig);
-
-int pthread_kill(pthread_t tid, int sig)
-{
- int ret;
- int old_errno = errno;
- pthread_internal_t * thread = (pthread_internal_t *)tid;
-
- ret = tkill(thread->kernel_id, sig);
- if (ret < 0) {
- ret = errno;
- errno = old_errno;
- }
-
- return ret;
-}
-
-extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t);
-
-int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
-{
- return __rt_sigprocmask(how, set, oset, _NSIG / 8);
-}
-
-
-int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid)
-{
- const int CLOCK_IDTYPE_BITS = 3;
- pthread_internal_t* thread = (pthread_internal_t*)tid;
-
- if (!thread)
- return ESRCH;
-
- *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
- return 0;
-}
-
-
-/* NOTE: this implementation doesn't support a init function that throws a C++ exception
- * or calls fork()
- */
-int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) )
-{
- static pthread_mutex_t once_lock = PTHREAD_MUTEX_INITIALIZER;
-
- if (*once_control == PTHREAD_ONCE_INIT) {
- _normal_lock( &once_lock );
- if (*once_control == PTHREAD_ONCE_INIT) {
- (*init_routine)();
- *once_control = ~PTHREAD_ONCE_INIT;
- }
- _normal_unlock( &once_lock );
- }
- return 0;
-}