summaryrefslogtreecommitdiffstats
path: root/libc/bionic/pthread_key.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libc/bionic/pthread_key.cpp')
-rw-r--r--libc/bionic/pthread_key.cpp286
1 files changed, 107 insertions, 179 deletions
diff --git a/libc/bionic/pthread_key.cpp b/libc/bionic/pthread_key.cpp
index 27eab27..6d77afa 100644
--- a/libc/bionic/pthread_key.cpp
+++ b/libc/bionic/pthread_key.cpp
@@ -26,176 +26,107 @@
* SUCH DAMAGE.
*/
+#include <errno.h>
#include <pthread.h>
+#include <stdatomic.h>
#include "private/bionic_tls.h"
#include "pthread_internal.h"
-/* A technical note regarding our thread-local-storage (TLS) implementation:
- *
- * There can be up to BIONIC_TLS_SLOTS independent TLS keys in a given process,
- * The keys below TLS_SLOT_FIRST_USER_SLOT are reserved for Bionic to hold
- * special thread-specific variables like errno or a pointer to
- * the current thread's descriptor. These entries cannot be accessed through
- * pthread_getspecific() / pthread_setspecific() or pthread_key_delete()
- *
- * The 'tls_map_t' type defined below implements a shared global map of
- * currently created/allocated TLS keys and the destructors associated
- * with them.
- *
- * The global TLS map simply contains a bitmap of allocated keys, and
- * an array of destructors.
- *
- * Each thread has a TLS area that is a simple array of BIONIC_TLS_SLOTS void*
- * pointers. the TLS area of the main thread is stack-allocated in
- * __libc_init_common, while the TLS area of other threads is placed at
- * the top of their stack in pthread_create.
- *
- * When pthread_key_delete() is called it will erase the key's bitmap bit
- * and its destructor, and will also clear the key data in the TLS area of
- * all created threads. As mandated by Posix, it is the responsibility of
- * the caller of pthread_key_delete() to properly reclaim the objects that
- * were pointed to by these data fields (either before or after the call).
- */
-
-#define TLSMAP_BITS 32
-#define TLSMAP_WORDS ((BIONIC_TLS_SLOTS+TLSMAP_BITS-1)/TLSMAP_BITS)
-#define TLSMAP_WORD(m,k) (m).map[(k)/TLSMAP_BITS]
-#define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1)))
-
-static inline bool IsValidUserKey(pthread_key_t key) {
- return (key >= TLS_SLOT_FIRST_USER_SLOT && key < BIONIC_TLS_SLOTS);
-}
-
typedef void (*key_destructor_t)(void*);
-struct tls_map_t {
- bool is_initialized;
+#define SEQ_KEY_IN_USE_BIT 0
- /* bitmap of allocated keys */
- uint32_t map[TLSMAP_WORDS];
+#define SEQ_INCREMENT_STEP (1 << SEQ_KEY_IN_USE_BIT)
- key_destructor_t key_destructors[BIONIC_TLS_SLOTS];
+// pthread_key_internal_t records the use of each pthread key slot:
+// seq records the state of the slot.
+// bit 0 is 1 when the key is in use, 0 when it is unused. Each time we create or delete the
+// pthread key in the slot, we increse the seq by 1 (which inverts bit 0). The reason to use
+// a sequence number instead of a boolean value here is that when the key slot is deleted and
+// reused for a new key, pthread_getspecific will not return stale data.
+// key_destructor records the destructor called at thread exit.
+struct pthread_key_internal_t {
+ atomic_uintptr_t seq;
+ atomic_uintptr_t key_destructor;
};
-class ScopedTlsMapAccess {
- public:
- ScopedTlsMapAccess() {
- Lock();
-
- // If this is the first time the TLS map has been accessed,
- // mark the slots belonging to well-known keys as being in use.
- // This isn't currently necessary because the well-known keys
- // can only be accessed directly by bionic itself, do not have
- // destructors, and all the functions that touch the TLS map
- // start after the maximum well-known slot.
- if (!s_tls_map_.is_initialized) {
- for (pthread_key_t key = 0; key < TLS_SLOT_FIRST_USER_SLOT; ++key) {
- SetInUse(key, NULL);
- }
- s_tls_map_.is_initialized = true;
- }
- }
-
- ~ScopedTlsMapAccess() {
- Unlock();
- }
+static pthread_key_internal_t key_map[BIONIC_PTHREAD_KEY_COUNT];
- int CreateKey(pthread_key_t* result, void (*key_destructor)(void*)) {
- // Take the first unallocated key.
- for (int key = 0; key < BIONIC_TLS_SLOTS; ++key) {
- if (!IsInUse(key)) {
- SetInUse(key, key_destructor);
- *result = key;
- return 0;
- }
- }
-
- // We hit PTHREAD_KEYS_MAX. POSIX says EAGAIN for this case.
- return EAGAIN;
- }
+static inline bool SeqOfKeyInUse(uintptr_t seq) {
+ return seq & (1 << SEQ_KEY_IN_USE_BIT);
+}
- void DeleteKey(pthread_key_t key) {
- TLSMAP_WORD(s_tls_map_, key) &= ~TLSMAP_MASK(key);
- s_tls_map_.key_destructors[key] = NULL;
- }
+#define KEY_VALID_FLAG (1 << 31)
- bool IsInUse(pthread_key_t key) {
- return (TLSMAP_WORD(s_tls_map_, key) & TLSMAP_MASK(key)) != 0;
- }
+static_assert(sizeof(pthread_key_t) == sizeof(int) && static_cast<pthread_key_t>(-1) < 0,
+ "pthread_key_t should be typedef to int");
- void SetInUse(pthread_key_t key, void (*key_destructor)(void*)) {
- TLSMAP_WORD(s_tls_map_, key) |= TLSMAP_MASK(key);
- s_tls_map_.key_destructors[key] = key_destructor;
- }
+static inline bool KeyInValidRange(pthread_key_t key) {
+ // key < 0 means bit 31 is set.
+ // Then key < (2^31 | BIONIC_PTHREAD_KEY_COUNT) means the index part of key < BIONIC_PTHREAD_KEY_COUNT.
+ return (key < (KEY_VALID_FLAG | BIONIC_PTHREAD_KEY_COUNT));
+}
- // Called from pthread_exit() to remove all TLS key data
- // from this thread's TLS area. This must call the destructor of all keys
- // that have a non-NULL data value and a non-NULL destructor.
- void CleanAll() {
- void** tls = __get_tls();
-
- // Because destructors can do funky things like deleting/creating other
- // keys, we need to implement this in a loop.
- for (int rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; --rounds) {
- size_t called_destructor_count = 0;
- for (int key = 0; key < BIONIC_TLS_SLOTS; ++key) {
- if (IsInUse(key)) {
- void* data = tls[key];
- void (*key_destructor)(void*) = s_tls_map_.key_destructors[key];
-
- if (data != NULL && key_destructor != NULL) {
- // we need to clear the key data now, this will prevent the
- // destructor (or a later one) from seeing the old value if
- // it calls pthread_getspecific() for some odd reason
-
- // we do not do this if 'key_destructor == NULL' just in case another
- // destructor function might be responsible for manually
- // releasing the corresponding data.
- tls[key] = NULL;
-
- // because the destructor is free to call pthread_key_create
- // and/or pthread_key_delete, we need to temporarily unlock
- // the TLS map
- Unlock();
- (*key_destructor)(data);
- Lock();
- ++called_destructor_count;
- }
+// Called from pthread_exit() to remove all pthread keys. This must call the destructor of
+// all keys that have a non-NULL data value and a non-NULL destructor.
+__LIBC_HIDDEN__ void pthread_key_clean_all() {
+ // Because destructors can do funky things like deleting/creating other keys,
+ // we need to implement this in a loop.
+ pthread_key_data_t* key_data = __get_thread()->key_data;
+ for (size_t rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; --rounds) {
+ size_t called_destructor_count = 0;
+ for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) {
+ uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed);
+ if (SeqOfKeyInUse(seq) && seq == key_data[i].seq && key_data[i].data != NULL) {
+ // Other threads may be calling pthread_key_delete/pthread_key_create while current thread
+ // is exiting. So we need to ensure we read the right key_destructor.
+ // We can rely on a user-established happens-before relationship between the creation and
+ // use of pthread key to ensure that we're not getting an earlier key_destructor.
+ // To avoid using the key_destructor of the newly created key in the same slot, we need to
+ // recheck the sequence number after reading key_destructor. As a result, we either see the
+ // right key_destructor, or the sequence number must have changed when we reread it below.
+ key_destructor_t key_destructor = reinterpret_cast<key_destructor_t>(
+ atomic_load_explicit(&key_map[i].key_destructor, memory_order_relaxed));
+ if (key_destructor == NULL) {
+ continue;
+ }
+ atomic_thread_fence(memory_order_acquire);
+ if (atomic_load_explicit(&key_map[i].seq, memory_order_relaxed) != seq) {
+ continue;
}
- }
- // If we didn't call any destructors, there is no need to check the TLS data again.
- if (called_destructor_count == 0) {
- break;
+ // We need to clear the key data now, this will prevent the destructor (or a later one)
+ // from seeing the old value if it calls pthread_getspecific().
+ // We don't do this if 'key_destructor == NULL' just in case another destructor
+ // function is responsible for manually releasing the corresponding data.
+ void* data = key_data[i].data;
+ key_data[i].data = NULL;
+
+ (*key_destructor)(data);
+ ++called_destructor_count;
}
}
- }
-
- private:
- static tls_map_t s_tls_map_;
- static pthread_mutex_t s_tls_map_lock_;
-
- void Lock() {
- pthread_mutex_lock(&s_tls_map_lock_);
- }
- void Unlock() {
- pthread_mutex_unlock(&s_tls_map_lock_);
+ // If we didn't call any destructors, there is no need to check the pthread keys again.
+ if (called_destructor_count == 0) {
+ break;
+ }
}
-};
-
-__LIBC_HIDDEN__ tls_map_t ScopedTlsMapAccess::s_tls_map_;
-__LIBC_HIDDEN__ pthread_mutex_t ScopedTlsMapAccess::s_tls_map_lock_;
-
-__LIBC_HIDDEN__ void pthread_key_clean_all() {
- ScopedTlsMapAccess tls_map;
- tls_map.CleanAll();
}
int pthread_key_create(pthread_key_t* key, void (*key_destructor)(void*)) {
- ScopedTlsMapAccess tls_map;
- return tls_map.CreateKey(key, key_destructor);
+ for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) {
+ uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed);
+ while (!SeqOfKeyInUse(seq)) {
+ if (atomic_compare_exchange_weak(&key_map[i].seq, &seq, seq + SEQ_INCREMENT_STEP)) {
+ atomic_store(&key_map[i].key_destructor, reinterpret_cast<uintptr_t>(key_destructor));
+ *key = i | KEY_VALID_FLAG;
+ return 0;
+ }
+ }
+ }
+ return EAGAIN;
}
// Deletes a pthread_key_t. note that the standard mandates that this does
@@ -203,52 +134,49 @@ int pthread_key_create(pthread_key_t* key, void (*key_destructor)(void*)) {
// responsibility of the caller to properly dispose of the corresponding data
// and resources, using any means it finds suitable.
int pthread_key_delete(pthread_key_t key) {
- ScopedTlsMapAccess tls_map;
-
- if (!IsValidUserKey(key) || !tls_map.IsInUse(key)) {
+ if (__predict_false(!KeyInValidRange(key))) {
return EINVAL;
}
-
- // Clear value in all threads.
- pthread_mutex_lock(&g_thread_list_lock);
- for (pthread_internal_t* t = g_thread_list; t != NULL; t = t->next) {
- // Skip zombie threads. They don't have a valid TLS area any more.
- // Similarly, it is possible to have t->tls == NULL for threads that
- // were just recently created through pthread_create() but whose
- // startup trampoline (__pthread_start) hasn't been run yet by the
- // scheduler. t->tls will also be NULL after a thread's stack has been
- // unmapped but before the ongoing pthread_join() is finished.
- if (t->tid == 0 || t->tls == NULL) {
- continue;
+ key &= ~KEY_VALID_FLAG;
+ // Increase seq to invalidate values in all threads.
+ uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
+ if (SeqOfKeyInUse(seq)) {
+ if (atomic_compare_exchange_strong(&key_map[key].seq, &seq, seq + SEQ_INCREMENT_STEP)) {
+ return 0;
}
-
- t->tls[key] = NULL;
}
- tls_map.DeleteKey(key);
-
- pthread_mutex_unlock(&g_thread_list_lock);
- return 0;
+ return EINVAL;
}
void* pthread_getspecific(pthread_key_t key) {
- if (!IsValidUserKey(key)) {
+ if (__predict_false(!KeyInValidRange(key))) {
return NULL;
}
-
- // For performance reasons, we do not lock/unlock the global TLS map
- // to check that the key is properly allocated. If the key was not
- // allocated, the value read from the TLS should always be NULL
- // due to pthread_key_delete() clearing the values for all threads.
- return __get_tls()[key];
+ key &= ~KEY_VALID_FLAG;
+ uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
+ pthread_key_data_t* data = &(__get_thread()->key_data[key]);
+ // It is user's responsibility to synchornize between the creation and use of pthread keys,
+ // so we use memory_order_relaxed when checking the sequence number.
+ if (__predict_true(SeqOfKeyInUse(seq) && data->seq == seq)) {
+ return data->data;
+ }
+ // We arrive here when current thread holds the seq of an deleted pthread key. So the
+ // data is for the deleted pthread key, and should be cleared.
+ data->data = NULL;
+ return NULL;
}
int pthread_setspecific(pthread_key_t key, const void* ptr) {
- ScopedTlsMapAccess tls_map;
-
- if (!IsValidUserKey(key) || !tls_map.IsInUse(key)) {
+ if (__predict_false(!KeyInValidRange(key))) {
return EINVAL;
}
-
- __get_tls()[key] = const_cast<void*>(ptr);
- return 0;
+ key &= ~KEY_VALID_FLAG;
+ uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
+ if (__predict_true(SeqOfKeyInUse(seq))) {
+ pthread_key_data_t* data = &(__get_thread()->key_data[key]);
+ data->seq = seq;
+ data->data = const_cast<void*>(ptr);
+ return 0;
+ }
+ return EINVAL;
}