diff options
Diffstat (limited to 'libc/dns/resolv/res_cache.c')
-rw-r--r-- | libc/dns/resolv/res_cache.c | 2099 |
1 files changed, 2099 insertions, 0 deletions
diff --git a/libc/dns/resolv/res_cache.c b/libc/dns/resolv/res_cache.c new file mode 100644 index 0000000..d68ec3b --- /dev/null +++ b/libc/dns/resolv/res_cache.c @@ -0,0 +1,2099 @@ +/* + * Copyright (C) 2008 The Android Open Source Project + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, + * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS + * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED + * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT + * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include "resolv_cache.h" +#include <resolv.h> +#include <stdlib.h> +#include <string.h> +#include <time.h> +#include "pthread.h" + +#include <errno.h> +#include <arpa/nameser.h> +#include <sys/system_properties.h> +#include <net/if.h> +#include <netdb.h> +#include <linux/if.h> + +#include <arpa/inet.h> +#include "resolv_private.h" +#include "resolv_netid.h" +#include "res_private.h" + +/* This code implements a small and *simple* DNS resolver cache. + * + * It is only used to cache DNS answers for a time defined by the smallest TTL + * among the answer records in order to reduce DNS traffic. It is not supposed + * to be a full DNS cache, since we plan to implement that in the future in a + * dedicated process running on the system. + * + * Note that its design is kept simple very intentionally, i.e.: + * + * - it takes raw DNS query packet data as input, and returns raw DNS + * answer packet data as output + * + * (this means that two similar queries that encode the DNS name + * differently will be treated distinctly). + * + * the smallest TTL value among the answer records are used as the time + * to keep an answer in the cache. + * + * this is bad, but we absolutely want to avoid parsing the answer packets + * (and should be solved by the later full DNS cache process). + * + * - the implementation is just a (query-data) => (answer-data) hash table + * with a trivial least-recently-used expiration policy. + * + * Doing this keeps the code simple and avoids to deal with a lot of things + * that a full DNS cache is expected to do. + * + * The API is also very simple: + * + * - the client calls _resolv_cache_get() to obtain a handle to the cache. + * this will initialize the cache on first usage. the result can be NULL + * if the cache is disabled. + * + * - the client calls _resolv_cache_lookup() before performing a query + * + * if the function returns RESOLV_CACHE_FOUND, a copy of the answer data + * has been copied into the client-provided answer buffer. + * + * if the function returns RESOLV_CACHE_NOTFOUND, the client should perform + * a request normally, *then* call _resolv_cache_add() to add the received + * answer to the cache. + * + * if the function returns RESOLV_CACHE_UNSUPPORTED, the client should + * perform a request normally, and *not* call _resolv_cache_add() + * + * note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer + * is too short to accomodate the cached result. + */ + +/* the name of an environment variable that will be checked the first time + * this code is called if its value is "0", then the resolver cache is + * disabled. + */ +#define CONFIG_ENV "BIONIC_DNSCACHE" + +/* entries older than CONFIG_SECONDS seconds are always discarded. + */ +#define CONFIG_SECONDS (60*10) /* 10 minutes */ + +/* default number of entries kept in the cache. This value has been + * determined by browsing through various sites and counting the number + * of corresponding requests. Keep in mind that our framework is currently + * performing two requests per name lookup (one for IPv4, the other for IPv6) + * + * www.google.com 4 + * www.ysearch.com 6 + * www.amazon.com 8 + * www.nytimes.com 22 + * www.espn.com 28 + * www.msn.com 28 + * www.lemonde.fr 35 + * + * (determined in 2009-2-17 from Paris, France, results may vary depending + * on location) + * + * most high-level websites use lots of media/ad servers with different names + * but these are generally reused when browsing through the site. + * + * As such, a value of 64 should be relatively comfortable at the moment. + * + * ****************************************** + * * NOTE - this has changed. + * * 1) we've added IPv6 support so each dns query results in 2 responses + * * 2) we've made this a system-wide cache, so the cost is less (it's not + * * duplicated in each process) and the need is greater (more processes + * * making different requests). + * * Upping by 2x for IPv6 + * * Upping by another 5x for the centralized nature + * ***************************************** + */ +#define CONFIG_MAX_ENTRIES 64 * 2 * 5 +/* name of the system property that can be used to set the cache size */ + +/****************************************************************************/ +/****************************************************************************/ +/***** *****/ +/***** *****/ +/***** *****/ +/****************************************************************************/ +/****************************************************************************/ + +/* set to 1 to debug cache operations */ +#define DEBUG 0 + +/* set to 1 to debug query data */ +#define DEBUG_DATA 0 + +#undef XLOG +#if DEBUG +# include "private/libc_logging.h" +# define XLOG(...) __libc_format_log(ANDROID_LOG_DEBUG,"libc",__VA_ARGS__) + +#include <stdio.h> +#include <stdarg.h> + +/** BOUNDED BUFFER FORMATTING + **/ + +/* technical note: + * + * the following debugging routines are used to append data to a bounded + * buffer they take two parameters that are: + * + * - p : a pointer to the current cursor position in the buffer + * this value is initially set to the buffer's address. + * + * - end : the address of the buffer's limit, i.e. of the first byte + * after the buffer. this address should never be touched. + * + * IMPORTANT: it is assumed that end > buffer_address, i.e. + * that the buffer is at least one byte. + * + * the _bprint_() functions return the new value of 'p' after the data + * has been appended, and also ensure the following: + * + * - the returned value will never be strictly greater than 'end' + * + * - a return value equal to 'end' means that truncation occured + * (in which case, end[-1] will be set to 0) + * + * - after returning from a _bprint_() function, the content of the buffer + * is always 0-terminated, even in the event of truncation. + * + * these conventions allow you to call _bprint_ functions multiple times and + * only check for truncation at the end of the sequence, as in: + * + * char buff[1000], *p = buff, *end = p + sizeof(buff); + * + * p = _bprint_c(p, end, '"'); + * p = _bprint_s(p, end, my_string); + * p = _bprint_c(p, end, '"'); + * + * if (p >= end) { + * // buffer was too small + * } + * + * printf( "%s", buff ); + */ + +/* add a char to a bounded buffer */ +static char* +_bprint_c( char* p, char* end, int c ) +{ + if (p < end) { + if (p+1 == end) + *p++ = 0; + else { + *p++ = (char) c; + *p = 0; + } + } + return p; +} + +/* add a sequence of bytes to a bounded buffer */ +static char* +_bprint_b( char* p, char* end, const char* buf, int len ) +{ + int avail = end - p; + + if (avail <= 0 || len <= 0) + return p; + + if (avail > len) + avail = len; + + memcpy( p, buf, avail ); + p += avail; + + if (p < end) + p[0] = 0; + else + end[-1] = 0; + + return p; +} + +/* add a string to a bounded buffer */ +static char* +_bprint_s( char* p, char* end, const char* str ) +{ + return _bprint_b(p, end, str, strlen(str)); +} + +/* add a formatted string to a bounded buffer */ +static char* +_bprint( char* p, char* end, const char* format, ... ) +{ + int avail, n; + va_list args; + + avail = end - p; + + if (avail <= 0) + return p; + + va_start(args, format); + n = vsnprintf( p, avail, format, args); + va_end(args); + + /* certain C libraries return -1 in case of truncation */ + if (n < 0 || n > avail) + n = avail; + + p += n; + /* certain C libraries do not zero-terminate in case of truncation */ + if (p == end) + p[-1] = 0; + + return p; +} + +/* add a hex value to a bounded buffer, up to 8 digits */ +static char* +_bprint_hex( char* p, char* end, unsigned value, int numDigits ) +{ + char text[sizeof(unsigned)*2]; + int nn = 0; + + while (numDigits-- > 0) { + text[nn++] = "0123456789abcdef"[(value >> (numDigits*4)) & 15]; + } + return _bprint_b(p, end, text, nn); +} + +/* add the hexadecimal dump of some memory area to a bounded buffer */ +static char* +_bprint_hexdump( char* p, char* end, const uint8_t* data, int datalen ) +{ + int lineSize = 16; + + while (datalen > 0) { + int avail = datalen; + int nn; + + if (avail > lineSize) + avail = lineSize; + + for (nn = 0; nn < avail; nn++) { + if (nn > 0) + p = _bprint_c(p, end, ' '); + p = _bprint_hex(p, end, data[nn], 2); + } + for ( ; nn < lineSize; nn++ ) { + p = _bprint_s(p, end, " "); + } + p = _bprint_s(p, end, " "); + + for (nn = 0; nn < avail; nn++) { + int c = data[nn]; + + if (c < 32 || c > 127) + c = '.'; + + p = _bprint_c(p, end, c); + } + p = _bprint_c(p, end, '\n'); + + data += avail; + datalen -= avail; + } + return p; +} + +/* dump the content of a query of packet to the log */ +static void +XLOG_BYTES( const void* base, int len ) +{ + char buff[1024]; + char* p = buff, *end = p + sizeof(buff); + + p = _bprint_hexdump(p, end, base, len); + XLOG("%s",buff); +} + +#else /* !DEBUG */ +# define XLOG(...) ((void)0) +# define XLOG_BYTES(a,b) ((void)0) +#endif + +static time_t +_time_now( void ) +{ + struct timeval tv; + + gettimeofday( &tv, NULL ); + return tv.tv_sec; +} + +/* reminder: the general format of a DNS packet is the following: + * + * HEADER (12 bytes) + * QUESTION (variable) + * ANSWER (variable) + * AUTHORITY (variable) + * ADDITIONNAL (variable) + * + * the HEADER is made of: + * + * ID : 16 : 16-bit unique query identification field + * + * QR : 1 : set to 0 for queries, and 1 for responses + * Opcode : 4 : set to 0 for queries + * AA : 1 : set to 0 for queries + * TC : 1 : truncation flag, will be set to 0 in queries + * RD : 1 : recursion desired + * + * RA : 1 : recursion available (0 in queries) + * Z : 3 : three reserved zero bits + * RCODE : 4 : response code (always 0=NOERROR in queries) + * + * QDCount: 16 : question count + * ANCount: 16 : Answer count (0 in queries) + * NSCount: 16: Authority Record count (0 in queries) + * ARCount: 16: Additionnal Record count (0 in queries) + * + * the QUESTION is made of QDCount Question Record (QRs) + * the ANSWER is made of ANCount RRs + * the AUTHORITY is made of NSCount RRs + * the ADDITIONNAL is made of ARCount RRs + * + * Each Question Record (QR) is made of: + * + * QNAME : variable : Query DNS NAME + * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255) + * CLASS : 16 : class of query (IN=1) + * + * Each Resource Record (RR) is made of: + * + * NAME : variable : DNS NAME + * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255) + * CLASS : 16 : class of query (IN=1) + * TTL : 32 : seconds to cache this RR (0=none) + * RDLENGTH: 16 : size of RDDATA in bytes + * RDDATA : variable : RR data (depends on TYPE) + * + * Each QNAME contains a domain name encoded as a sequence of 'labels' + * terminated by a zero. Each label has the following format: + * + * LEN : 8 : lenght of label (MUST be < 64) + * NAME : 8*LEN : label length (must exclude dots) + * + * A value of 0 in the encoding is interpreted as the 'root' domain and + * terminates the encoding. So 'www.android.com' will be encoded as: + * + * <3>www<7>android<3>com<0> + * + * Where <n> represents the byte with value 'n' + * + * Each NAME reflects the QNAME of the question, but has a slightly more + * complex encoding in order to provide message compression. This is achieved + * by using a 2-byte pointer, with format: + * + * TYPE : 2 : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved + * OFFSET : 14 : offset to another part of the DNS packet + * + * The offset is relative to the start of the DNS packet and must point + * A pointer terminates the encoding. + * + * The NAME can be encoded in one of the following formats: + * + * - a sequence of simple labels terminated by 0 (like QNAMEs) + * - a single pointer + * - a sequence of simple labels terminated by a pointer + * + * A pointer shall always point to either a pointer of a sequence of + * labels (which can themselves be terminated by either a 0 or a pointer) + * + * The expanded length of a given domain name should not exceed 255 bytes. + * + * NOTE: we don't parse the answer packets, so don't need to deal with NAME + * records, only QNAMEs. + */ + +#define DNS_HEADER_SIZE 12 + +#define DNS_TYPE_A "\00\01" /* big-endian decimal 1 */ +#define DNS_TYPE_PTR "\00\014" /* big-endian decimal 12 */ +#define DNS_TYPE_MX "\00\017" /* big-endian decimal 15 */ +#define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */ +#define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */ + +#define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */ + +typedef struct { + const uint8_t* base; + const uint8_t* end; + const uint8_t* cursor; +} DnsPacket; + +static void +_dnsPacket_init( DnsPacket* packet, const uint8_t* buff, int bufflen ) +{ + packet->base = buff; + packet->end = buff + bufflen; + packet->cursor = buff; +} + +static void +_dnsPacket_rewind( DnsPacket* packet ) +{ + packet->cursor = packet->base; +} + +static void +_dnsPacket_skip( DnsPacket* packet, int count ) +{ + const uint8_t* p = packet->cursor + count; + + if (p > packet->end) + p = packet->end; + + packet->cursor = p; +} + +static int +_dnsPacket_readInt16( DnsPacket* packet ) +{ + const uint8_t* p = packet->cursor; + + if (p+2 > packet->end) + return -1; + + packet->cursor = p+2; + return (p[0]<< 8) | p[1]; +} + +/** QUERY CHECKING + **/ + +/* check bytes in a dns packet. returns 1 on success, 0 on failure. + * the cursor is only advanced in the case of success + */ +static int +_dnsPacket_checkBytes( DnsPacket* packet, int numBytes, const void* bytes ) +{ + const uint8_t* p = packet->cursor; + + if (p + numBytes > packet->end) + return 0; + + if (memcmp(p, bytes, numBytes) != 0) + return 0; + + packet->cursor = p + numBytes; + return 1; +} + +/* parse and skip a given QNAME stored in a query packet, + * from the current cursor position. returns 1 on success, + * or 0 for malformed data. + */ +static int +_dnsPacket_checkQName( DnsPacket* packet ) +{ + const uint8_t* p = packet->cursor; + const uint8_t* end = packet->end; + + for (;;) { + int c; + + if (p >= end) + break; + + c = *p++; + + if (c == 0) { + packet->cursor = p; + return 1; + } + + /* we don't expect label compression in QNAMEs */ + if (c >= 64) + break; + + p += c; + /* we rely on the bound check at the start + * of the loop here */ + } + /* malformed data */ + XLOG("malformed QNAME"); + return 0; +} + +/* parse and skip a given QR stored in a packet. + * returns 1 on success, and 0 on failure + */ +static int +_dnsPacket_checkQR( DnsPacket* packet ) +{ + if (!_dnsPacket_checkQName(packet)) + return 0; + + /* TYPE must be one of the things we support */ + if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) && + !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) && + !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) && + !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) && + !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL)) + { + XLOG("unsupported TYPE"); + return 0; + } + /* CLASS must be IN */ + if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) { + XLOG("unsupported CLASS"); + return 0; + } + + return 1; +} + +/* check the header of a DNS Query packet, return 1 if it is one + * type of query we can cache, or 0 otherwise + */ +static int +_dnsPacket_checkQuery( DnsPacket* packet ) +{ + const uint8_t* p = packet->base; + int qdCount, anCount, dnCount, arCount; + + if (p + DNS_HEADER_SIZE > packet->end) { + XLOG("query packet too small"); + return 0; + } + + /* QR must be set to 0, opcode must be 0 and AA must be 0 */ + /* RA, Z, and RCODE must be 0 */ + if ((p[2] & 0xFC) != 0 || p[3] != 0) { + XLOG("query packet flags unsupported"); + return 0; + } + + /* Note that we ignore the TC and RD bits here for the + * following reasons: + * + * - there is no point for a query packet sent to a server + * to have the TC bit set, but the implementation might + * set the bit in the query buffer for its own needs + * between a _resolv_cache_lookup and a + * _resolv_cache_add. We should not freak out if this + * is the case. + * + * - we consider that the result from a RD=0 or a RD=1 + * query might be different, hence that the RD bit + * should be used to differentiate cached result. + * + * this implies that RD is checked when hashing or + * comparing query packets, but not TC + */ + + /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */ + qdCount = (p[4] << 8) | p[5]; + anCount = (p[6] << 8) | p[7]; + dnCount = (p[8] << 8) | p[9]; + arCount = (p[10]<< 8) | p[11]; + + if (anCount != 0 || dnCount != 0 || arCount != 0) { + XLOG("query packet contains non-query records"); + return 0; + } + + if (qdCount == 0) { + XLOG("query packet doesn't contain query record"); + return 0; + } + + /* Check QDCOUNT QRs */ + packet->cursor = p + DNS_HEADER_SIZE; + + for (;qdCount > 0; qdCount--) + if (!_dnsPacket_checkQR(packet)) + return 0; + + return 1; +} + +/** QUERY DEBUGGING + **/ +#if DEBUG +static char* +_dnsPacket_bprintQName(DnsPacket* packet, char* bp, char* bend) +{ + const uint8_t* p = packet->cursor; + const uint8_t* end = packet->end; + int first = 1; + + for (;;) { + int c; + + if (p >= end) + break; + + c = *p++; + + if (c == 0) { + packet->cursor = p; + return bp; + } + + /* we don't expect label compression in QNAMEs */ + if (c >= 64) + break; + + if (first) + first = 0; + else + bp = _bprint_c(bp, bend, '.'); + + bp = _bprint_b(bp, bend, (const char*)p, c); + + p += c; + /* we rely on the bound check at the start + * of the loop here */ + } + /* malformed data */ + bp = _bprint_s(bp, bend, "<MALFORMED>"); + return bp; +} + +static char* +_dnsPacket_bprintQR(DnsPacket* packet, char* p, char* end) +{ +#define QQ(x) { DNS_TYPE_##x, #x } + static const struct { + const char* typeBytes; + const char* typeString; + } qTypes[] = + { + QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL), + { NULL, NULL } + }; + int nn; + const char* typeString = NULL; + + /* dump QNAME */ + p = _dnsPacket_bprintQName(packet, p, end); + + /* dump TYPE */ + p = _bprint_s(p, end, " ("); + + for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) { + if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) { + typeString = qTypes[nn].typeString; + break; + } + } + + if (typeString != NULL) + p = _bprint_s(p, end, typeString); + else { + int typeCode = _dnsPacket_readInt16(packet); + p = _bprint(p, end, "UNKNOWN-%d", typeCode); + } + + p = _bprint_c(p, end, ')'); + + /* skip CLASS */ + _dnsPacket_skip(packet, 2); + return p; +} + +/* this function assumes the packet has already been checked */ +static char* +_dnsPacket_bprintQuery( DnsPacket* packet, char* p, char* end ) +{ + int qdCount; + + if (packet->base[2] & 0x1) { + p = _bprint_s(p, end, "RECURSIVE "); + } + + _dnsPacket_skip(packet, 4); + qdCount = _dnsPacket_readInt16(packet); + _dnsPacket_skip(packet, 6); + + for ( ; qdCount > 0; qdCount-- ) { + p = _dnsPacket_bprintQR(packet, p, end); + } + return p; +} +#endif + + +/** QUERY HASHING SUPPORT + ** + ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY + ** BEEN SUCCESFULLY CHECKED. + **/ + +/* use 32-bit FNV hash function */ +#define FNV_MULT 16777619U +#define FNV_BASIS 2166136261U + +static unsigned +_dnsPacket_hashBytes( DnsPacket* packet, int numBytes, unsigned hash ) +{ + const uint8_t* p = packet->cursor; + const uint8_t* end = packet->end; + + while (numBytes > 0 && p < end) { + hash = hash*FNV_MULT ^ *p++; + } + packet->cursor = p; + return hash; +} + + +static unsigned +_dnsPacket_hashQName( DnsPacket* packet, unsigned hash ) +{ + const uint8_t* p = packet->cursor; + const uint8_t* end = packet->end; + + for (;;) { + int c; + + if (p >= end) { /* should not happen */ + XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__); + break; + } + + c = *p++; + + if (c == 0) + break; + + if (c >= 64) { + XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__); + break; + } + if (p + c >= end) { + XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n", + __FUNCTION__); + break; + } + while (c > 0) { + hash = hash*FNV_MULT ^ *p++; + c -= 1; + } + } + packet->cursor = p; + return hash; +} + +static unsigned +_dnsPacket_hashQR( DnsPacket* packet, unsigned hash ) +{ + hash = _dnsPacket_hashQName(packet, hash); + hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */ + return hash; +} + +static unsigned +_dnsPacket_hashQuery( DnsPacket* packet ) +{ + unsigned hash = FNV_BASIS; + int count; + _dnsPacket_rewind(packet); + + /* we ignore the TC bit for reasons explained in + * _dnsPacket_checkQuery(). + * + * however we hash the RD bit to differentiate + * between answers for recursive and non-recursive + * queries. + */ + hash = hash*FNV_MULT ^ (packet->base[2] & 1); + + /* assume: other flags are 0 */ + _dnsPacket_skip(packet, 4); + + /* read QDCOUNT */ + count = _dnsPacket_readInt16(packet); + + /* assume: ANcount, NScount, ARcount are 0 */ + _dnsPacket_skip(packet, 6); + + /* hash QDCOUNT QRs */ + for ( ; count > 0; count-- ) + hash = _dnsPacket_hashQR(packet, hash); + + return hash; +} + + +/** QUERY COMPARISON + ** + ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY + ** BEEN SUCCESFULLY CHECKED. + **/ + +static int +_dnsPacket_isEqualDomainName( DnsPacket* pack1, DnsPacket* pack2 ) +{ + const uint8_t* p1 = pack1->cursor; + const uint8_t* end1 = pack1->end; + const uint8_t* p2 = pack2->cursor; + const uint8_t* end2 = pack2->end; + + for (;;) { + int c1, c2; + + if (p1 >= end1 || p2 >= end2) { + XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__); + break; + } + c1 = *p1++; + c2 = *p2++; + if (c1 != c2) + break; + + if (c1 == 0) { + pack1->cursor = p1; + pack2->cursor = p2; + return 1; + } + if (c1 >= 64) { + XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__); + break; + } + if ((p1+c1 > end1) || (p2+c1 > end2)) { + XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n", + __FUNCTION__); + break; + } + if (memcmp(p1, p2, c1) != 0) + break; + p1 += c1; + p2 += c1; + /* we rely on the bound checks at the start of the loop */ + } + /* not the same, or one is malformed */ + XLOG("different DN"); + return 0; +} + +static int +_dnsPacket_isEqualBytes( DnsPacket* pack1, DnsPacket* pack2, int numBytes ) +{ + const uint8_t* p1 = pack1->cursor; + const uint8_t* p2 = pack2->cursor; + + if ( p1 + numBytes > pack1->end || p2 + numBytes > pack2->end ) + return 0; + + if ( memcmp(p1, p2, numBytes) != 0 ) + return 0; + + pack1->cursor += numBytes; + pack2->cursor += numBytes; + return 1; +} + +static int +_dnsPacket_isEqualQR( DnsPacket* pack1, DnsPacket* pack2 ) +{ + /* compare domain name encoding + TYPE + CLASS */ + if ( !_dnsPacket_isEqualDomainName(pack1, pack2) || + !_dnsPacket_isEqualBytes(pack1, pack2, 2+2) ) + return 0; + + return 1; +} + +static int +_dnsPacket_isEqualQuery( DnsPacket* pack1, DnsPacket* pack2 ) +{ + int count1, count2; + + /* compare the headers, ignore most fields */ + _dnsPacket_rewind(pack1); + _dnsPacket_rewind(pack2); + + /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */ + if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) { + XLOG("different RD"); + return 0; + } + + /* assume: other flags are all 0 */ + _dnsPacket_skip(pack1, 4); + _dnsPacket_skip(pack2, 4); + + /* compare QDCOUNT */ + count1 = _dnsPacket_readInt16(pack1); + count2 = _dnsPacket_readInt16(pack2); + if (count1 != count2 || count1 < 0) { + XLOG("different QDCOUNT"); + return 0; + } + + /* assume: ANcount, NScount and ARcount are all 0 */ + _dnsPacket_skip(pack1, 6); + _dnsPacket_skip(pack2, 6); + + /* compare the QDCOUNT QRs */ + for ( ; count1 > 0; count1-- ) { + if (!_dnsPacket_isEqualQR(pack1, pack2)) { + XLOG("different QR"); + return 0; + } + } + return 1; +} + +/****************************************************************************/ +/****************************************************************************/ +/***** *****/ +/***** *****/ +/***** *****/ +/****************************************************************************/ +/****************************************************************************/ + +/* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this + * structure though they are conceptually part of the hash table. + * + * similarly, mru_next and mru_prev are part of the global MRU list + */ +typedef struct Entry { + unsigned int hash; /* hash value */ + struct Entry* hlink; /* next in collision chain */ + struct Entry* mru_prev; + struct Entry* mru_next; + + const uint8_t* query; + int querylen; + const uint8_t* answer; + int answerlen; + time_t expires; /* time_t when the entry isn't valid any more */ + int id; /* for debugging purpose */ +} Entry; + +/** + * Find the TTL for a negative DNS result. This is defined as the minimum + * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308). + * + * Return 0 if not found. + */ +static u_long +answer_getNegativeTTL(ns_msg handle) { + int n, nscount; + u_long result = 0; + ns_rr rr; + + nscount = ns_msg_count(handle, ns_s_ns); + for (n = 0; n < nscount; n++) { + if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) { + const u_char *rdata = ns_rr_rdata(rr); // find the data + const u_char *edata = rdata + ns_rr_rdlen(rr); // add the len to find the end + int len; + u_long ttl, rec_result = ns_rr_ttl(rr); + + // find the MINIMUM-TTL field from the blob of binary data for this record + // skip the server name + len = dn_skipname(rdata, edata); + if (len == -1) continue; // error skipping + rdata += len; + + // skip the admin name + len = dn_skipname(rdata, edata); + if (len == -1) continue; // error skipping + rdata += len; + + if (edata - rdata != 5*NS_INT32SZ) continue; + // skip: serial number + refresh interval + retry interval + expiry + rdata += NS_INT32SZ * 4; + // finally read the MINIMUM TTL + ttl = ns_get32(rdata); + if (ttl < rec_result) { + rec_result = ttl; + } + // Now that the record is read successfully, apply the new min TTL + if (n == 0 || rec_result < result) { + result = rec_result; + } + } + } + return result; +} + +/** + * Parse the answer records and find the appropriate + * smallest TTL among the records. This might be from + * the answer records if found or from the SOA record + * if it's a negative result. + * + * The returned TTL is the number of seconds to + * keep the answer in the cache. + * + * In case of parse error zero (0) is returned which + * indicates that the answer shall not be cached. + */ +static u_long +answer_getTTL(const void* answer, int answerlen) +{ + ns_msg handle; + int ancount, n; + u_long result, ttl; + ns_rr rr; + + result = 0; + if (ns_initparse(answer, answerlen, &handle) >= 0) { + // get number of answer records + ancount = ns_msg_count(handle, ns_s_an); + + if (ancount == 0) { + // a response with no answers? Cache this negative result. + result = answer_getNegativeTTL(handle); + } else { + for (n = 0; n < ancount; n++) { + if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) { + ttl = ns_rr_ttl(rr); + if (n == 0 || ttl < result) { + result = ttl; + } + } else { + XLOG("ns_parserr failed ancount no = %d. errno = %s\n", n, strerror(errno)); + } + } + } + } else { + XLOG("ns_parserr failed. %s\n", strerror(errno)); + } + + XLOG("TTL = %d\n", result); + + return result; +} + +static void +entry_free( Entry* e ) +{ + /* everything is allocated in a single memory block */ + if (e) { + free(e); + } +} + +static __inline__ void +entry_mru_remove( Entry* e ) +{ + e->mru_prev->mru_next = e->mru_next; + e->mru_next->mru_prev = e->mru_prev; +} + +static __inline__ void +entry_mru_add( Entry* e, Entry* list ) +{ + Entry* first = list->mru_next; + + e->mru_next = first; + e->mru_prev = list; + + list->mru_next = e; + first->mru_prev = e; +} + +/* compute the hash of a given entry, this is a hash of most + * data in the query (key) */ +static unsigned +entry_hash( const Entry* e ) +{ + DnsPacket pack[1]; + + _dnsPacket_init(pack, e->query, e->querylen); + return _dnsPacket_hashQuery(pack); +} + +/* initialize an Entry as a search key, this also checks the input query packet + * returns 1 on success, or 0 in case of unsupported/malformed data */ +static int +entry_init_key( Entry* e, const void* query, int querylen ) +{ + DnsPacket pack[1]; + + memset(e, 0, sizeof(*e)); + + e->query = query; + e->querylen = querylen; + e->hash = entry_hash(e); + + _dnsPacket_init(pack, query, querylen); + + return _dnsPacket_checkQuery(pack); +} + +/* allocate a new entry as a cache node */ +static Entry* +entry_alloc( const Entry* init, const void* answer, int answerlen ) +{ + Entry* e; + int size; + + size = sizeof(*e) + init->querylen + answerlen; + e = calloc(size, 1); + if (e == NULL) + return e; + + e->hash = init->hash; + e->query = (const uint8_t*)(e+1); + e->querylen = init->querylen; + + memcpy( (char*)e->query, init->query, e->querylen ); + + e->answer = e->query + e->querylen; + e->answerlen = answerlen; + + memcpy( (char*)e->answer, answer, e->answerlen ); + + return e; +} + +static int +entry_equals( const Entry* e1, const Entry* e2 ) +{ + DnsPacket pack1[1], pack2[1]; + + if (e1->querylen != e2->querylen) { + return 0; + } + _dnsPacket_init(pack1, e1->query, e1->querylen); + _dnsPacket_init(pack2, e2->query, e2->querylen); + + return _dnsPacket_isEqualQuery(pack1, pack2); +} + +/****************************************************************************/ +/****************************************************************************/ +/***** *****/ +/***** *****/ +/***** *****/ +/****************************************************************************/ +/****************************************************************************/ + +/* We use a simple hash table with external collision lists + * for simplicity, the hash-table fields 'hash' and 'hlink' are + * inlined in the Entry structure. + */ + +/* Maximum time for a thread to wait for an pending request */ +#define PENDING_REQUEST_TIMEOUT 20; + +typedef struct pending_req_info { + unsigned int hash; + pthread_cond_t cond; + struct pending_req_info* next; +} PendingReqInfo; + +typedef struct resolv_cache { + int max_entries; + int num_entries; + Entry mru_list; + int last_id; + Entry* entries; + PendingReqInfo pending_requests; +} Cache; + +struct resolv_cache_info { + unsigned netid; + Cache* cache; + struct resolv_cache_info* next; + char* nameservers[MAXNS +1]; + struct addrinfo* nsaddrinfo[MAXNS + 1]; + char defdname[256]; + int dnsrch_offset[MAXDNSRCH+1]; // offsets into defdname +}; + +#define HTABLE_VALID(x) ((x) != NULL && (x) != HTABLE_DELETED) + +static pthread_once_t _res_cache_once = PTHREAD_ONCE_INIT; +static void _res_cache_init(void); + +// lock protecting everything in the _resolve_cache_info structs (next ptr, etc) +static pthread_mutex_t _res_cache_list_lock; + +/* gets cache associated with a network, or NULL if none exists */ +static struct resolv_cache* _find_named_cache_locked(unsigned netid); + +static void +_cache_flush_pending_requests_locked( struct resolv_cache* cache ) +{ + struct pending_req_info *ri, *tmp; + if (cache) { + ri = cache->pending_requests.next; + + while (ri) { + tmp = ri; + ri = ri->next; + pthread_cond_broadcast(&tmp->cond); + + pthread_cond_destroy(&tmp->cond); + free(tmp); + } + + cache->pending_requests.next = NULL; + } +} + +/* Return 0 if no pending request is found matching the key. + * If a matching request is found the calling thread will wait until + * the matching request completes, then update *cache and return 1. */ +static int +_cache_check_pending_request_locked( struct resolv_cache** cache, Entry* key, unsigned netid ) +{ + struct pending_req_info *ri, *prev; + int exist = 0; + + if (*cache && key) { + ri = (*cache)->pending_requests.next; + prev = &(*cache)->pending_requests; + while (ri) { + if (ri->hash == key->hash) { + exist = 1; + break; + } + prev = ri; + ri = ri->next; + } + + if (!exist) { + ri = calloc(1, sizeof(struct pending_req_info)); + if (ri) { + ri->hash = key->hash; + pthread_cond_init(&ri->cond, NULL); + prev->next = ri; + } + } else { + struct timespec ts = {0,0}; + XLOG("Waiting for previous request"); + ts.tv_sec = _time_now() + PENDING_REQUEST_TIMEOUT; + pthread_cond_timedwait(&ri->cond, &_res_cache_list_lock, &ts); + /* Must update *cache as it could have been deleted. */ + *cache = _find_named_cache_locked(netid); + } + } + + return exist; +} + +/* notify any waiting thread that waiting on a request + * matching the key has been added to the cache */ +static void +_cache_notify_waiting_tid_locked( struct resolv_cache* cache, Entry* key ) +{ + struct pending_req_info *ri, *prev; + + if (cache && key) { + ri = cache->pending_requests.next; + prev = &cache->pending_requests; + while (ri) { + if (ri->hash == key->hash) { + pthread_cond_broadcast(&ri->cond); + break; + } + prev = ri; + ri = ri->next; + } + + // remove item from list and destroy + if (ri) { + prev->next = ri->next; + pthread_cond_destroy(&ri->cond); + free(ri); + } + } +} + +/* notify the cache that the query failed */ +void +_resolv_cache_query_failed( unsigned netid, + const void* query, + int querylen) +{ + Entry key[1]; + Cache* cache; + + if (!entry_init_key(key, query, querylen)) + return; + + pthread_mutex_lock(&_res_cache_list_lock); + + cache = _find_named_cache_locked(netid); + + if (cache) { + _cache_notify_waiting_tid_locked(cache, key); + } + + pthread_mutex_unlock(&_res_cache_list_lock); +} + +static void +_cache_flush_locked( Cache* cache ) +{ + int nn; + + for (nn = 0; nn < cache->max_entries; nn++) + { + Entry** pnode = (Entry**) &cache->entries[nn]; + + while (*pnode != NULL) { + Entry* node = *pnode; + *pnode = node->hlink; + entry_free(node); + } + } + + // flush pending request + _cache_flush_pending_requests_locked(cache); + + cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list; + cache->num_entries = 0; + cache->last_id = 0; + + XLOG("*************************\n" + "*** DNS CACHE FLUSHED ***\n" + "*************************"); +} + +static int +_res_cache_get_max_entries( void ) +{ + int cache_size = CONFIG_MAX_ENTRIES; + + const char* cache_mode = getenv("ANDROID_DNS_MODE"); + if (cache_mode == NULL || strcmp(cache_mode, "local") != 0) { + // Don't use the cache in local mode. This is used by the proxy itself. + cache_size = 0; + } + + XLOG("cache size: %d", cache_size); + return cache_size; +} + +static struct resolv_cache* +_resolv_cache_create( void ) +{ + struct resolv_cache* cache; + + cache = calloc(sizeof(*cache), 1); + if (cache) { + cache->max_entries = _res_cache_get_max_entries(); + cache->entries = calloc(sizeof(*cache->entries), cache->max_entries); + if (cache->entries) { + cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list; + XLOG("%s: cache created\n", __FUNCTION__); + } else { + free(cache); + cache = NULL; + } + } + return cache; +} + + +#if DEBUG +static void +_dump_query( const uint8_t* query, int querylen ) +{ + char temp[256], *p=temp, *end=p+sizeof(temp); + DnsPacket pack[1]; + + _dnsPacket_init(pack, query, querylen); + p = _dnsPacket_bprintQuery(pack, p, end); + XLOG("QUERY: %s", temp); +} + +static void +_cache_dump_mru( Cache* cache ) +{ + char temp[512], *p=temp, *end=p+sizeof(temp); + Entry* e; + + p = _bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries); + for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next) + p = _bprint(p, end, " %d", e->id); + + XLOG("%s", temp); +} + +static void +_dump_answer(const void* answer, int answerlen) +{ + res_state statep; + FILE* fp; + char* buf; + int fileLen; + + fp = fopen("/data/reslog.txt", "w+"); + if (fp != NULL) { + statep = __res_get_state(); + + res_pquery(statep, answer, answerlen, fp); + + //Get file length + fseek(fp, 0, SEEK_END); + fileLen=ftell(fp); + fseek(fp, 0, SEEK_SET); + buf = (char *)malloc(fileLen+1); + if (buf != NULL) { + //Read file contents into buffer + fread(buf, fileLen, 1, fp); + XLOG("%s\n", buf); + free(buf); + } + fclose(fp); + remove("/data/reslog.txt"); + } + else { + errno = 0; // else debug is introducing error signals + XLOG("%s: can't open file\n", __FUNCTION__); + } +} +#endif + +#if DEBUG +# define XLOG_QUERY(q,len) _dump_query((q), (len)) +# define XLOG_ANSWER(a, len) _dump_answer((a), (len)) +#else +# define XLOG_QUERY(q,len) ((void)0) +# define XLOG_ANSWER(a,len) ((void)0) +#endif + +/* This function tries to find a key within the hash table + * In case of success, it will return a *pointer* to the hashed key. + * In case of failure, it will return a *pointer* to NULL + * + * So, the caller must check '*result' to check for success/failure. + * + * The main idea is that the result can later be used directly in + * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup' + * parameter. This makes the code simpler and avoids re-searching + * for the key position in the htable. + * + * The result of a lookup_p is only valid until you alter the hash + * table. + */ +static Entry** +_cache_lookup_p( Cache* cache, + Entry* key ) +{ + int index = key->hash % cache->max_entries; + Entry** pnode = (Entry**) &cache->entries[ index ]; + + while (*pnode != NULL) { + Entry* node = *pnode; + + if (node == NULL) + break; + + if (node->hash == key->hash && entry_equals(node, key)) + break; + + pnode = &node->hlink; + } + return pnode; +} + +/* Add a new entry to the hash table. 'lookup' must be the + * result of an immediate previous failed _lookup_p() call + * (i.e. with *lookup == NULL), and 'e' is the pointer to the + * newly created entry + */ +static void +_cache_add_p( Cache* cache, + Entry** lookup, + Entry* e ) +{ + *lookup = e; + e->id = ++cache->last_id; + entry_mru_add(e, &cache->mru_list); + cache->num_entries += 1; + + XLOG("%s: entry %d added (count=%d)", __FUNCTION__, + e->id, cache->num_entries); +} + +/* Remove an existing entry from the hash table, + * 'lookup' must be the result of an immediate previous + * and succesful _lookup_p() call. + */ +static void +_cache_remove_p( Cache* cache, + Entry** lookup ) +{ + Entry* e = *lookup; + + XLOG("%s: entry %d removed (count=%d)", __FUNCTION__, + e->id, cache->num_entries-1); + + entry_mru_remove(e); + *lookup = e->hlink; + entry_free(e); + cache->num_entries -= 1; +} + +/* Remove the oldest entry from the hash table. + */ +static void +_cache_remove_oldest( Cache* cache ) +{ + Entry* oldest = cache->mru_list.mru_prev; + Entry** lookup = _cache_lookup_p(cache, oldest); + + if (*lookup == NULL) { /* should not happen */ + XLOG("%s: OLDEST NOT IN HTABLE ?", __FUNCTION__); + return; + } + if (DEBUG) { + XLOG("Cache full - removing oldest"); + XLOG_QUERY(oldest->query, oldest->querylen); + } + _cache_remove_p(cache, lookup); +} + +/* Remove all expired entries from the hash table. + */ +static void _cache_remove_expired(Cache* cache) { + Entry* e; + time_t now = _time_now(); + + for (e = cache->mru_list.mru_next; e != &cache->mru_list;) { + // Entry is old, remove + if (now >= e->expires) { + Entry** lookup = _cache_lookup_p(cache, e); + if (*lookup == NULL) { /* should not happen */ + XLOG("%s: ENTRY NOT IN HTABLE ?", __FUNCTION__); + return; + } + e = e->mru_next; + _cache_remove_p(cache, lookup); + } else { + e = e->mru_next; + } + } +} + +ResolvCacheStatus +_resolv_cache_lookup( unsigned netid, + const void* query, + int querylen, + void* answer, + int answersize, + int *answerlen ) +{ + Entry key[1]; + Entry** lookup; + Entry* e; + time_t now; + Cache* cache; + + ResolvCacheStatus result = RESOLV_CACHE_NOTFOUND; + + XLOG("%s: lookup", __FUNCTION__); + XLOG_QUERY(query, querylen); + + /* we don't cache malformed queries */ + if (!entry_init_key(key, query, querylen)) { + XLOG("%s: unsupported query", __FUNCTION__); + return RESOLV_CACHE_UNSUPPORTED; + } + /* lookup cache */ + pthread_once(&_res_cache_once, _res_cache_init); + pthread_mutex_lock(&_res_cache_list_lock); + + cache = _find_named_cache_locked(netid); + if (cache == NULL) { + result = RESOLV_CACHE_UNSUPPORTED; + goto Exit; + } + + /* see the description of _lookup_p to understand this. + * the function always return a non-NULL pointer. + */ + lookup = _cache_lookup_p(cache, key); + e = *lookup; + + if (e == NULL) { + XLOG( "NOT IN CACHE"); + // calling thread will wait if an outstanding request is found + // that matching this query + if (!_cache_check_pending_request_locked(&cache, key, netid) || cache == NULL) { + goto Exit; + } else { + lookup = _cache_lookup_p(cache, key); + e = *lookup; + if (e == NULL) { + goto Exit; + } + } + } + + now = _time_now(); + + /* remove stale entries here */ + if (now >= e->expires) { + XLOG( " NOT IN CACHE (STALE ENTRY %p DISCARDED)", *lookup ); + XLOG_QUERY(e->query, e->querylen); + _cache_remove_p(cache, lookup); + goto Exit; + } + + *answerlen = e->answerlen; + if (e->answerlen > answersize) { + /* NOTE: we return UNSUPPORTED if the answer buffer is too short */ + result = RESOLV_CACHE_UNSUPPORTED; + XLOG(" ANSWER TOO LONG"); + goto Exit; + } + + memcpy( answer, e->answer, e->answerlen ); + + /* bump up this entry to the top of the MRU list */ + if (e != cache->mru_list.mru_next) { + entry_mru_remove( e ); + entry_mru_add( e, &cache->mru_list ); + } + + XLOG( "FOUND IN CACHE entry=%p", e ); + result = RESOLV_CACHE_FOUND; + +Exit: + pthread_mutex_unlock(&_res_cache_list_lock); + return result; +} + + +void +_resolv_cache_add( unsigned netid, + const void* query, + int querylen, + const void* answer, + int answerlen ) +{ + Entry key[1]; + Entry* e; + Entry** lookup; + u_long ttl; + Cache* cache = NULL; + + /* don't assume that the query has already been cached + */ + if (!entry_init_key( key, query, querylen )) { + XLOG( "%s: passed invalid query ?", __FUNCTION__); + return; + } + + pthread_mutex_lock(&_res_cache_list_lock); + + cache = _find_named_cache_locked(netid); + if (cache == NULL) { + goto Exit; + } + + XLOG( "%s: query:", __FUNCTION__ ); + XLOG_QUERY(query,querylen); + XLOG_ANSWER(answer, answerlen); +#if DEBUG_DATA + XLOG( "answer:"); + XLOG_BYTES(answer,answerlen); +#endif + + lookup = _cache_lookup_p(cache, key); + e = *lookup; + + if (e != NULL) { /* should not happen */ + XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD", + __FUNCTION__, e); + goto Exit; + } + + if (cache->num_entries >= cache->max_entries) { + _cache_remove_expired(cache); + if (cache->num_entries >= cache->max_entries) { + _cache_remove_oldest(cache); + } + /* need to lookup again */ + lookup = _cache_lookup_p(cache, key); + e = *lookup; + if (e != NULL) { + XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD", + __FUNCTION__, e); + goto Exit; + } + } + + ttl = answer_getTTL(answer, answerlen); + if (ttl > 0) { + e = entry_alloc(key, answer, answerlen); + if (e != NULL) { + e->expires = ttl + _time_now(); + _cache_add_p(cache, lookup, e); + } + } +#if DEBUG + _cache_dump_mru(cache); +#endif +Exit: + if (cache != NULL) { + _cache_notify_waiting_tid_locked(cache, key); + } + pthread_mutex_unlock(&_res_cache_list_lock); +} + +/****************************************************************************/ +/****************************************************************************/ +/***** *****/ +/***** *****/ +/***** *****/ +/****************************************************************************/ +/****************************************************************************/ + +// Head of the list of caches. Protected by _res_cache_list_lock. +static struct resolv_cache_info _res_cache_list; + +/* insert resolv_cache_info into the list of resolv_cache_infos */ +static void _insert_cache_info_locked(struct resolv_cache_info* cache_info); +/* creates a resolv_cache_info */ +static struct resolv_cache_info* _create_cache_info( void ); +/* gets a resolv_cache_info associated with a network, or NULL if not found */ +static struct resolv_cache_info* _find_cache_info_locked(unsigned netid); +/* look up the named cache, and creates one if needed */ +static struct resolv_cache* _get_res_cache_for_net_locked(unsigned netid); +/* empty the named cache */ +static void _flush_cache_for_net_locked(unsigned netid); +/* empty the nameservers set for the named cache */ +static void _free_nameservers_locked(struct resolv_cache_info* cache_info); +/* return 1 if the provided list of name servers differs from the list of name servers + * currently attached to the provided cache_info */ +static int _resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info, + const char** servers, int numservers); + +static void +_res_cache_init(void) +{ + const char* env = getenv(CONFIG_ENV); + + if (env && atoi(env) == 0) { + /* the cache is disabled */ + return; + } + + memset(&_res_cache_list, 0, sizeof(_res_cache_list)); + pthread_mutex_init(&_res_cache_list_lock, NULL); +} + +static struct resolv_cache* +_get_res_cache_for_net_locked(unsigned netid) +{ + struct resolv_cache* cache = _find_named_cache_locked(netid); + if (!cache) { + struct resolv_cache_info* cache_info = _create_cache_info(); + if (cache_info) { + cache = _resolv_cache_create(); + if (cache) { + cache_info->cache = cache; + cache_info->netid = netid; + _insert_cache_info_locked(cache_info); + } else { + free(cache_info); + } + } + } + return cache; +} + +void +_resolv_flush_cache_for_net(unsigned netid) +{ + pthread_once(&_res_cache_once, _res_cache_init); + pthread_mutex_lock(&_res_cache_list_lock); + + _flush_cache_for_net_locked(netid); + + pthread_mutex_unlock(&_res_cache_list_lock); +} + +static void +_flush_cache_for_net_locked(unsigned netid) +{ + struct resolv_cache* cache = _find_named_cache_locked(netid); + if (cache) { + _cache_flush_locked(cache); + } +} + +void _resolv_delete_cache_for_net(unsigned netid) +{ + pthread_once(&_res_cache_once, _res_cache_init); + pthread_mutex_lock(&_res_cache_list_lock); + + struct resolv_cache_info* prev_cache_info = &_res_cache_list; + + while (prev_cache_info->next) { + struct resolv_cache_info* cache_info = prev_cache_info->next; + + if (cache_info->netid == netid) { + prev_cache_info->next = cache_info->next; + _cache_flush_locked(cache_info->cache); + free(cache_info->cache->entries); + free(cache_info->cache); + _free_nameservers_locked(cache_info); + free(cache_info); + break; + } + + prev_cache_info = prev_cache_info->next; + } + + pthread_mutex_unlock(&_res_cache_list_lock); +} + +static struct resolv_cache_info* +_create_cache_info(void) +{ + struct resolv_cache_info* cache_info; + + cache_info = calloc(sizeof(*cache_info), 1); + return cache_info; +} + +static void +_insert_cache_info_locked(struct resolv_cache_info* cache_info) +{ + struct resolv_cache_info* last; + + for (last = &_res_cache_list; last->next; last = last->next); + + last->next = cache_info; + +} + +static struct resolv_cache* +_find_named_cache_locked(unsigned netid) { + + struct resolv_cache_info* info = _find_cache_info_locked(netid); + + if (info != NULL) return info->cache; + + return NULL; +} + +static struct resolv_cache_info* +_find_cache_info_locked(unsigned netid) +{ + struct resolv_cache_info* cache_info = _res_cache_list.next; + + while (cache_info) { + if (cache_info->netid == netid) { + break; + } + + cache_info = cache_info->next; + } + return cache_info; +} + +void +_resolv_set_nameservers_for_net(unsigned netid, const char** servers, int numservers, + const char *domains) +{ + int i, rt, index; + struct addrinfo hints; + char sbuf[NI_MAXSERV]; + register char *cp; + int *offset; + + pthread_once(&_res_cache_once, _res_cache_init); + pthread_mutex_lock(&_res_cache_list_lock); + + // creates the cache if not created + _get_res_cache_for_net_locked(netid); + + struct resolv_cache_info* cache_info = _find_cache_info_locked(netid); + + if (cache_info != NULL && + !_resolv_is_nameservers_equal_locked(cache_info, servers, numservers)) { + // free current before adding new + _free_nameservers_locked(cache_info); + + memset(&hints, 0, sizeof(hints)); + hints.ai_family = PF_UNSPEC; + hints.ai_socktype = SOCK_DGRAM; /*dummy*/ + hints.ai_flags = AI_NUMERICHOST; + sprintf(sbuf, "%u", NAMESERVER_PORT); + + index = 0; + for (i = 0; i < numservers && i < MAXNS; i++) { + rt = getaddrinfo(servers[i], sbuf, &hints, &cache_info->nsaddrinfo[index]); + if (rt == 0) { + cache_info->nameservers[index] = strdup(servers[i]); + index++; + XLOG("%s: netid = %u, addr = %s\n", __FUNCTION__, netid, servers[i]); + } else { + cache_info->nsaddrinfo[index] = NULL; + } + } + + // code moved from res_init.c, load_domain_search_list + strlcpy(cache_info->defdname, domains, sizeof(cache_info->defdname)); + if ((cp = strchr(cache_info->defdname, '\n')) != NULL) + *cp = '\0'; + cp = cache_info->defdname; + offset = cache_info->dnsrch_offset; + while (offset < cache_info->dnsrch_offset + MAXDNSRCH) { + while (*cp == ' ' || *cp == '\t') /* skip leading white space */ + cp++; + if (*cp == '\0') /* stop if nothing more to do */ + break; + *offset++ = cp - cache_info->defdname; /* record this search domain */ + while (*cp) { /* zero-terminate it */ + if (*cp == ' '|| *cp == '\t') { + *cp++ = '\0'; + break; + } + cp++; + } + } + *offset = -1; /* cache_info->dnsrch_offset has MAXDNSRCH+1 items */ + + // flush cache since new settings + _flush_cache_for_net_locked(netid); + + } + + pthread_mutex_unlock(&_res_cache_list_lock); +} + +static int +_resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info, + const char** servers, int numservers) +{ + int i; + char** ns; + int currentservers; + int equal = 1; + + if (numservers > MAXNS) numservers = MAXNS; + + // Find out how many nameservers we had before. + currentservers = 0; + for (ns = cache_info->nameservers; *ns; ns++) + currentservers++; + + if (currentservers != numservers) + return 0; + + // Compare each name server against current name servers. + // TODO: this is incorrect if the list of current or previous nameservers + // contains duplicates. This does not really matter because the framework + // filters out duplicates, but we should probably fix it. It's also + // insensitive to the order of the nameservers; we should probably fix that + // too. + for (i = 0; i < numservers && equal; i++) { + ns = cache_info->nameservers; + equal = 0; + while(*ns) { + if (strcmp(*ns, servers[i]) == 0) { + equal = 1; + break; + } + ns++; + } + } + + return equal; +} + +static void +_free_nameservers_locked(struct resolv_cache_info* cache_info) +{ + int i; + for (i = 0; i <= MAXNS; i++) { + free(cache_info->nameservers[i]); + cache_info->nameservers[i] = NULL; + if (cache_info->nsaddrinfo[i] != NULL) { + freeaddrinfo(cache_info->nsaddrinfo[i]); + cache_info->nsaddrinfo[i] = NULL; + } + } +} + +void +_resolv_populate_res_for_net(res_state statp) +{ + if (statp == NULL) { + return; + } + + pthread_once(&_res_cache_once, _res_cache_init); + pthread_mutex_lock(&_res_cache_list_lock); + + struct resolv_cache_info* info = _find_cache_info_locked(statp->netid); + if (info != NULL) { + int nserv; + struct addrinfo* ai; + XLOG("%s: %u\n", __FUNCTION__, statp->netid); + for (nserv = 0; nserv < MAXNS; nserv++) { + ai = info->nsaddrinfo[nserv]; + if (ai == NULL) { + break; + } + + if ((size_t) ai->ai_addrlen <= sizeof(statp->_u._ext.ext->nsaddrs[0])) { + if (statp->_u._ext.ext != NULL) { + memcpy(&statp->_u._ext.ext->nsaddrs[nserv], ai->ai_addr, ai->ai_addrlen); + statp->nsaddr_list[nserv].sin_family = AF_UNSPEC; + } else { + if ((size_t) ai->ai_addrlen + <= sizeof(statp->nsaddr_list[0])) { + memcpy(&statp->nsaddr_list[nserv], ai->ai_addr, + ai->ai_addrlen); + } else { + statp->nsaddr_list[nserv].sin_family = AF_UNSPEC; + } + } + } else { + XLOG("%s: found too long addrlen", __FUNCTION__); + } + } + statp->nscount = nserv; + // now do search domains. Note that we cache the offsets as this code runs alot + // but the setting/offset-computer only runs when set/changed + strlcpy(statp->defdname, info->defdname, sizeof(statp->defdname)); + register char **pp = statp->dnsrch; + register int *p = info->dnsrch_offset; + while (pp < statp->dnsrch + MAXDNSRCH && *p != -1) { + *pp++ = &statp->defdname[0] + *p++; + } + } + pthread_mutex_unlock(&_res_cache_list_lock); +} |