diff options
Diffstat (limited to 'libc/bionic/pthread.c')
-rw-r--r-- | libc/bionic/pthread.c | 1587 |
1 files changed, 0 insertions, 1587 deletions
diff --git a/libc/bionic/pthread.c b/libc/bionic/pthread.c deleted file mode 100644 index ec3c459..0000000 --- a/libc/bionic/pthread.c +++ /dev/null @@ -1,1587 +0,0 @@ -/* - * Copyright (C) 2008 The Android Open Source Project - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE - * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, - * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS - * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED - * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, - * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT - * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - */ -#include <sys/types.h> -#include <unistd.h> -#include <signal.h> -#include <stdint.h> -#include <stdio.h> -#include <stdlib.h> -#include <errno.h> -#include <sys/atomics.h> -#include <bionic_tls.h> -#include <sys/mman.h> -#include <pthread.h> -#include <time.h> -#include "pthread_internal.h" -#include "thread_private.h" -#include <limits.h> -#include <memory.h> -#include <assert.h> -#include <malloc.h> - -extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg); -extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode); -extern void _exit_thread(int retCode); -extern int __set_errno(int); - -void _thread_created_hook(pid_t thread_id) __attribute__((noinline)); - -#define PTHREAD_ATTR_FLAG_DETACHED 0x00000001 -#define PTHREAD_ATTR_FLAG_USER_STACK 0x00000002 - -#define DEFAULT_STACKSIZE (1024 * 1024) -#define STACKBASE 0x10000000 - -static uint8_t * gStackBase = (uint8_t *)STACKBASE; - -static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER; - - -static const pthread_attr_t gDefaultPthreadAttr = { - .flags = 0, - .stack_base = NULL, - .stack_size = DEFAULT_STACKSIZE, - .guard_size = PAGE_SIZE, - .sched_policy = SCHED_NORMAL, - .sched_priority = 0 -}; - -#define INIT_THREADS 1 - -static pthread_internal_t* gThreadList = NULL; -static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER; -static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER; - - -/* we simply malloc/free the internal pthread_internal_t structures. we may - * want to use a different allocation scheme in the future, but this one should - * be largely enough - */ -static pthread_internal_t* -_pthread_internal_alloc(void) -{ - pthread_internal_t* thread; - - thread = calloc( sizeof(*thread), 1 ); - if (thread) - thread->intern = 1; - - return thread; -} - -static void -_pthread_internal_free( pthread_internal_t* thread ) -{ - if (thread && thread->intern) { - thread->intern = 0; /* just in case */ - free (thread); - } -} - - -static void -_pthread_internal_remove_locked( pthread_internal_t* thread ) -{ - thread->next->pref = thread->pref; - thread->pref[0] = thread->next; -} - -static void -_pthread_internal_remove( pthread_internal_t* thread ) -{ - pthread_mutex_lock(&gThreadListLock); - _pthread_internal_remove_locked(thread); - pthread_mutex_unlock(&gThreadListLock); -} - -static void -_pthread_internal_add( pthread_internal_t* thread ) -{ - pthread_mutex_lock(&gThreadListLock); - thread->pref = &gThreadList; - thread->next = thread->pref[0]; - if (thread->next) - thread->next->pref = &thread->next; - thread->pref[0] = thread; - pthread_mutex_unlock(&gThreadListLock); -} - -pthread_internal_t* -__get_thread(void) -{ - void** tls = (void**)__get_tls(); - - return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID]; -} - - -void* -__get_stack_base(int *p_stack_size) -{ - pthread_internal_t* thread = __get_thread(); - - *p_stack_size = thread->attr.stack_size; - return thread->attr.stack_base; -} - - -void __init_tls(void** tls, void* thread) -{ - int nn; - - ((pthread_internal_t*)thread)->tls = tls; - - // slot 0 must point to the tls area, this is required by the implementation - // of the x86 Linux kernel thread-local-storage - tls[TLS_SLOT_SELF] = (void*)tls; - tls[TLS_SLOT_THREAD_ID] = thread; - for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++) - tls[nn] = 0; - - __set_tls( (void*)tls ); -} - - -/* - * This trampoline is called from the assembly clone() function - */ -void __thread_entry(int (*func)(void*), void *arg, void **tls) -{ - int retValue; - pthread_internal_t * thrInfo; - - // Wait for our creating thread to release us. This lets it have time to - // notify gdb about this thread before it starts doing anything. - pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF]; - pthread_mutex_lock(start_mutex); - pthread_mutex_destroy(start_mutex); - - thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID]; - - __init_tls( tls, thrInfo ); - - pthread_exit( (void*)func(arg) ); -} - -void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base) -{ - if (attr == NULL) { - thread->attr = gDefaultPthreadAttr; - } else { - thread->attr = *attr; - } - thread->attr.stack_base = stack_base; - thread->kernel_id = kernel_id; - - // set the scheduling policy/priority of the thread - if (thread->attr.sched_policy != SCHED_NORMAL) { - struct sched_param param; - param.sched_priority = thread->attr.sched_priority; - sched_setscheduler(kernel_id, thread->attr.sched_policy, ¶m); - } - - pthread_cond_init(&thread->join_cond, NULL); - thread->join_count = 0; - - thread->cleanup_stack = NULL; - - _pthread_internal_add(thread); -} - - -/* XXX stacks not reclaimed if thread spawn fails */ -/* XXX stacks address spaces should be reused if available again */ - -static void *mkstack(size_t size, size_t guard_size) -{ - void * stack; - - pthread_mutex_lock(&mmap_lock); - - stack = mmap((void *)gStackBase, size, - PROT_READ | PROT_WRITE, - MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, - -1, 0); - - if(stack == MAP_FAILED) { - stack = NULL; - goto done; - } - - if(mprotect(stack, guard_size, PROT_NONE)){ - munmap(stack, size); - stack = NULL; - goto done; - } - -done: - pthread_mutex_unlock(&mmap_lock); - return stack; -} - -/* - * Create a new thread. The thread's stack is layed out like so: - * - * +---------------------------+ - * | pthread_internal_t | - * +---------------------------+ - * | | - * | TLS area | - * | | - * +---------------------------+ - * | | - * . . - * . stack area . - * . . - * | | - * +---------------------------+ - * | guard page | - * +---------------------------+ - * - * note that TLS[0] must be a pointer to itself, this is required - * by the thread-local storage implementation of the x86 Linux - * kernel, where the TLS pointer is read by reading fs:[0] - */ -int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr, - void *(*start_routine)(void *), void * arg) -{ - char* stack; - void** tls; - int tid; - pthread_mutex_t * start_mutex; - pthread_internal_t * thread; - int madestack = 0; - int old_errno = errno; - - /* this will inform the rest of the C library that at least one thread - * was created. this will enforce certain functions to acquire/release - * locks (e.g. atexit()) to protect shared global structures. - * - * this works because pthread_create() is not called by the C library - * initialization routine that sets up the main thread's data structures. - */ - __isthreaded = 1; - - thread = _pthread_internal_alloc(); - if (thread == NULL) - return ENOMEM; - - if (attr == NULL) { - attr = &gDefaultPthreadAttr; - } - - // make sure the stack is PAGE_SIZE aligned - size_t stackSize = (attr->stack_size + - (PAGE_SIZE-1)) & ~(PAGE_SIZE-1); - - if (!attr->stack_base) { - stack = mkstack(stackSize, attr->guard_size); - if(stack == NULL) { - _pthread_internal_free(thread); - return ENOMEM; - } - madestack = 1; - } else { - stack = attr->stack_base; - } - - // Make room for TLS - tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*)); - - // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep - // it from doing anything until after we notify the debugger about it - start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF]; - pthread_mutex_init(start_mutex, NULL); - pthread_mutex_lock(start_mutex); - - tls[TLS_SLOT_THREAD_ID] = thread; - - tid = __pthread_clone((int(*)(void*))start_routine, tls, - CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND - | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED, - arg); - - if(tid < 0) { - int result; - if (madestack) - munmap(stack, stackSize); - _pthread_internal_free(thread); - result = errno; - errno = old_errno; - return result; - } - - _init_thread(thread, tid, (pthread_attr_t*)attr, stack); - - if (!madestack) - thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK; - - // Notify any debuggers about the new thread - pthread_mutex_lock(&gDebuggerNotificationLock); - _thread_created_hook(tid); - pthread_mutex_unlock(&gDebuggerNotificationLock); - - // Let the thread do it's thing - pthread_mutex_unlock(start_mutex); - - *thread_out = (pthread_t)thread; - return 0; -} - - -int pthread_attr_init(pthread_attr_t * attr) -{ - *attr = gDefaultPthreadAttr; - return 0; -} - -int pthread_attr_destroy(pthread_attr_t * attr) -{ - memset(attr, 0x42, sizeof(pthread_attr_t)); - return 0; -} - -int pthread_attr_setdetachstate(pthread_attr_t * attr, int state) -{ - if (state == PTHREAD_CREATE_DETACHED) { - attr->flags |= PTHREAD_ATTR_FLAG_DETACHED; - } else if (state == PTHREAD_CREATE_JOINABLE) { - attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED; - } else { - return EINVAL; - } - return 0; -} - -int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state) -{ - *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED) - ? PTHREAD_CREATE_DETACHED - : PTHREAD_CREATE_JOINABLE; - return 0; -} - -int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy) -{ - attr->sched_policy = policy; - return 0; -} - -int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy) -{ - *policy = attr->sched_policy; - return 0; -} - -int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param) -{ - attr->sched_priority = param->sched_priority; - return 0; -} - -int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param) -{ - param->sched_priority = attr->sched_priority; - return 0; -} - -int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size) -{ - if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) { - return EINVAL; - } - attr->stack_size = stack_size; - return 0; -} - -int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size) -{ - *stack_size = attr->stack_size; - return 0; -} - -int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr) -{ -#if 1 - // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now. - return ENOSYS; -#else - if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) { - return EINVAL; - } - attr->stack_base = stack_addr; - return 0; -#endif -} - -int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr) -{ - *stack_addr = attr->stack_base + attr->stack_size; - return 0; -} - -int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size) -{ - if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) { - return EINVAL; - } - if ((uint32_t)stack_base & (PAGE_SIZE - 1)) { - return EINVAL; - } - attr->stack_base = stack_base; - attr->stack_size = stack_size; - return 0; -} - -int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size) -{ - *stack_base = attr->stack_base; - *stack_size = attr->stack_size; - return 0; -} - -int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size) -{ - if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) { - return EINVAL; - } - - attr->guard_size = guard_size; - return 0; -} - -int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size) -{ - *guard_size = attr->guard_size; - return 0; -} - -int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr) -{ - pthread_internal_t * thread = (pthread_internal_t *)thid; - *attr = thread->attr; - return 0; -} - -int pthread_attr_setscope(pthread_attr_t *attr, int scope) -{ - if (scope == PTHREAD_SCOPE_SYSTEM) - return 0; - if (scope == PTHREAD_SCOPE_PROCESS) - return ENOTSUP; - - return EINVAL; -} - -int pthread_attr_getscope(pthread_attr_t const *attr) -{ - return PTHREAD_SCOPE_SYSTEM; -} - - -/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions - * and thread cancelation - */ - -void __pthread_cleanup_push( __pthread_cleanup_t* c, - __pthread_cleanup_func_t routine, - void* arg ) -{ - pthread_internal_t* thread = __get_thread(); - - c->__cleanup_routine = routine; - c->__cleanup_arg = arg; - c->__cleanup_prev = thread->cleanup_stack; - thread->cleanup_stack = c; -} - -void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute ) -{ - pthread_internal_t* thread = __get_thread(); - - thread->cleanup_stack = c->__cleanup_prev; - if (execute) - c->__cleanup_routine(c->__cleanup_arg); -} - -/* used by pthread_exit() to clean all TLS keys of the current thread */ -static void pthread_key_clean_all(void); - -void pthread_exit(void * retval) -{ - pthread_internal_t* thread = __get_thread(); - void* stack_base = thread->attr.stack_base; - int stack_size = thread->attr.stack_size; - int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0; - - // call the cleanup handlers first - while (thread->cleanup_stack) { - __pthread_cleanup_t* c = thread->cleanup_stack; - thread->cleanup_stack = c->__cleanup_prev; - c->__cleanup_routine(c->__cleanup_arg); - } - - // call the TLS destructors, it is important to do that before removing this - // thread from the global list. this will ensure that if someone else deletes - // a TLS key, the corresponding value will be set to NULL in this thread's TLS - // space (see pthread_key_delete) - pthread_key_clean_all(); - - // if the thread is detached, destroy the pthread_internal_t - // otherwise, keep it in memory and signal any joiners - if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) { - _pthread_internal_remove(thread); - _pthread_internal_free(thread); - } else { - /* the join_count field is used to store the number of threads waiting for - * the termination of this thread with pthread_join(), - * - * if it is positive we need to signal the waiters, and we do not touch - * the count (it will be decremented by the waiters, the last one will - * also remove/free the thread structure - * - * if it is zero, we set the count value to -1 to indicate that the - * thread is in 'zombie' state: it has stopped executing, and its stack - * is gone (as well as its TLS area). when another thread calls pthread_join() - * on it, it will immediately free the thread and return. - */ - pthread_mutex_lock(&gThreadListLock); - thread->return_value = retval; - if (thread->join_count > 0) { - pthread_cond_broadcast(&thread->join_cond); - } else { - thread->join_count = -1; /* zombie thread */ - } - pthread_mutex_unlock(&gThreadListLock); - } - - // destroy the thread stack - if (user_stack) - _exit_thread((int)retval); - else - _exit_with_stack_teardown(stack_base, stack_size, (int)retval); -} - -int pthread_join(pthread_t thid, void ** ret_val) -{ - pthread_internal_t* thread = (pthread_internal_t*)thid; - int count; - - // check that the thread still exists and is not detached - pthread_mutex_lock(&gThreadListLock); - - for (thread = gThreadList; thread != NULL; thread = thread->next) - if (thread == (pthread_internal_t*)thid) - break; - - if (!thread) { - pthread_mutex_unlock(&gThreadListLock); - return ESRCH; - } - - if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) { - pthread_mutex_unlock(&gThreadListLock); - return EINVAL; - } - - /* wait for thread death when needed - * - * if the 'join_count' is negative, this is a 'zombie' thread that - * is already dead and without stack/TLS - * - * otherwise, we need to increment 'join-count' and wait to be signaled - */ - count = thread->join_count; - if (count >= 0) { - thread->join_count += 1; - pthread_cond_wait( &thread->join_cond, &gThreadListLock ); - count = --thread->join_count; - } - if (ret_val) - *ret_val = thread->return_value; - - /* remove thread descriptor when we're the last joiner or when the - * thread was already a zombie. - */ - if (count <= 0) { - _pthread_internal_remove_locked(thread); - _pthread_internal_free(thread); - } - pthread_mutex_unlock(&gThreadListLock); - return 0; -} - -int pthread_detach( pthread_t thid ) -{ - pthread_internal_t* thread; - int result = 0; - int flags; - - pthread_mutex_lock(&gThreadListLock); - for (thread = gThreadList; thread != NULL; thread = thread->next) - if (thread == (pthread_internal_t*)thid) - goto FoundIt; - - result = ESRCH; - goto Exit; - -FoundIt: - do { - flags = thread->attr.flags; - - if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) { - /* thread is not joinable ! */ - result = EINVAL; - goto Exit; - } - } - while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED, - (volatile int*)&thread->attr.flags ) != 0 ); -Exit: - pthread_mutex_unlock(&gThreadListLock); - return result; -} - -pthread_t pthread_self(void) -{ - return (pthread_t)__get_thread(); -} - -int pthread_equal(pthread_t one, pthread_t two) -{ - return (one == two ? 1 : 0); -} - -int pthread_getschedparam(pthread_t thid, int * policy, - struct sched_param * param) -{ - int old_errno = errno; - - pthread_internal_t * thread = (pthread_internal_t *)thid; - int err = sched_getparam(thread->kernel_id, param); - if (!err) { - *policy = sched_getscheduler(thread->kernel_id); - } else { - err = errno; - errno = old_errno; - } - return err; -} - -int pthread_setschedparam(pthread_t thid, int policy, - struct sched_param const * param) -{ - pthread_internal_t * thread = (pthread_internal_t *)thid; - int old_errno = errno; - int ret; - - ret = sched_setscheduler(thread->kernel_id, policy, param); - if (ret < 0) { - ret = errno; - errno = old_errno; - } - return ret; -} - - -int __futex_wait(volatile void *ftx, int val, const struct timespec *timeout); -int __futex_wake(volatile void *ftx, int count); - -// mutex lock states -// -// 0: unlocked -// 1: locked, no waiters -// 2: locked, maybe waiters - -/* a mutex is implemented as a 32-bit integer holding the following fields - * - * bits: name description - * 31-16 tid owner thread's kernel id (recursive and errorcheck only) - * 15-14 type mutex type - * 13-2 counter counter of recursive mutexes - * 1-0 state lock state (0, 1 or 2) - */ - - -#define MUTEX_OWNER(m) (((m)->value >> 16) & 0xffff) -#define MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff) - -#define MUTEX_TYPE_MASK 0xc000 -#define MUTEX_TYPE_NORMAL 0x0000 -#define MUTEX_TYPE_RECURSIVE 0x4000 -#define MUTEX_TYPE_ERRORCHECK 0x8000 - -#define MUTEX_COUNTER_SHIFT 2 -#define MUTEX_COUNTER_MASK 0x3ffc - - - - -int pthread_mutexattr_init(pthread_mutexattr_t *attr) -{ - if (attr) { - *attr = PTHREAD_MUTEX_DEFAULT; - return 0; - } else { - return EINVAL; - } -} - -int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) -{ - if (attr) { - *attr = -1; - return 0; - } else { - return EINVAL; - } -} - -int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type) -{ - if (attr && *attr >= PTHREAD_MUTEX_NORMAL && - *attr <= PTHREAD_MUTEX_ERRORCHECK ) { - *type = *attr; - return 0; - } - return EINVAL; -} - -int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) -{ - if (attr && type >= PTHREAD_MUTEX_NORMAL && - type <= PTHREAD_MUTEX_ERRORCHECK ) { - *attr = type; - return 0; - } - return EINVAL; -} - -/* process-shared mutexes are not supported at the moment */ - -int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared) -{ - if (!attr) - return EINVAL; - - return (pshared == PTHREAD_PROCESS_PRIVATE) ? 0 : ENOTSUP; -} - -int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared) -{ - if (!attr) - return EINVAL; - - *pshared = PTHREAD_PROCESS_PRIVATE; - return 0; -} - -int pthread_mutex_init(pthread_mutex_t *mutex, - const pthread_mutexattr_t *attr) -{ - if ( mutex ) { - if (attr == NULL) { - mutex->value = MUTEX_TYPE_NORMAL; - return 0; - } - switch ( *attr ) { - case PTHREAD_MUTEX_NORMAL: - mutex->value = MUTEX_TYPE_NORMAL; - return 0; - - case PTHREAD_MUTEX_RECURSIVE: - mutex->value = MUTEX_TYPE_RECURSIVE; - return 0; - - case PTHREAD_MUTEX_ERRORCHECK: - mutex->value = MUTEX_TYPE_ERRORCHECK; - return 0; - } - } - return EINVAL; -} - -int pthread_mutex_destroy(pthread_mutex_t *mutex) -{ - mutex->value = 0xdead10cc; - return 0; -} - - -/* - * Lock a non-recursive mutex. - * - * As noted above, there are three states: - * 0 (unlocked, no contention) - * 1 (locked, no contention) - * 2 (locked, contention) - * - * Non-recursive mutexes don't use the thread-id or counter fields, and the - * "type" value is zero, so the only bits that will be set are the ones in - * the lock state field. - */ -static __inline__ void -_normal_lock(pthread_mutex_t* mutex) -{ - /* - * The common case is an unlocked mutex, so we begin by trying to - * change the lock's state from 0 to 1. __atomic_cmpxchg() returns 0 - * if it made the swap successfully. If the result is nonzero, this - * lock is already held by another thread. - */ - if (__atomic_cmpxchg(0, 1, &mutex->value ) != 0) { - /* - * We want to go to sleep until the mutex is available, which - * requires promoting it to state 2. We need to swap in the new - * state value and then wait until somebody wakes us up. - * - * __atomic_swap() returns the previous value. We swap 2 in and - * see if we got zero back; if so, we have acquired the lock. If - * not, another thread still holds the lock and we wait again. - * - * The second argument to the __futex_wait() call is compared - * against the current value. If it doesn't match, __futex_wait() - * returns immediately (otherwise, it sleeps for a time specified - * by the third argument; 0 means sleep forever). This ensures - * that the mutex is in state 2 when we go to sleep on it, which - * guarantees a wake-up call. - */ - while (__atomic_swap(2, &mutex->value ) != 0) - __futex_wait(&mutex->value, 2, 0); - } -} - -/* - * Release a non-recursive mutex. The caller is responsible for determining - * that we are in fact the owner of this lock. - */ -static __inline__ void -_normal_unlock(pthread_mutex_t* mutex) -{ - /* - * The mutex value will be 1 or (rarely) 2. We use an atomic decrement - * to release the lock. __atomic_dec() returns the previous value; - * if it wasn't 1 we have to do some additional work. - */ - if (__atomic_dec(&mutex->value) != 1) { - /* - * Start by releasing the lock. The decrement changed it from - * "contended lock" to "uncontended lock", which means we still - * hold it, and anybody who tries to sneak in will push it back - * to state 2. - * - * Once we set it to zero the lock is up for grabs. We follow - * this with a __futex_wake() to ensure that one of the waiting - * threads has a chance to grab it. - * - * This doesn't cause a race with the swap/wait pair in - * _normal_lock(), because the __futex_wait() call there will - * return immediately if the mutex value isn't 2. - */ - mutex->value = 0; - - /* - * Wake up one waiting thread. We don't know which thread will be - * woken or when it'll start executing -- futexes make no guarantees - * here. There may not even be a thread waiting. - * - * The newly-woken thread will replace the 0 we just set above - * with 2, which means that when it eventually releases the mutex - * it will also call FUTEX_WAKE. This results in one extra wake - * call whenever a lock is contended, but lets us avoid forgetting - * anyone without requiring us to track the number of sleepers. - * - * It's possible for another thread to sneak in and grab the lock - * between the zero assignment above and the wake call below. If - * the new thread is "slow" and holds the lock for a while, we'll - * wake up a sleeper, which will swap in a 2 and then go back to - * sleep since the lock is still held. If the new thread is "fast", - * running to completion before we call wake, the thread we - * eventually wake will find an unlocked mutex and will execute. - * Either way we have correct behavior and nobody is orphaned on - * the wait queue. - */ - __futex_wake(&mutex->value, 1); - } -} - -static pthread_mutex_t __recursive_lock = PTHREAD_MUTEX_INITIALIZER; - -static void -_recursive_lock(void) -{ - _normal_lock( &__recursive_lock); -} - -static void -_recursive_unlock(void) -{ - _normal_unlock( &__recursive_lock ); -} - -#define __likely(cond) __builtin_expect(!!(cond), 1) -#define __unlikely(cond) __builtin_expect(!!(cond), 0) - -int pthread_mutex_lock(pthread_mutex_t *mutex) -{ - if (__likely(mutex != NULL)) - { - int mtype = (mutex->value & MUTEX_TYPE_MASK); - - if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) { - _normal_lock(mutex); - } - else - { - int tid = __get_thread()->kernel_id; - - if ( tid == MUTEX_OWNER(mutex) ) - { - int oldv, counter; - - if (mtype == MUTEX_TYPE_ERRORCHECK) { - /* trying to re-lock a mutex we already acquired */ - return EDEADLK; - } - /* - * We own the mutex, but other threads are able to change - * the contents (e.g. promoting it to "contended"), so we - * need to hold the global lock. - */ - _recursive_lock(); - oldv = mutex->value; - counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK; - mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter; - _recursive_unlock(); - } - else - { - /* - * If the new lock is available immediately, we grab it in - * the "uncontended" state. - */ - int new_lock_type = 1; - - for (;;) { - int oldv; - - _recursive_lock(); - oldv = mutex->value; - if (oldv == mtype) { /* uncontended released lock => 1 or 2 */ - mutex->value = ((tid << 16) | mtype | new_lock_type); - } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */ - oldv ^= 3; - mutex->value = oldv; - } - _recursive_unlock(); - - if (oldv == mtype) - break; - - /* - * The lock was held, possibly contended by others. From - * now on, if we manage to acquire the lock, we have to - * assume that others are still contending for it so that - * we'll wake them when we unlock it. - */ - new_lock_type = 2; - - __futex_wait( &mutex->value, oldv, 0 ); - } - } - } - return 0; - } - return EINVAL; -} - - -int pthread_mutex_unlock(pthread_mutex_t *mutex) -{ - if (__likely(mutex != NULL)) - { - int mtype = (mutex->value & MUTEX_TYPE_MASK); - - if (__likely(mtype == MUTEX_TYPE_NORMAL)) { - _normal_unlock(mutex); - } - else - { - int tid = __get_thread()->kernel_id; - - if ( tid == MUTEX_OWNER(mutex) ) - { - int oldv; - - _recursive_lock(); - oldv = mutex->value; - if (oldv & MUTEX_COUNTER_MASK) { - mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT); - oldv = 0; - } else { - mutex->value = mtype; - } - _recursive_unlock(); - - if ((oldv & 3) == 2) - __futex_wake( &mutex->value, 1 ); - } - else { - /* trying to unlock a lock we do not own */ - return EPERM; - } - } - return 0; - } - return EINVAL; -} - - -int pthread_mutex_trylock(pthread_mutex_t *mutex) -{ - if (__likely(mutex != NULL)) - { - int mtype = (mutex->value & MUTEX_TYPE_MASK); - - if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) - { - if (__atomic_cmpxchg(0, 1, &mutex->value) == 0) - return 0; - - return EBUSY; - } - else - { - int tid = __get_thread()->kernel_id; - int oldv; - - if ( tid == MUTEX_OWNER(mutex) ) - { - int oldv, counter; - - if (mtype == MUTEX_TYPE_ERRORCHECK) { - /* already locked by ourselves */ - return EDEADLK; - } - - _recursive_lock(); - oldv = mutex->value; - counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK; - mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter; - _recursive_unlock(); - return 0; - } - - /* try to lock it */ - _recursive_lock(); - oldv = mutex->value; - if (oldv == mtype) /* uncontended released lock => state 1 */ - mutex->value = ((tid << 16) | mtype | 1); - _recursive_unlock(); - - if (oldv != mtype) - return EBUSY; - - return 0; - } - } - return EINVAL; -} - - -/* XXX *technically* there is a race condition that could allow - * XXX a signal to be missed. If thread A is preempted in _wait() - * XXX after unlocking the mutex and before waiting, and if other - * XXX threads call signal or broadcast UINT_MAX times (exactly), - * XXX before thread A is scheduled again and calls futex_wait(), - * XXX then the signal will be lost. - */ - -int pthread_cond_init(pthread_cond_t *cond, - const pthread_condattr_t *attr) -{ - cond->value = 0; - return 0; -} - -int pthread_cond_destroy(pthread_cond_t *cond) -{ - cond->value = 0xdeadc04d; - return 0; -} - -int pthread_cond_broadcast(pthread_cond_t *cond) -{ - __atomic_dec(&cond->value); - __futex_wake(&cond->value, INT_MAX); - return 0; -} - -int pthread_cond_signal(pthread_cond_t *cond) -{ - __atomic_dec(&cond->value); - __futex_wake(&cond->value, 1); - return 0; -} - -int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) -{ - return pthread_cond_timedwait(cond, mutex, NULL); -} - -int __pthread_cond_timedwait_relative(pthread_cond_t *cond, - pthread_mutex_t * mutex, - const struct timespec *reltime) -{ - int status; - int oldvalue = cond->value; - - pthread_mutex_unlock(mutex); - status = __futex_wait(&cond->value, oldvalue, reltime); - pthread_mutex_lock(mutex); - - if (status == (-ETIMEDOUT)) return ETIMEDOUT; - return 0; -} - -int __pthread_cond_timedwait(pthread_cond_t *cond, - pthread_mutex_t * mutex, - const struct timespec *abstime, - clockid_t clock) -{ - struct timespec ts; - struct timespec * tsp; - - if (abstime != NULL) { - clock_gettime(clock, &ts); - ts.tv_sec = abstime->tv_sec - ts.tv_sec; - ts.tv_nsec = abstime->tv_nsec - ts.tv_nsec; - if (ts.tv_nsec < 0) { - ts.tv_sec--; - ts.tv_nsec += 1000000000; - } - if((ts.tv_nsec < 0) || (ts.tv_sec < 0)) { - return ETIMEDOUT; - } - tsp = &ts; - } else { - tsp = NULL; - } - - return __pthread_cond_timedwait_relative(cond, mutex, tsp); -} - -int pthread_cond_timedwait(pthread_cond_t *cond, - pthread_mutex_t * mutex, - const struct timespec *abstime) -{ - return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME); -} - - -int pthread_cond_timedwait_monotonic(pthread_cond_t *cond, - pthread_mutex_t * mutex, - const struct timespec *abstime) -{ - return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC); -} - -int pthread_cond_timeout_np(pthread_cond_t *cond, - pthread_mutex_t * mutex, - unsigned msecs) -{ - int oldvalue; - struct timespec ts; - int status; - - ts.tv_sec = msecs / 1000; - ts.tv_nsec = (msecs % 1000) * 1000000; - - oldvalue = cond->value; - - pthread_mutex_unlock(mutex); - status = __futex_wait(&cond->value, oldvalue, &ts); - pthread_mutex_lock(mutex); - - if(status == (-ETIMEDOUT)) return ETIMEDOUT; - - return 0; -} - - - -/* A technical note regarding our thread-local-storage (TLS) implementation: - * - * There can be up to TLSMAP_SIZE independent TLS keys in a given process, - * though the first TLSMAP_START keys are reserved for Bionic to hold - * special thread-specific variables like errno or a pointer to - * the current thread's descriptor. - * - * while stored in the TLS area, these entries cannot be accessed through - * pthread_getspecific() / pthread_setspecific() and pthread_key_delete() - * - * also, some entries in the key table are pre-allocated (see tlsmap_lock) - * to greatly simplify and speedup some OpenGL-related operations. though the - * initialy value will be NULL on all threads. - * - * you can use pthread_getspecific()/setspecific() on these, and in theory - * you could also call pthread_key_delete() as well, though this would - * probably break some apps. - * - * The 'tlsmap_t' type defined below implements a shared global map of - * currently created/allocated TLS keys and the destructors associated - * with them. You should use tlsmap_lock/unlock to access it to avoid - * any race condition. - * - * the global TLS map simply contains a bitmap of allocated keys, and - * an array of destructors. - * - * each thread has a TLS area that is a simple array of TLSMAP_SIZE void* - * pointers. the TLS area of the main thread is stack-allocated in - * __libc_init_common, while the TLS area of other threads is placed at - * the top of their stack in pthread_create. - * - * when pthread_key_create() is called, it finds the first free key in the - * bitmap, then set it to 1, saving the destructor altogether - * - * when pthread_key_delete() is called. it will erase the key's bitmap bit - * and its destructor, and will also clear the key data in the TLS area of - * all created threads. As mandated by Posix, it is the responsability of - * the caller of pthread_key_delete() to properly reclaim the objects that - * were pointed to by these data fields (either before or after the call). - * - */ - -/* TLS Map implementation - */ - -#define TLSMAP_START (TLS_SLOT_MAX_WELL_KNOWN+1) -#define TLSMAP_SIZE BIONIC_TLS_SLOTS -#define TLSMAP_BITS 32 -#define TLSMAP_WORDS ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS) -#define TLSMAP_WORD(m,k) (m)->map[(k)/TLSMAP_BITS] -#define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1))) - -/* this macro is used to quickly check that a key belongs to a reasonable range */ -#define TLSMAP_VALIDATE_KEY(key) \ - ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE) - -/* the type of tls key destructor functions */ -typedef void (*tls_dtor_t)(void*); - -typedef struct { - int init; /* see comment in tlsmap_lock() */ - uint32_t map[TLSMAP_WORDS]; /* bitmap of allocated keys */ - tls_dtor_t dtors[TLSMAP_SIZE]; /* key destructors */ -} tlsmap_t; - -static pthread_mutex_t _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER; -static tlsmap_t _tlsmap; - -/* lock the global TLS map lock and return a handle to it */ -static __inline__ tlsmap_t* tlsmap_lock(void) -{ - tlsmap_t* m = &_tlsmap; - - pthread_mutex_lock(&_tlsmap_lock); - /* we need to initialize the first entry of the 'map' array - * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically - * when declaring _tlsmap is a bit awkward and is going to - * produce warnings, so do it the first time we use the map - * instead - */ - if (__unlikely(!m->init)) { - TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP; - m->init = 1; - } - return m; -} - -/* unlock the global TLS map */ -static __inline__ void tlsmap_unlock(tlsmap_t* m) -{ - pthread_mutex_unlock(&_tlsmap_lock); - (void)m; /* a good compiler is a happy compiler */ -} - -/* test to see wether a key is allocated */ -static __inline__ int tlsmap_test(tlsmap_t* m, int key) -{ - return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0; -} - -/* set the destructor and bit flag on a newly allocated key */ -static __inline__ void tlsmap_set(tlsmap_t* m, int key, tls_dtor_t dtor) -{ - TLSMAP_WORD(m,key) |= TLSMAP_MASK(key); - m->dtors[key] = dtor; -} - -/* clear the destructor and bit flag on an existing key */ -static __inline__ void tlsmap_clear(tlsmap_t* m, int key) -{ - TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key); - m->dtors[key] = NULL; -} - -/* allocate a new TLS key, return -1 if no room left */ -static int tlsmap_alloc(tlsmap_t* m, tls_dtor_t dtor) -{ - int key; - - for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) { - if ( !tlsmap_test(m, key) ) { - tlsmap_set(m, key, dtor); - return key; - } - } - return -1; -} - - -int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *)) -{ - uint32_t err = ENOMEM; - tlsmap_t* map = tlsmap_lock(); - int k = tlsmap_alloc(map, destructor_function); - - if (k >= 0) { - *key = k; - err = 0; - } - tlsmap_unlock(map); - return err; -} - - -/* This deletes a pthread_key_t. note that the standard mandates that this does - * not call the destructor of non-NULL key values. Instead, it is the - * responsability of the caller to properly dispose of the corresponding data - * and resources, using any mean it finds suitable. - * - * On the other hand, this function will clear the corresponding key data - * values in all known threads. this prevents later (invalid) calls to - * pthread_getspecific() to receive invalid/stale values. - */ -int pthread_key_delete(pthread_key_t key) -{ - uint32_t err; - pthread_internal_t* thr; - tlsmap_t* map; - - if (!TLSMAP_VALIDATE_KEY(key)) { - return EINVAL; - } - - map = tlsmap_lock(); - - if (!tlsmap_test(map, key)) { - err = EINVAL; - goto err1; - } - - /* clear value in all threads */ - pthread_mutex_lock(&gThreadListLock); - for ( thr = gThreadList; thr != NULL; thr = thr->next ) { - /* avoid zombie threads with a negative 'join_count'. these are really - * already dead and don't have a TLS area anymore. - * - * similarly, it is possible to have thr->tls == NULL for threads that - * were just recently created through pthread_create() but whose - * startup trampoline (__thread_entry) hasn't been run yet by the - * scheduler. so check for this too. - */ - if (thr->join_count < 0 || !thr->tls) - continue; - - thr->tls[key] = NULL; - } - tlsmap_clear(map, key); - - pthread_mutex_unlock(&gThreadListLock); - err = 0; - -err1: - tlsmap_unlock(map); - return err; -} - - -int pthread_setspecific(pthread_key_t key, const void *ptr) -{ - int err = EINVAL; - tlsmap_t* map; - - if (TLSMAP_VALIDATE_KEY(key)) { - /* check that we're trying to set data for an allocated key */ - map = tlsmap_lock(); - if (tlsmap_test(map, key)) { - ((uint32_t *)__get_tls())[key] = (uint32_t)ptr; - err = 0; - } - tlsmap_unlock(map); - } - return err; -} - -void * pthread_getspecific(pthread_key_t key) -{ - if (!TLSMAP_VALIDATE_KEY(key)) { - return NULL; - } - - /* for performance reason, we do not lock/unlock the global TLS map - * to check that the key is properly allocated. if the key was not - * allocated, the value read from the TLS should always be NULL - * due to pthread_key_delete() clearing the values for all threads. - */ - return (void *)(((unsigned *)__get_tls())[key]); -} - -/* Posix mandates that this be defined in <limits.h> but we don't have - * it just yet. - */ -#ifndef PTHREAD_DESTRUCTOR_ITERATIONS -# define PTHREAD_DESTRUCTOR_ITERATIONS 4 -#endif - -/* this function is called from pthread_exit() to remove all TLS key data - * from this thread's TLS area. this must call the destructor of all keys - * that have a non-NULL data value (and a non-NULL destructor). - * - * because destructors can do funky things like deleting/creating other - * keys, we need to implement this in a loop - */ -static void pthread_key_clean_all(void) -{ - tlsmap_t* map; - void** tls = (void**)__get_tls(); - int rounds = PTHREAD_DESTRUCTOR_ITERATIONS; - - map = tlsmap_lock(); - - for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--) - { - int kk, count = 0; - - for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) { - if ( tlsmap_test(map, kk) ) - { - void* data = tls[kk]; - tls_dtor_t dtor = map->dtors[kk]; - - if (data != NULL && dtor != NULL) - { - /* we need to clear the key data now, this will prevent the - * destructor (or a later one) from seeing the old value if - * it calls pthread_getspecific() for some odd reason - * - * we do not do this if 'dtor == NULL' just in case another - * destructor function might be responsible for manually - * releasing the corresponding data. - */ - tls[kk] = NULL; - - /* because the destructor is free to call pthread_key_create - * and/or pthread_key_delete, we need to temporarily unlock - * the TLS map - */ - tlsmap_unlock(map); - (*dtor)(data); - map = tlsmap_lock(); - - count += 1; - } - } - } - - /* if we didn't call any destructor, there is no need to check the - * TLS data again - */ - if (count == 0) - break; - } - tlsmap_unlock(map); -} - -// man says this should be in <linux/unistd.h>, but it isn't -extern int tkill(int tid, int sig); - -int pthread_kill(pthread_t tid, int sig) -{ - int ret; - int old_errno = errno; - pthread_internal_t * thread = (pthread_internal_t *)tid; - - ret = tkill(thread->kernel_id, sig); - if (ret < 0) { - ret = errno; - errno = old_errno; - } - - return ret; -} - -extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t); - -int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset) -{ - return __rt_sigprocmask(how, set, oset, _NSIG / 8); -} - - -int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid) -{ - const int CLOCK_IDTYPE_BITS = 3; - pthread_internal_t* thread = (pthread_internal_t*)tid; - - if (!thread) - return ESRCH; - - *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS); - return 0; -} - - -/* NOTE: this implementation doesn't support a init function that throws a C++ exception - * or calls fork() - */ -int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) ) -{ - static pthread_mutex_t once_lock = PTHREAD_MUTEX_INITIALIZER; - - if (*once_control == PTHREAD_ONCE_INIT) { - _normal_lock( &once_lock ); - if (*once_control == PTHREAD_ONCE_INIT) { - (*init_routine)(); - *once_control = ~PTHREAD_ONCE_INIT; - } - _normal_unlock( &once_lock ); - } - return 0; -} |