summaryrefslogtreecommitdiffstats
path: root/libc/bionic/time64.c
diff options
context:
space:
mode:
Diffstat (limited to 'libc/bionic/time64.c')
-rw-r--r--libc/bionic/time64.c793
1 files changed, 0 insertions, 793 deletions
diff --git a/libc/bionic/time64.c b/libc/bionic/time64.c
deleted file mode 100644
index 1e1f881..0000000
--- a/libc/bionic/time64.c
+++ /dev/null
@@ -1,793 +0,0 @@
-/*
-
-Copyright (c) 2007-2008 Michael G Schwern
-
-This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
-
-The MIT License:
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in
-all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-THE SOFTWARE.
-
-*/
-
-/* See http://code.google.com/p/y2038 for this code's origin */
-
-/*
-
-Programmers who have available to them 64-bit time values as a 'long
-long' type can use localtime64_r() and gmtime64_r() which correctly
-converts the time even on 32-bit systems. Whether you have 64-bit time
-values will depend on the operating system.
-
-localtime64_r() is a 64-bit equivalent of localtime_r().
-
-gmtime64_r() is a 64-bit equivalent of gmtime_r().
-
-*/
-
-#include <assert.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-#include <time.h>
-#include <errno.h>
-#include "time64.h"
-
-/* BIONIC_BEGIN */
-/* the following are here to avoid exposing time64_config.h and
- * other types in our public time64.h header
- */
-#include "time64_config.h"
-
-/* Not everyone has gm/localtime_r(), provide a replacement */
-#ifdef HAS_LOCALTIME_R
-# define LOCALTIME_R(clock, result) localtime_r(clock, result)
-#else
-# define LOCALTIME_R(clock, result) fake_localtime_r(clock, result)
-#endif
-#ifdef HAS_GMTIME_R
-# define GMTIME_R(clock, result) gmtime_r(clock, result)
-#else
-# define GMTIME_R(clock, result) fake_gmtime_r(clock, result)
-#endif
-
-typedef int64_t Int64;
-typedef time64_t Time64_T;
-typedef int64_t Year;
-#define TM tm
-/* BIONIC_END */
-
-/* Spec says except for stftime() and the _r() functions, these
- all return static memory. Stabbings! */
-static struct TM Static_Return_Date;
-static char Static_Return_String[35];
-
-static const int days_in_month[2][12] = {
- {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
- {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
-};
-
-static const int julian_days_by_month[2][12] = {
- {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
- {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
-};
-
-static char const wday_name[7][3] = {
- "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
-};
-
-static char const mon_name[12][3] = {
- "Jan", "Feb", "Mar", "Apr", "May", "Jun",
- "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
-};
-
-static const int length_of_year[2] = { 365, 366 };
-
-/* Some numbers relating to the gregorian cycle */
-static const Year years_in_gregorian_cycle = 400;
-#define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1)
-static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL;
-
-/* Year range we can trust the time funcitons with */
-#define MAX_SAFE_YEAR 2037
-#define MIN_SAFE_YEAR 1971
-
-/* 28 year Julian calendar cycle */
-#define SOLAR_CYCLE_LENGTH 28
-
-/* Year cycle from MAX_SAFE_YEAR down. */
-static const int safe_years_high[SOLAR_CYCLE_LENGTH] = {
- 2016, 2017, 2018, 2019,
- 2020, 2021, 2022, 2023,
- 2024, 2025, 2026, 2027,
- 2028, 2029, 2030, 2031,
- 2032, 2033, 2034, 2035,
- 2036, 2037, 2010, 2011,
- 2012, 2013, 2014, 2015
-};
-
-/* Year cycle from MIN_SAFE_YEAR up */
-static const int safe_years_low[SOLAR_CYCLE_LENGTH] = {
- 1996, 1997, 1998, 1971,
- 1972, 1973, 1974, 1975,
- 1976, 1977, 1978, 1979,
- 1980, 1981, 1982, 1983,
- 1984, 1985, 1986, 1987,
- 1988, 1989, 1990, 1991,
- 1992, 1993, 1994, 1995,
-};
-
-/* This isn't used, but it's handy to look at */
-static const int dow_year_start[SOLAR_CYCLE_LENGTH] = {
- 5, 0, 1, 2, /* 0 2016 - 2019 */
- 3, 5, 6, 0, /* 4 */
- 1, 3, 4, 5, /* 8 1996 - 1998, 1971*/
- 6, 1, 2, 3, /* 12 1972 - 1975 */
- 4, 6, 0, 1, /* 16 */
- 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */
- 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */
-};
-
-/* Let's assume people are going to be looking for dates in the future.
- Let's provide some cheats so you can skip ahead.
- This has a 4x speed boost when near 2008.
-*/
-/* Number of days since epoch on Jan 1st, 2008 GMT */
-#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
-#define CHEAT_YEARS 108
-
-#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
-#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
-
-#ifdef USE_SYSTEM_LOCALTIME
-# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
- (a) <= SYSTEM_LOCALTIME_MAX && \
- (a) >= SYSTEM_LOCALTIME_MIN \
-)
-#else
-# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
-#endif
-
-#ifdef USE_SYSTEM_GMTIME
-# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
- (a) <= SYSTEM_GMTIME_MAX && \
- (a) >= SYSTEM_GMTIME_MIN \
-)
-#else
-# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
-#endif
-
-/* Multi varadic macros are a C99 thing, alas */
-#ifdef TIME_64_DEBUG
-# define TRACE(format) (fprintf(stderr, format))
-# define TRACE1(format, var1) (fprintf(stderr, format, var1))
-# define TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
-# define TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
-#else
-# define TRACE(format) ((void)0)
-# define TRACE1(format, var1) ((void)0)
-# define TRACE2(format, var1, var2) ((void)0)
-# define TRACE3(format, var1, var2, var3) ((void)0)
-#endif
-
-
-static int is_exception_century(Year year)
-{
- int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
- TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
-
- return(is_exception);
-}
-
-
-/* timegm() is not in the C or POSIX spec, but it is such a useful
- extension I would be remiss in leaving it out. Also I need it
- for localtime64()
-*/
-Time64_T timegm64(const struct TM *date) {
- Time64_T days = 0;
- Time64_T seconds = 0;
- Year year;
- Year orig_year = (Year)date->tm_year;
- int cycles = 0;
-
- if( orig_year > 100 ) {
- cycles = (orig_year - 100) / 400;
- orig_year -= cycles * 400;
- days += (Time64_T)cycles * days_in_gregorian_cycle;
- }
- else if( orig_year < -300 ) {
- cycles = (orig_year - 100) / 400;
- orig_year -= cycles * 400;
- days += (Time64_T)cycles * days_in_gregorian_cycle;
- }
- TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year);
-
- if( orig_year > 70 ) {
- year = 70;
- while( year < orig_year ) {
- days += length_of_year[IS_LEAP(year)];
- year++;
- }
- }
- else if ( orig_year < 70 ) {
- year = 69;
- do {
- days -= length_of_year[IS_LEAP(year)];
- year--;
- } while( year >= orig_year );
- }
-
-
- days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon];
- days += date->tm_mday - 1;
-
- seconds = days * 60 * 60 * 24;
-
- seconds += date->tm_hour * 60 * 60;
- seconds += date->tm_min * 60;
- seconds += date->tm_sec;
-
- return(seconds);
-}
-
-
-static int check_tm(struct TM *tm)
-{
- /* Don't forget leap seconds */
- assert(tm->tm_sec >= 0);
- assert(tm->tm_sec <= 61);
-
- assert(tm->tm_min >= 0);
- assert(tm->tm_min <= 59);
-
- assert(tm->tm_hour >= 0);
- assert(tm->tm_hour <= 23);
-
- assert(tm->tm_mday >= 1);
- assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
-
- assert(tm->tm_mon >= 0);
- assert(tm->tm_mon <= 11);
-
- assert(tm->tm_wday >= 0);
- assert(tm->tm_wday <= 6);
-
- assert(tm->tm_yday >= 0);
- assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
-
-#ifdef HAS_TM_TM_GMTOFF
- assert(tm->tm_gmtoff >= -24 * 60 * 60);
- assert(tm->tm_gmtoff <= 24 * 60 * 60);
-#endif
-
- return 1;
-}
-
-
-/* The exceptional centuries without leap years cause the cycle to
- shift by 16
-*/
-static Year cycle_offset(Year year)
-{
- const Year start_year = 2000;
- Year year_diff = year - start_year;
- Year exceptions;
-
- if( year > start_year )
- year_diff--;
-
- exceptions = year_diff / 100;
- exceptions -= year_diff / 400;
-
- TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
- year, exceptions, year_diff);
-
- return exceptions * 16;
-}
-
-/* For a given year after 2038, pick the latest possible matching
- year in the 28 year calendar cycle.
-
- A matching year...
- 1) Starts on the same day of the week.
- 2) Has the same leap year status.
-
- This is so the calendars match up.
-
- Also the previous year must match. When doing Jan 1st you might
- wind up on Dec 31st the previous year when doing a -UTC time zone.
-
- Finally, the next year must have the same start day of week. This
- is for Dec 31st with a +UTC time zone.
- It doesn't need the same leap year status since we only care about
- January 1st.
-*/
-static int safe_year(const Year year)
-{
- int safe_year = 0;
- Year year_cycle;
-
- if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) {
- return (int)year;
- }
-
- year_cycle = year + cycle_offset(year);
-
- /* safe_years_low is off from safe_years_high by 8 years */
- if( year < MIN_SAFE_YEAR )
- year_cycle -= 8;
-
- /* Change non-leap xx00 years to an equivalent */
- if( is_exception_century(year) )
- year_cycle += 11;
-
- /* Also xx01 years, since the previous year will be wrong */
- if( is_exception_century(year - 1) )
- year_cycle += 17;
-
- year_cycle %= SOLAR_CYCLE_LENGTH;
- if( year_cycle < 0 )
- year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
-
- assert( year_cycle >= 0 );
- assert( year_cycle < SOLAR_CYCLE_LENGTH );
- if( year < MIN_SAFE_YEAR )
- safe_year = safe_years_low[year_cycle];
- else if( year > MAX_SAFE_YEAR )
- safe_year = safe_years_high[year_cycle];
- else
- assert(0);
-
- TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
- year, year_cycle, safe_year);
-
- assert(safe_year <= MAX_SAFE_YEAR && safe_year >= MIN_SAFE_YEAR);
-
- return safe_year;
-}
-
-
-void copy_tm_to_TM(const struct tm *src, struct TM *dest) {
- if( src == NULL ) {
- memset(dest, 0, sizeof(*dest));
- }
- else {
-# ifdef USE_TM64
- dest->tm_sec = src->tm_sec;
- dest->tm_min = src->tm_min;
- dest->tm_hour = src->tm_hour;
- dest->tm_mday = src->tm_mday;
- dest->tm_mon = src->tm_mon;
- dest->tm_year = (Year)src->tm_year;
- dest->tm_wday = src->tm_wday;
- dest->tm_yday = src->tm_yday;
- dest->tm_isdst = src->tm_isdst;
-
-# ifdef HAS_TM_TM_GMTOFF
- dest->tm_gmtoff = src->tm_gmtoff;
-# endif
-
-# ifdef HAS_TM_TM_ZONE
- dest->tm_zone = src->tm_zone;
-# endif
-
-# else
- /* They're the same type */
- memcpy(dest, src, sizeof(*dest));
-# endif
- }
-}
-
-
-void copy_TM_to_tm(const struct TM *src, struct tm *dest) {
- if( src == NULL ) {
- memset(dest, 0, sizeof(*dest));
- }
- else {
-# ifdef USE_TM64
- dest->tm_sec = src->tm_sec;
- dest->tm_min = src->tm_min;
- dest->tm_hour = src->tm_hour;
- dest->tm_mday = src->tm_mday;
- dest->tm_mon = src->tm_mon;
- dest->tm_year = (int)src->tm_year;
- dest->tm_wday = src->tm_wday;
- dest->tm_yday = src->tm_yday;
- dest->tm_isdst = src->tm_isdst;
-
-# ifdef HAS_TM_TM_GMTOFF
- dest->tm_gmtoff = src->tm_gmtoff;
-# endif
-
-# ifdef HAS_TM_TM_ZONE
- dest->tm_zone = src->tm_zone;
-# endif
-
-# else
- /* They're the same type */
- memcpy(dest, src, sizeof(*dest));
-# endif
- }
-}
-
-
-/* Simulate localtime_r() to the best of our ability */
-struct tm * fake_localtime_r(const time_t *clock, struct tm *result) {
- const struct tm *static_result = localtime(clock);
-
- assert(result != NULL);
-
- if( static_result == NULL ) {
- memset(result, 0, sizeof(*result));
- return NULL;
- }
- else {
- memcpy(result, static_result, sizeof(*result));
- return result;
- }
-}
-
-
-
-/* Simulate gmtime_r() to the best of our ability */
-struct tm * fake_gmtime_r(const time_t *clock, struct tm *result) {
- const struct tm *static_result = gmtime(clock);
-
- assert(result != NULL);
-
- if( static_result == NULL ) {
- memset(result, 0, sizeof(*result));
- return NULL;
- }
- else {
- memcpy(result, static_result, sizeof(*result));
- return result;
- }
-}
-
-
-static Time64_T seconds_between_years(Year left_year, Year right_year) {
- int increment = (left_year > right_year) ? 1 : -1;
- Time64_T seconds = 0;
- int cycles;
-
- if( left_year > 2400 ) {
- cycles = (left_year - 2400) / 400;
- left_year -= cycles * 400;
- seconds += cycles * seconds_in_gregorian_cycle;
- }
- else if( left_year < 1600 ) {
- cycles = (left_year - 1600) / 400;
- left_year += cycles * 400;
- seconds += cycles * seconds_in_gregorian_cycle;
- }
-
- while( left_year != right_year ) {
- seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24;
- right_year += increment;
- }
-
- return seconds * increment;
-}
-
-
-Time64_T mktime64(const struct TM *input_date) {
- struct tm safe_date;
- struct TM date;
- Time64_T time;
- Year year = input_date->tm_year + 1900;
-
- if( MIN_SAFE_YEAR <= year && year <= MAX_SAFE_YEAR ) {
- copy_TM_to_tm(input_date, &safe_date);
- return (Time64_T)mktime(&safe_date);
- }
-
- /* Have to make the year safe in date else it won't fit in safe_date */
- date = *input_date;
- date.tm_year = safe_year(year) - 1900;
- copy_TM_to_tm(&date, &safe_date);
-
- time = (Time64_T)mktime(&safe_date);
-
- time += seconds_between_years(year, (Year)(safe_date.tm_year + 1900));
-
- return time;
-}
-
-
-/* Because I think mktime() is a crappy name */
-Time64_T timelocal64(const struct TM *date) {
- return mktime64(date);
-}
-
-
-struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p)
-{
- int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
- Time64_T v_tm_tday;
- int leap;
- Time64_T m;
- Time64_T time = *in_time;
- Year year = 70;
- int cycles = 0;
-
- assert(p != NULL);
-
- /* Use the system gmtime() if time_t is small enough */
- if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
- time_t safe_time = *in_time;
- struct tm safe_date;
- GMTIME_R(&safe_time, &safe_date);
-
- copy_tm_to_TM(&safe_date, p);
- assert(check_tm(p));
-
- return p;
- }
-
-#ifdef HAS_TM_TM_GMTOFF
- p->tm_gmtoff = 0;
-#endif
- p->tm_isdst = 0;
-
-#ifdef HAS_TM_TM_ZONE
- p->tm_zone = "UTC";
-#endif
-
- v_tm_sec = (int)(time % 60);
- time /= 60;
- v_tm_min = (int)(time % 60);
- time /= 60;
- v_tm_hour = (int)(time % 24);
- time /= 24;
- v_tm_tday = time;
-
- WRAP (v_tm_sec, v_tm_min, 60);
- WRAP (v_tm_min, v_tm_hour, 60);
- WRAP (v_tm_hour, v_tm_tday, 24);
-
- v_tm_wday = (int)((v_tm_tday + 4) % 7);
- if (v_tm_wday < 0)
- v_tm_wday += 7;
- m = v_tm_tday;
-
- if (m >= CHEAT_DAYS) {
- year = CHEAT_YEARS;
- m -= CHEAT_DAYS;
- }
-
- if (m >= 0) {
- /* Gregorian cycles, this is huge optimization for distant times */
- cycles = (int)(m / (Time64_T) days_in_gregorian_cycle);
- if( cycles ) {
- m -= (cycles * (Time64_T) days_in_gregorian_cycle);
- year += (cycles * years_in_gregorian_cycle);
- }
-
- /* Years */
- leap = IS_LEAP (year);
- while (m >= (Time64_T) length_of_year[leap]) {
- m -= (Time64_T) length_of_year[leap];
- year++;
- leap = IS_LEAP (year);
- }
-
- /* Months */
- v_tm_mon = 0;
- while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
- m -= (Time64_T) days_in_month[leap][v_tm_mon];
- v_tm_mon++;
- }
- } else {
- year--;
-
- /* Gregorian cycles */
- cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1);
- if( cycles ) {
- m -= (cycles * (Time64_T) days_in_gregorian_cycle);
- year += (cycles * years_in_gregorian_cycle);
- }
-
- /* Years */
- leap = IS_LEAP (year);
- while (m < (Time64_T) -length_of_year[leap]) {
- m += (Time64_T) length_of_year[leap];
- year--;
- leap = IS_LEAP (year);
- }
-
- /* Months */
- v_tm_mon = 11;
- while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
- m += (Time64_T) days_in_month[leap][v_tm_mon];
- v_tm_mon--;
- }
- m += (Time64_T) days_in_month[leap][v_tm_mon];
- }
-
- p->tm_year = year;
- if( p->tm_year != year ) {
-#ifdef EOVERFLOW
- errno = EOVERFLOW;
-#endif
- return NULL;
- }
-
- /* At this point m is less than a year so casting to an int is safe */
- p->tm_mday = (int) m + 1;
- p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
- p->tm_sec = v_tm_sec;
- p->tm_min = v_tm_min;
- p->tm_hour = v_tm_hour;
- p->tm_mon = v_tm_mon;
- p->tm_wday = v_tm_wday;
-
- assert(check_tm(p));
-
- return p;
-}
-
-
-struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm)
-{
- time_t safe_time;
- struct tm safe_date;
- struct TM gm_tm;
- Year orig_year;
- int month_diff;
-
- assert(local_tm != NULL);
-
- /* Use the system localtime() if time_t is small enough */
- if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
- safe_time = *time;
-
- TRACE1("Using system localtime for %lld\n", *time);
-
- LOCALTIME_R(&safe_time, &safe_date);
-
- copy_tm_to_TM(&safe_date, local_tm);
- assert(check_tm(local_tm));
-
- return local_tm;
- }
-
- if( gmtime64_r(time, &gm_tm) == NULL ) {
- TRACE1("gmtime64_r returned null for %lld\n", *time);
- return NULL;
- }
-
- orig_year = gm_tm.tm_year;
-
- if (gm_tm.tm_year > (2037 - 1900) ||
- gm_tm.tm_year < (1970 - 1900)
- )
- {
- TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
- gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
- }
-
- safe_time = timegm64(&gm_tm);
- if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
- TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
- return NULL;
- }
-
- copy_tm_to_TM(&safe_date, local_tm);
-
- local_tm->tm_year = orig_year;
- if( local_tm->tm_year != orig_year ) {
- TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
- (Year)local_tm->tm_year, (Year)orig_year);
-
-#ifdef EOVERFLOW
- errno = EOVERFLOW;
-#endif
- return NULL;
- }
-
-
- month_diff = local_tm->tm_mon - gm_tm.tm_mon;
-
- /* When localtime is Dec 31st previous year and
- gmtime is Jan 1st next year.
- */
- if( month_diff == 11 ) {
- local_tm->tm_year--;
- }
-
- /* When localtime is Jan 1st, next year and
- gmtime is Dec 31st, previous year.
- */
- if( month_diff == -11 ) {
- local_tm->tm_year++;
- }
-
- /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
- in a non-leap xx00. There is one point in the cycle
- we can't account for which the safe xx00 year is a leap
- year. So we need to correct for Dec 31st comming out as
- the 366th day of the year.
- */
- if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
- local_tm->tm_yday--;
-
- assert(check_tm(local_tm));
-
- return local_tm;
-}
-
-
-int valid_tm_wday( const struct TM* date ) {
- if( 0 <= date->tm_wday && date->tm_wday <= 6 )
- return 1;
- else
- return 0;
-}
-
-int valid_tm_mon( const struct TM* date ) {
- if( 0 <= date->tm_mon && date->tm_mon <= 11 )
- return 1;
- else
- return 0;
-}
-
-
-char *asctime64_r( const struct TM* date, char *result ) {
- /* I figure everything else can be displayed, even hour 25, but if
- these are out of range we walk off the name arrays */
- if( !valid_tm_wday(date) || !valid_tm_mon(date) )
- return NULL;
-
- sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
- wday_name[date->tm_wday],
- mon_name[date->tm_mon],
- date->tm_mday, date->tm_hour,
- date->tm_min, date->tm_sec,
- 1900 + date->tm_year);
-
- return result;
-}
-
-
-char *ctime64_r( const Time64_T* time, char* result ) {
- struct TM date;
-
- localtime64_r( time, &date );
- return asctime64_r( &date, result );
-}
-
-
-/* Non-thread safe versions of the above */
-struct TM *localtime64(const Time64_T *time) {
- return localtime64_r(time, &Static_Return_Date);
-}
-
-struct TM *gmtime64(const Time64_T *time) {
- return gmtime64_r(time, &Static_Return_Date);
-}
-
-char *asctime64( const struct TM* date ) {
- return asctime64_r( date, Static_Return_String );
-}
-
-char *ctime64( const Time64_T* time ) {
- return asctime64(localtime64(time));
-}