diff options
Diffstat (limited to 'libc/bionic/time64.c')
-rw-r--r-- | libc/bionic/time64.c | 793 |
1 files changed, 0 insertions, 793 deletions
diff --git a/libc/bionic/time64.c b/libc/bionic/time64.c deleted file mode 100644 index 1e1f881..0000000 --- a/libc/bionic/time64.c +++ /dev/null @@ -1,793 +0,0 @@ -/* - -Copyright (c) 2007-2008 Michael G Schwern - -This software originally derived from Paul Sheer's pivotal_gmtime_r.c. - -The MIT License: - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in -all copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN -THE SOFTWARE. - -*/ - -/* See http://code.google.com/p/y2038 for this code's origin */ - -/* - -Programmers who have available to them 64-bit time values as a 'long -long' type can use localtime64_r() and gmtime64_r() which correctly -converts the time even on 32-bit systems. Whether you have 64-bit time -values will depend on the operating system. - -localtime64_r() is a 64-bit equivalent of localtime_r(). - -gmtime64_r() is a 64-bit equivalent of gmtime_r(). - -*/ - -#include <assert.h> -#include <stdlib.h> -#include <stdio.h> -#include <string.h> -#include <time.h> -#include <errno.h> -#include "time64.h" - -/* BIONIC_BEGIN */ -/* the following are here to avoid exposing time64_config.h and - * other types in our public time64.h header - */ -#include "time64_config.h" - -/* Not everyone has gm/localtime_r(), provide a replacement */ -#ifdef HAS_LOCALTIME_R -# define LOCALTIME_R(clock, result) localtime_r(clock, result) -#else -# define LOCALTIME_R(clock, result) fake_localtime_r(clock, result) -#endif -#ifdef HAS_GMTIME_R -# define GMTIME_R(clock, result) gmtime_r(clock, result) -#else -# define GMTIME_R(clock, result) fake_gmtime_r(clock, result) -#endif - -typedef int64_t Int64; -typedef time64_t Time64_T; -typedef int64_t Year; -#define TM tm -/* BIONIC_END */ - -/* Spec says except for stftime() and the _r() functions, these - all return static memory. Stabbings! */ -static struct TM Static_Return_Date; -static char Static_Return_String[35]; - -static const int days_in_month[2][12] = { - {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, - {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, -}; - -static const int julian_days_by_month[2][12] = { - {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, - {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}, -}; - -static char const wday_name[7][3] = { - "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" -}; - -static char const mon_name[12][3] = { - "Jan", "Feb", "Mar", "Apr", "May", "Jun", - "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" -}; - -static const int length_of_year[2] = { 365, 366 }; - -/* Some numbers relating to the gregorian cycle */ -static const Year years_in_gregorian_cycle = 400; -#define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1) -static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL; - -/* Year range we can trust the time funcitons with */ -#define MAX_SAFE_YEAR 2037 -#define MIN_SAFE_YEAR 1971 - -/* 28 year Julian calendar cycle */ -#define SOLAR_CYCLE_LENGTH 28 - -/* Year cycle from MAX_SAFE_YEAR down. */ -static const int safe_years_high[SOLAR_CYCLE_LENGTH] = { - 2016, 2017, 2018, 2019, - 2020, 2021, 2022, 2023, - 2024, 2025, 2026, 2027, - 2028, 2029, 2030, 2031, - 2032, 2033, 2034, 2035, - 2036, 2037, 2010, 2011, - 2012, 2013, 2014, 2015 -}; - -/* Year cycle from MIN_SAFE_YEAR up */ -static const int safe_years_low[SOLAR_CYCLE_LENGTH] = { - 1996, 1997, 1998, 1971, - 1972, 1973, 1974, 1975, - 1976, 1977, 1978, 1979, - 1980, 1981, 1982, 1983, - 1984, 1985, 1986, 1987, - 1988, 1989, 1990, 1991, - 1992, 1993, 1994, 1995, -}; - -/* This isn't used, but it's handy to look at */ -static const int dow_year_start[SOLAR_CYCLE_LENGTH] = { - 5, 0, 1, 2, /* 0 2016 - 2019 */ - 3, 5, 6, 0, /* 4 */ - 1, 3, 4, 5, /* 8 1996 - 1998, 1971*/ - 6, 1, 2, 3, /* 12 1972 - 1975 */ - 4, 6, 0, 1, /* 16 */ - 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */ - 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */ -}; - -/* Let's assume people are going to be looking for dates in the future. - Let's provide some cheats so you can skip ahead. - This has a 4x speed boost when near 2008. -*/ -/* Number of days since epoch on Jan 1st, 2008 GMT */ -#define CHEAT_DAYS (1199145600 / 24 / 60 / 60) -#define CHEAT_YEARS 108 - -#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0) -#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a)) - -#ifdef USE_SYSTEM_LOCALTIME -# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \ - (a) <= SYSTEM_LOCALTIME_MAX && \ - (a) >= SYSTEM_LOCALTIME_MIN \ -) -#else -# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0) -#endif - -#ifdef USE_SYSTEM_GMTIME -# define SHOULD_USE_SYSTEM_GMTIME(a) ( \ - (a) <= SYSTEM_GMTIME_MAX && \ - (a) >= SYSTEM_GMTIME_MIN \ -) -#else -# define SHOULD_USE_SYSTEM_GMTIME(a) (0) -#endif - -/* Multi varadic macros are a C99 thing, alas */ -#ifdef TIME_64_DEBUG -# define TRACE(format) (fprintf(stderr, format)) -# define TRACE1(format, var1) (fprintf(stderr, format, var1)) -# define TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2)) -# define TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3)) -#else -# define TRACE(format) ((void)0) -# define TRACE1(format, var1) ((void)0) -# define TRACE2(format, var1, var2) ((void)0) -# define TRACE3(format, var1, var2, var3) ((void)0) -#endif - - -static int is_exception_century(Year year) -{ - int is_exception = ((year % 100 == 0) && !(year % 400 == 0)); - TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no"); - - return(is_exception); -} - - -/* timegm() is not in the C or POSIX spec, but it is such a useful - extension I would be remiss in leaving it out. Also I need it - for localtime64() -*/ -Time64_T timegm64(const struct TM *date) { - Time64_T days = 0; - Time64_T seconds = 0; - Year year; - Year orig_year = (Year)date->tm_year; - int cycles = 0; - - if( orig_year > 100 ) { - cycles = (orig_year - 100) / 400; - orig_year -= cycles * 400; - days += (Time64_T)cycles * days_in_gregorian_cycle; - } - else if( orig_year < -300 ) { - cycles = (orig_year - 100) / 400; - orig_year -= cycles * 400; - days += (Time64_T)cycles * days_in_gregorian_cycle; - } - TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year); - - if( orig_year > 70 ) { - year = 70; - while( year < orig_year ) { - days += length_of_year[IS_LEAP(year)]; - year++; - } - } - else if ( orig_year < 70 ) { - year = 69; - do { - days -= length_of_year[IS_LEAP(year)]; - year--; - } while( year >= orig_year ); - } - - - days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon]; - days += date->tm_mday - 1; - - seconds = days * 60 * 60 * 24; - - seconds += date->tm_hour * 60 * 60; - seconds += date->tm_min * 60; - seconds += date->tm_sec; - - return(seconds); -} - - -static int check_tm(struct TM *tm) -{ - /* Don't forget leap seconds */ - assert(tm->tm_sec >= 0); - assert(tm->tm_sec <= 61); - - assert(tm->tm_min >= 0); - assert(tm->tm_min <= 59); - - assert(tm->tm_hour >= 0); - assert(tm->tm_hour <= 23); - - assert(tm->tm_mday >= 1); - assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]); - - assert(tm->tm_mon >= 0); - assert(tm->tm_mon <= 11); - - assert(tm->tm_wday >= 0); - assert(tm->tm_wday <= 6); - - assert(tm->tm_yday >= 0); - assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]); - -#ifdef HAS_TM_TM_GMTOFF - assert(tm->tm_gmtoff >= -24 * 60 * 60); - assert(tm->tm_gmtoff <= 24 * 60 * 60); -#endif - - return 1; -} - - -/* The exceptional centuries without leap years cause the cycle to - shift by 16 -*/ -static Year cycle_offset(Year year) -{ - const Year start_year = 2000; - Year year_diff = year - start_year; - Year exceptions; - - if( year > start_year ) - year_diff--; - - exceptions = year_diff / 100; - exceptions -= year_diff / 400; - - TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n", - year, exceptions, year_diff); - - return exceptions * 16; -} - -/* For a given year after 2038, pick the latest possible matching - year in the 28 year calendar cycle. - - A matching year... - 1) Starts on the same day of the week. - 2) Has the same leap year status. - - This is so the calendars match up. - - Also the previous year must match. When doing Jan 1st you might - wind up on Dec 31st the previous year when doing a -UTC time zone. - - Finally, the next year must have the same start day of week. This - is for Dec 31st with a +UTC time zone. - It doesn't need the same leap year status since we only care about - January 1st. -*/ -static int safe_year(const Year year) -{ - int safe_year = 0; - Year year_cycle; - - if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) { - return (int)year; - } - - year_cycle = year + cycle_offset(year); - - /* safe_years_low is off from safe_years_high by 8 years */ - if( year < MIN_SAFE_YEAR ) - year_cycle -= 8; - - /* Change non-leap xx00 years to an equivalent */ - if( is_exception_century(year) ) - year_cycle += 11; - - /* Also xx01 years, since the previous year will be wrong */ - if( is_exception_century(year - 1) ) - year_cycle += 17; - - year_cycle %= SOLAR_CYCLE_LENGTH; - if( year_cycle < 0 ) - year_cycle = SOLAR_CYCLE_LENGTH + year_cycle; - - assert( year_cycle >= 0 ); - assert( year_cycle < SOLAR_CYCLE_LENGTH ); - if( year < MIN_SAFE_YEAR ) - safe_year = safe_years_low[year_cycle]; - else if( year > MAX_SAFE_YEAR ) - safe_year = safe_years_high[year_cycle]; - else - assert(0); - - TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n", - year, year_cycle, safe_year); - - assert(safe_year <= MAX_SAFE_YEAR && safe_year >= MIN_SAFE_YEAR); - - return safe_year; -} - - -void copy_tm_to_TM(const struct tm *src, struct TM *dest) { - if( src == NULL ) { - memset(dest, 0, sizeof(*dest)); - } - else { -# ifdef USE_TM64 - dest->tm_sec = src->tm_sec; - dest->tm_min = src->tm_min; - dest->tm_hour = src->tm_hour; - dest->tm_mday = src->tm_mday; - dest->tm_mon = src->tm_mon; - dest->tm_year = (Year)src->tm_year; - dest->tm_wday = src->tm_wday; - dest->tm_yday = src->tm_yday; - dest->tm_isdst = src->tm_isdst; - -# ifdef HAS_TM_TM_GMTOFF - dest->tm_gmtoff = src->tm_gmtoff; -# endif - -# ifdef HAS_TM_TM_ZONE - dest->tm_zone = src->tm_zone; -# endif - -# else - /* They're the same type */ - memcpy(dest, src, sizeof(*dest)); -# endif - } -} - - -void copy_TM_to_tm(const struct TM *src, struct tm *dest) { - if( src == NULL ) { - memset(dest, 0, sizeof(*dest)); - } - else { -# ifdef USE_TM64 - dest->tm_sec = src->tm_sec; - dest->tm_min = src->tm_min; - dest->tm_hour = src->tm_hour; - dest->tm_mday = src->tm_mday; - dest->tm_mon = src->tm_mon; - dest->tm_year = (int)src->tm_year; - dest->tm_wday = src->tm_wday; - dest->tm_yday = src->tm_yday; - dest->tm_isdst = src->tm_isdst; - -# ifdef HAS_TM_TM_GMTOFF - dest->tm_gmtoff = src->tm_gmtoff; -# endif - -# ifdef HAS_TM_TM_ZONE - dest->tm_zone = src->tm_zone; -# endif - -# else - /* They're the same type */ - memcpy(dest, src, sizeof(*dest)); -# endif - } -} - - -/* Simulate localtime_r() to the best of our ability */ -struct tm * fake_localtime_r(const time_t *clock, struct tm *result) { - const struct tm *static_result = localtime(clock); - - assert(result != NULL); - - if( static_result == NULL ) { - memset(result, 0, sizeof(*result)); - return NULL; - } - else { - memcpy(result, static_result, sizeof(*result)); - return result; - } -} - - - -/* Simulate gmtime_r() to the best of our ability */ -struct tm * fake_gmtime_r(const time_t *clock, struct tm *result) { - const struct tm *static_result = gmtime(clock); - - assert(result != NULL); - - if( static_result == NULL ) { - memset(result, 0, sizeof(*result)); - return NULL; - } - else { - memcpy(result, static_result, sizeof(*result)); - return result; - } -} - - -static Time64_T seconds_between_years(Year left_year, Year right_year) { - int increment = (left_year > right_year) ? 1 : -1; - Time64_T seconds = 0; - int cycles; - - if( left_year > 2400 ) { - cycles = (left_year - 2400) / 400; - left_year -= cycles * 400; - seconds += cycles * seconds_in_gregorian_cycle; - } - else if( left_year < 1600 ) { - cycles = (left_year - 1600) / 400; - left_year += cycles * 400; - seconds += cycles * seconds_in_gregorian_cycle; - } - - while( left_year != right_year ) { - seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24; - right_year += increment; - } - - return seconds * increment; -} - - -Time64_T mktime64(const struct TM *input_date) { - struct tm safe_date; - struct TM date; - Time64_T time; - Year year = input_date->tm_year + 1900; - - if( MIN_SAFE_YEAR <= year && year <= MAX_SAFE_YEAR ) { - copy_TM_to_tm(input_date, &safe_date); - return (Time64_T)mktime(&safe_date); - } - - /* Have to make the year safe in date else it won't fit in safe_date */ - date = *input_date; - date.tm_year = safe_year(year) - 1900; - copy_TM_to_tm(&date, &safe_date); - - time = (Time64_T)mktime(&safe_date); - - time += seconds_between_years(year, (Year)(safe_date.tm_year + 1900)); - - return time; -} - - -/* Because I think mktime() is a crappy name */ -Time64_T timelocal64(const struct TM *date) { - return mktime64(date); -} - - -struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p) -{ - int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday; - Time64_T v_tm_tday; - int leap; - Time64_T m; - Time64_T time = *in_time; - Year year = 70; - int cycles = 0; - - assert(p != NULL); - - /* Use the system gmtime() if time_t is small enough */ - if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) { - time_t safe_time = *in_time; - struct tm safe_date; - GMTIME_R(&safe_time, &safe_date); - - copy_tm_to_TM(&safe_date, p); - assert(check_tm(p)); - - return p; - } - -#ifdef HAS_TM_TM_GMTOFF - p->tm_gmtoff = 0; -#endif - p->tm_isdst = 0; - -#ifdef HAS_TM_TM_ZONE - p->tm_zone = "UTC"; -#endif - - v_tm_sec = (int)(time % 60); - time /= 60; - v_tm_min = (int)(time % 60); - time /= 60; - v_tm_hour = (int)(time % 24); - time /= 24; - v_tm_tday = time; - - WRAP (v_tm_sec, v_tm_min, 60); - WRAP (v_tm_min, v_tm_hour, 60); - WRAP (v_tm_hour, v_tm_tday, 24); - - v_tm_wday = (int)((v_tm_tday + 4) % 7); - if (v_tm_wday < 0) - v_tm_wday += 7; - m = v_tm_tday; - - if (m >= CHEAT_DAYS) { - year = CHEAT_YEARS; - m -= CHEAT_DAYS; - } - - if (m >= 0) { - /* Gregorian cycles, this is huge optimization for distant times */ - cycles = (int)(m / (Time64_T) days_in_gregorian_cycle); - if( cycles ) { - m -= (cycles * (Time64_T) days_in_gregorian_cycle); - year += (cycles * years_in_gregorian_cycle); - } - - /* Years */ - leap = IS_LEAP (year); - while (m >= (Time64_T) length_of_year[leap]) { - m -= (Time64_T) length_of_year[leap]; - year++; - leap = IS_LEAP (year); - } - - /* Months */ - v_tm_mon = 0; - while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) { - m -= (Time64_T) days_in_month[leap][v_tm_mon]; - v_tm_mon++; - } - } else { - year--; - - /* Gregorian cycles */ - cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1); - if( cycles ) { - m -= (cycles * (Time64_T) days_in_gregorian_cycle); - year += (cycles * years_in_gregorian_cycle); - } - - /* Years */ - leap = IS_LEAP (year); - while (m < (Time64_T) -length_of_year[leap]) { - m += (Time64_T) length_of_year[leap]; - year--; - leap = IS_LEAP (year); - } - - /* Months */ - v_tm_mon = 11; - while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) { - m += (Time64_T) days_in_month[leap][v_tm_mon]; - v_tm_mon--; - } - m += (Time64_T) days_in_month[leap][v_tm_mon]; - } - - p->tm_year = year; - if( p->tm_year != year ) { -#ifdef EOVERFLOW - errno = EOVERFLOW; -#endif - return NULL; - } - - /* At this point m is less than a year so casting to an int is safe */ - p->tm_mday = (int) m + 1; - p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m; - p->tm_sec = v_tm_sec; - p->tm_min = v_tm_min; - p->tm_hour = v_tm_hour; - p->tm_mon = v_tm_mon; - p->tm_wday = v_tm_wday; - - assert(check_tm(p)); - - return p; -} - - -struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm) -{ - time_t safe_time; - struct tm safe_date; - struct TM gm_tm; - Year orig_year; - int month_diff; - - assert(local_tm != NULL); - - /* Use the system localtime() if time_t is small enough */ - if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) { - safe_time = *time; - - TRACE1("Using system localtime for %lld\n", *time); - - LOCALTIME_R(&safe_time, &safe_date); - - copy_tm_to_TM(&safe_date, local_tm); - assert(check_tm(local_tm)); - - return local_tm; - } - - if( gmtime64_r(time, &gm_tm) == NULL ) { - TRACE1("gmtime64_r returned null for %lld\n", *time); - return NULL; - } - - orig_year = gm_tm.tm_year; - - if (gm_tm.tm_year > (2037 - 1900) || - gm_tm.tm_year < (1970 - 1900) - ) - { - TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year); - gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900; - } - - safe_time = timegm64(&gm_tm); - if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) { - TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time); - return NULL; - } - - copy_tm_to_TM(&safe_date, local_tm); - - local_tm->tm_year = orig_year; - if( local_tm->tm_year != orig_year ) { - TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n", - (Year)local_tm->tm_year, (Year)orig_year); - -#ifdef EOVERFLOW - errno = EOVERFLOW; -#endif - return NULL; - } - - - month_diff = local_tm->tm_mon - gm_tm.tm_mon; - - /* When localtime is Dec 31st previous year and - gmtime is Jan 1st next year. - */ - if( month_diff == 11 ) { - local_tm->tm_year--; - } - - /* When localtime is Jan 1st, next year and - gmtime is Dec 31st, previous year. - */ - if( month_diff == -11 ) { - local_tm->tm_year++; - } - - /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st - in a non-leap xx00. There is one point in the cycle - we can't account for which the safe xx00 year is a leap - year. So we need to correct for Dec 31st comming out as - the 366th day of the year. - */ - if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 ) - local_tm->tm_yday--; - - assert(check_tm(local_tm)); - - return local_tm; -} - - -int valid_tm_wday( const struct TM* date ) { - if( 0 <= date->tm_wday && date->tm_wday <= 6 ) - return 1; - else - return 0; -} - -int valid_tm_mon( const struct TM* date ) { - if( 0 <= date->tm_mon && date->tm_mon <= 11 ) - return 1; - else - return 0; -} - - -char *asctime64_r( const struct TM* date, char *result ) { - /* I figure everything else can be displayed, even hour 25, but if - these are out of range we walk off the name arrays */ - if( !valid_tm_wday(date) || !valid_tm_mon(date) ) - return NULL; - - sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n", - wday_name[date->tm_wday], - mon_name[date->tm_mon], - date->tm_mday, date->tm_hour, - date->tm_min, date->tm_sec, - 1900 + date->tm_year); - - return result; -} - - -char *ctime64_r( const Time64_T* time, char* result ) { - struct TM date; - - localtime64_r( time, &date ); - return asctime64_r( &date, result ); -} - - -/* Non-thread safe versions of the above */ -struct TM *localtime64(const Time64_T *time) { - return localtime64_r(time, &Static_Return_Date); -} - -struct TM *gmtime64(const Time64_T *time) { - return gmtime64_r(time, &Static_Return_Date); -} - -char *asctime64( const struct TM* date ) { - return asctime64_r( date, Static_Return_String ); -} - -char *ctime64( const Time64_T* time ) { - return asctime64(localtime64(time)); -} |