diff options
Diffstat (limited to 'libc')
-rw-r--r-- | libc/bionic/pthread_mutex.cpp | 610 | ||||
-rw-r--r-- | libc/include/pthread.h | 2 |
2 files changed, 295 insertions, 317 deletions
diff --git a/libc/bionic/pthread_mutex.cpp b/libc/bionic/pthread_mutex.cpp index 40f1ed2..a0628b0 100644 --- a/libc/bionic/pthread_mutex.cpp +++ b/libc/bionic/pthread_mutex.cpp @@ -30,22 +30,19 @@ #include <errno.h> #include <limits.h> +#include <stdatomic.h> +#include <sys/cdefs.h> #include <sys/mman.h> #include <unistd.h> #include "pthread_internal.h" -#include "private/bionic_atomic_inline.h" #include "private/bionic_constants.h" #include "private/bionic_futex.h" +#include "private/bionic_systrace.h" #include "private/bionic_time_conversions.h" #include "private/bionic_tls.h" -#include "private/bionic_systrace.h" - -extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex); -extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex); - /* a mutex is implemented as a 32-bit integer holding the following fields * * bits: name description @@ -87,9 +84,6 @@ extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex); #define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */ #define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */ -#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) -#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) - #define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED) #define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED) #define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED) @@ -116,10 +110,7 @@ extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex); #define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0) /* Used to increment the counter directly after overflow has been checked */ -#define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN) - -/* Returns true iff the counter is 0 */ -#define MUTEX_COUNTER_BITS_ARE_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0) +#define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1, MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN) /* Mutex shared bit flag * @@ -267,9 +258,20 @@ int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) return 0; } +static inline atomic_int* MUTEX_TO_ATOMIC_POINTER(pthread_mutex_t* mutex) { + static_assert(sizeof(atomic_int) == sizeof(mutex->value), + "mutex->value should actually be atomic_int in implementation."); + + // We prefer casting to atomic_int instead of declaring mutex->value to be atomic_int directly. + // Because using the second method pollutes pthread.h, and causes an error when compiling libcxx. + return reinterpret_cast<atomic_int*>(&mutex->value); +} + int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr) { + atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex); + if (__predict_true(attr == NULL)) { - mutex->value = MUTEX_TYPE_BITS_NORMAL; + atomic_init(mutex_value_ptr, MUTEX_TYPE_BITS_NORMAL); return 0; } @@ -292,13 +294,13 @@ int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr) return EINVAL; } - mutex->value = value; + atomic_init(mutex_value_ptr, value); return 0; } /* - * Lock a non-recursive mutex. + * Lock a mutex of type NORMAL. * * As noted above, there are three states: * 0 (unlocked, no contention) @@ -309,96 +311,75 @@ int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr) * "type" value is zero, so the only bits that will be set are the ones in * the lock state field. */ -static inline void _normal_lock(pthread_mutex_t* mutex, int shared) { +static inline void _normal_mutex_lock(atomic_int* mutex_value_ptr, int shared) { /* convenience shortcuts */ const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; - /* - * The common case is an unlocked mutex, so we begin by trying to - * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED). - * __bionic_cmpxchg() returns 0 if it made the swap successfully. - * If the result is nonzero, this lock is already held by another thread. - */ - if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) { - const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; - /* - * We want to go to sleep until the mutex is available, which - * requires promoting it to state 2 (CONTENDED). We need to - * swap in the new state value and then wait until somebody wakes us up. - * - * __bionic_swap() returns the previous value. We swap 2 in and - * see if we got zero back; if so, we have acquired the lock. If - * not, another thread still holds the lock and we wait again. - * - * The second argument to the __futex_wait() call is compared - * against the current value. If it doesn't match, __futex_wait() - * returns immediately (otherwise, it sleeps for a time specified - * by the third argument; 0 means sleep forever). This ensures - * that the mutex is in state 2 when we go to sleep on it, which - * guarantees a wake-up call. - */ - ScopedTrace trace("Contending for pthread mutex"); + // The common case is an unlocked mutex, so we begin by trying to + // change the lock's state from unlocked to locked_uncontended. + // If exchanged successfully, An acquire fence is required to make + // all memory accesses made by other threads visible in current CPU. + int mvalue = unlocked; + if (__predict_true(atomic_compare_exchange_strong_explicit(mutex_value_ptr, &mvalue, + locked_uncontended, + memory_order_acquire, + memory_order_relaxed))) { + return; + } + ScopedTrace trace("Contending for pthread mutex"); - while (__bionic_swap(locked_contended, &mutex->value) != unlocked) { - __futex_wait_ex(&mutex->value, shared, locked_contended, NULL); - } + // We want to go to sleep until the mutex is available, which requires + // promoting it to locked_contended. We need to swap in the new state + // value and then wait until somebody wakes us up. + // An atomic_exchange is used to compete with other threads for the lock. + // If it returns unlocked, we have acquired the lock, otherwise another + // thread still holds the lock and we should wait again. + // If lock is acquired, an acquire fence is needed to make all memory accesses + // made by other threads visible in current CPU. + const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; + while (atomic_exchange_explicit(mutex_value_ptr, locked_contended, + memory_order_acquire) != unlocked) { + + __futex_wait_ex(mutex_value_ptr, shared, locked_contended, NULL); } - ANDROID_MEMBAR_FULL(); } /* - * Release a non-recursive mutex. The caller is responsible for determining + * Release a mutex of type NORMAL. The caller is responsible for determining * that we are in fact the owner of this lock. */ -static inline void _normal_unlock(pthread_mutex_t* mutex, int shared) { - ANDROID_MEMBAR_FULL(); - - /* - * The mutex state will be 1 or (rarely) 2. We use an atomic decrement - * to release the lock. __bionic_atomic_dec() returns the previous value; - * if it wasn't 1 we have to do some additional work. - */ - if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) { - /* - * Start by releasing the lock. The decrement changed it from - * "contended lock" to "uncontended lock", which means we still - * hold it, and anybody who tries to sneak in will push it back - * to state 2. - * - * Once we set it to zero the lock is up for grabs. We follow - * this with a __futex_wake() to ensure that one of the waiting - * threads has a chance to grab it. - * - * This doesn't cause a race with the swap/wait pair in - * _normal_lock(), because the __futex_wait() call there will - * return immediately if the mutex value isn't 2. - */ - mutex->value = shared; - - /* - * Wake up one waiting thread. We don't know which thread will be - * woken or when it'll start executing -- futexes make no guarantees - * here. There may not even be a thread waiting. - * - * The newly-woken thread will replace the 0 we just set above - * with 2, which means that when it eventually releases the mutex - * it will also call FUTEX_WAKE. This results in one extra wake - * call whenever a lock is contended, but lets us avoid forgetting - * anyone without requiring us to track the number of sleepers. - * - * It's possible for another thread to sneak in and grab the lock - * between the zero assignment above and the wake call below. If - * the new thread is "slow" and holds the lock for a while, we'll - * wake up a sleeper, which will swap in a 2 and then go back to - * sleep since the lock is still held. If the new thread is "fast", - * running to completion before we call wake, the thread we - * eventually wake will find an unlocked mutex and will execute. - * Either way we have correct behavior and nobody is orphaned on - * the wait queue. - */ - __futex_wake_ex(&mutex->value, shared, 1); +static inline void _normal_mutex_unlock(atomic_int* mutex_value_ptr, int shared) { + const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; + const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; + + // We use an atomic_exchange to release the lock. If locked_contended state + // is returned, some threads is waiting for the lock and we need to wake up + // one of them. + // A release fence is required to make previous stores visible to next + // lock owner threads. + if (atomic_exchange_explicit(mutex_value_ptr, unlocked, + memory_order_release) == locked_contended) { + // Wake up one waiting thread. We don't know which thread will be + // woken or when it'll start executing -- futexes make no guarantees + // here. There may not even be a thread waiting. + // + // The newly-woken thread will replace the unlocked state we just set above + // with locked_contended state, which means that when it eventually releases + // the mutex it will also call FUTEX_WAKE. This results in one extra wake + // call whenever a lock is contended, but let us avoid forgetting anyone + // without requiring us to track the number of sleepers. + // + // It's possible for another thread to sneak in and grab the lock between + // the exchange above and the wake call below. If the new thread is "slow" + // and holds the lock for a while, we'll wake up a sleeper, which will swap + // in locked_uncontended state and then go back to sleep since the lock is + // still held. If the new thread is "fast", running to completion before + // we call wake, the thread we eventually wake will find an unlocked mutex + // and will execute. Either way we have correct behavior and nobody is + // orphaned on the wait queue. + __futex_wake_ex(mutex_value_ptr, shared, 1); } } @@ -414,183 +395,175 @@ static inline void _normal_unlock(pthread_mutex_t* mutex, int shared) { * mvalue is the current mutex value (already loaded) * mutex pointers to the mutex. */ -static inline __always_inline int _recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype) { +static inline __always_inline +int _recursive_increment(atomic_int* mutex_value_ptr, int mvalue, int mtype) { if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { - /* trying to re-lock a mutex we already acquired */ + // Trying to re-lock a mutex we already acquired. return EDEADLK; } - /* Detect recursive lock overflow and return EAGAIN. - * This is safe because only the owner thread can modify the - * counter bits in the mutex value. - */ + // Detect recursive lock overflow and return EAGAIN. + // This is safe because only the owner thread can modify the + // counter bits in the mutex value. if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) { return EAGAIN; } - /* We own the mutex, but other threads are able to change - * the lower bits (e.g. promoting it to "contended"), so we - * need to use an atomic cmpxchg loop to update the counter. - */ - for (;;) { - /* increment counter, overflow was already checked */ - int newval = mvalue + MUTEX_COUNTER_BITS_ONE; - if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) { - /* mutex is still locked, not need for a memory barrier */ - return 0; - } - /* the value was changed, this happens when another thread changes - * the lower state bits from 1 to 2 to indicate contention. This - * cannot change the counter, so simply reload and try again. - */ - mvalue = mutex->value; - } + // We own the mutex, but other threads are able to change the lower bits + // (e.g. promoting it to "contended"), so we need to use an atomic exchange + // loop to update the counter. The counter will not overflow in the loop, + // as only the owner thread can change it. + // The mutex is still locked, so we don't need a release fence. + while (!atomic_compare_exchange_weak_explicit(mutex_value_ptr, &mvalue, + mvalue + MUTEX_COUNTER_BITS_ONE, + memory_order_relaxed, + memory_order_relaxed)) { } + return 0; } int pthread_mutex_lock(pthread_mutex_t* mutex) { + atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex); + int mvalue, mtype, tid, shared; - mvalue = mutex->value; + mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed); mtype = (mvalue & MUTEX_TYPE_MASK); shared = (mvalue & MUTEX_SHARED_MASK); - /* Handle non-recursive case first */ + // Handle common case first. if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) { - _normal_lock(mutex, shared); + _normal_mutex_lock(mutex_value_ptr, shared); return 0; } - /* Do we already own this recursive or error-check mutex ? */ + // Do we already own this recursive or error-check mutex? tid = __get_thread()->tid; if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) ) - return _recursive_increment(mutex, mvalue, mtype); + return _recursive_increment(mutex_value_ptr, mvalue, mtype); - /* Add in shared state to avoid extra 'or' operations below */ + // Add in shared state to avoid extra 'or' operations below. mtype |= shared; - /* First, if the mutex is unlocked, try to quickly acquire it. - * In the optimistic case where this works, set the state to 1 to - * indicate locked with no contention */ + // First, if the mutex is unlocked, try to quickly acquire it. + // In the optimistic case where this works, set the state to locked_uncontended. if (mvalue == mtype) { int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; - if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) { - ANDROID_MEMBAR_FULL(); + // If exchanged successfully, An acquire fence is required to make + // all memory accesses made by other threads visible in current CPU. + if (__predict_true(atomic_compare_exchange_strong_explicit(mutex_value_ptr, &mvalue, + newval, memory_order_acquire, memory_order_relaxed))) { return 0; } - /* argh, the value changed, reload before entering the loop */ - mvalue = mutex->value; } ScopedTrace trace("Contending for pthread mutex"); - for (;;) { - int newval; - - /* if the mutex is unlocked, its value should be 'mtype' and - * we try to acquire it by setting its owner and state atomically. - * NOTE: We put the state to 2 since we _know_ there is contention - * when we are in this loop. This ensures all waiters will be - * unlocked. - */ + while (true) { if (mvalue == mtype) { - newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED; - /* TODO: Change this to __bionic_cmpxchg_acquire when we - * implement it to get rid of the explicit memory - * barrier below. - */ - if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) { - mvalue = mutex->value; - continue; + // If the mutex is unlocked, its value should be 'mtype' and + // we try to acquire it by setting its owner and state atomically. + // NOTE: We put the state to locked_contended since we _know_ there + // is contention when we are in this loop. This ensures all waiters + // will be unlocked. + + int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED; + // If exchanged successfully, An acquire fence is required to make + // all memory accesses made by other threads visible in current CPU. + if (__predict_true(atomic_compare_exchange_weak_explicit(mutex_value_ptr, + &mvalue, newval, + memory_order_acquire, + memory_order_relaxed))) { + return 0; } - ANDROID_MEMBAR_FULL(); - return 0; - } - - /* the mutex is already locked by another thread, if its state is 1 - * we will change it to 2 to indicate contention. */ - if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) { - newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */ - if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) { - mvalue = mutex->value; + continue; + } else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) { + // The mutex is already locked by another thread, if the state is locked_uncontended, + // we should set it to locked_contended beforing going to sleep. This can make + // sure waiters will be woken up eventually. + + int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); + if (__predict_false(!atomic_compare_exchange_weak_explicit(mutex_value_ptr, + &mvalue, newval, + memory_order_relaxed, + memory_order_relaxed))) { continue; } mvalue = newval; } - /* wait until the mutex is unlocked */ - __futex_wait_ex(&mutex->value, shared, mvalue, NULL); - - mvalue = mutex->value; + // We are in locked_contended state, sleep until someone wake us up. + __futex_wait_ex(mutex_value_ptr, shared, mvalue, NULL); + mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed); } - /* NOTREACHED */ } int pthread_mutex_unlock(pthread_mutex_t* mutex) { + atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex); + int mvalue, mtype, tid, shared; - mvalue = mutex->value; + mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed); mtype = (mvalue & MUTEX_TYPE_MASK); shared = (mvalue & MUTEX_SHARED_MASK); - /* Handle common case first */ + // Handle common case first. if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { - _normal_unlock(mutex, shared); + _normal_mutex_unlock(mutex_value_ptr, shared); return 0; } - /* Do we already own this recursive or error-check mutex ? */ + // Do we already own this recursive or error-check mutex? tid = __get_thread()->tid; if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) ) return EPERM; - /* If the counter is > 0, we can simply decrement it atomically. - * Since other threads can mutate the lower state bits (and only the - * lower state bits), use a cmpxchg to do it. - */ + // If the counter is > 0, we can simply decrement it atomically. + // Since other threads can mutate the lower state bits (and only the + // lower state bits), use a compare_exchange loop to do it. if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) { - for (;;) { - int newval = mvalue - MUTEX_COUNTER_BITS_ONE; - if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) { - /* success: we still own the mutex, so no memory barrier */ - return 0; - } - /* the value changed, so reload and loop */ - mvalue = mutex->value; - } + // We still own the mutex, so a release fence is not needed. + while (!atomic_compare_exchange_weak_explicit(mutex_value_ptr, &mvalue, + mvalue - MUTEX_COUNTER_BITS_ONE, + memory_order_relaxed, + memory_order_relaxed)) { } + return 0; } - /* the counter is 0, so we're going to unlock the mutex by resetting - * its value to 'unlocked'. We need to perform a swap in order - * to read the current state, which will be 2 if there are waiters - * to awake. - * - * TODO: Change this to __bionic_swap_release when we implement it - * to get rid of the explicit memory barrier below. - */ - ANDROID_MEMBAR_FULL(); /* RELEASE BARRIER */ - mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value); - - /* Wake one waiting thread, if any */ + // The counter is 0, so we'are going to unlock the mutex by resetting its + // state to unlocked, we need to perform a atomic_exchange inorder to read + // the current state, which will be locked_contended if there may have waiters + // to awake. + // A release fence is required to make previous stores visible to next + // lock owner threads. + mvalue = atomic_exchange_explicit(mutex_value_ptr, + mtype | shared | MUTEX_STATE_BITS_UNLOCKED, + memory_order_release); if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) { - __futex_wake_ex(&mutex->value, shared, 1); + __futex_wake_ex(mutex_value_ptr, shared, 1); } + return 0; } int pthread_mutex_trylock(pthread_mutex_t* mutex) { - int mvalue = mutex->value; + atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex); + + int mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed); int mtype = (mvalue & MUTEX_TYPE_MASK); int shared = (mvalue & MUTEX_SHARED_MASK); // Handle common case first. if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { - if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED, - shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED, - &mutex->value) == 0) { - ANDROID_MEMBAR_FULL(); + mvalue = shared | MUTEX_STATE_BITS_UNLOCKED; + // If exchanged successfully, An acquire fence is required to make + // all memory accesses made by other threads visible in current CPU. + if (atomic_compare_exchange_strong_explicit(mutex_value_ptr, + &mvalue, + shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED, + memory_order_acquire, + memory_order_relaxed)) { return 0; } - return EBUSY; } @@ -600,158 +573,163 @@ int pthread_mutex_trylock(pthread_mutex_t* mutex) { if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { return EBUSY; } - return _recursive_increment(mutex, mvalue, mtype); + return _recursive_increment(mutex_value_ptr, mvalue, mtype); } - /* Same as pthread_mutex_lock, except that we don't want to wait, and - * the only operation that can succeed is a single cmpxchg to acquire the - * lock if it is released / not owned by anyone. No need for a complex loop. - */ + // Same as pthread_mutex_lock, except that we don't want to wait, and + // the only operation that can succeed is a single compare_exchange to acquire the + // lock if it is released / not owned by anyone. No need for a complex loop. + // If exchanged successfully, An acquire fence is required to make + // all memory accesses made by other threads visible in current CPU. mtype |= shared | MUTEX_STATE_BITS_UNLOCKED; mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; - if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) { - ANDROID_MEMBAR_FULL(); + if (__predict_true(atomic_compare_exchange_strong_explicit(mutex_value_ptr, + &mtype, mvalue, + memory_order_acquire, + memory_order_relaxed))) { return 0; } - return EBUSY; } static int __pthread_mutex_timedlock(pthread_mutex_t* mutex, const timespec* abs_ts, clockid_t clock) { - timespec ts; + atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex); - int mvalue = mutex->value; - int mtype = (mvalue & MUTEX_TYPE_MASK); - int shared = (mvalue & MUTEX_SHARED_MASK); + timespec ts; - // Handle common case first. - if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { - const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; - const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; - const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; - - // Fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0. - if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) { - ANDROID_MEMBAR_FULL(); - return 0; - } - - ScopedTrace trace("Contending for timed pthread mutex"); + int mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed); + int mtype = (mvalue & MUTEX_TYPE_MASK); + int shared = (mvalue & MUTEX_SHARED_MASK); - // Loop while needed. - while (__bionic_swap(locked_contended, &mutex->value) != unlocked) { - if (!timespec_from_absolute_timespec(ts, *abs_ts, clock)) { - return ETIMEDOUT; - } - __futex_wait_ex(&mutex->value, shared, locked_contended, &ts); - } - ANDROID_MEMBAR_FULL(); - return 0; - } + // Handle common case first. + if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { + const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; + const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; + const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; + + // If exchanged successfully, An acquire fence is required to make + // all memory accesses made by other threads visible in current CPU. + mvalue = unlocked; + if (atomic_compare_exchange_strong_explicit(mutex_value_ptr, &mvalue, locked_uncontended, + memory_order_acquire, memory_order_relaxed)) { + return 0; + } - // Do we already own this recursive or error-check mutex? - pid_t tid = __get_thread()->tid; - if (tid == MUTEX_OWNER_FROM_BITS(mvalue)) { - return _recursive_increment(mutex, mvalue, mtype); - } + ScopedTrace trace("Contending for timed pthread mutex"); - // The following implements the same loop as pthread_mutex_lock_impl - // but adds checks to ensure that the operation never exceeds the - // absolute expiration time. - mtype |= shared; + // Same as pthread_mutex_lock, except that we can only wait for a specified + // time interval. If lock is acquired, an acquire fence is needed to make + // all memory accesses made by other threads visible in current CPU. + while (atomic_exchange_explicit(mutex_value_ptr, locked_contended, + memory_order_acquire) != unlocked) { + if (!timespec_from_absolute_timespec(ts, *abs_ts, clock)) { + return ETIMEDOUT; + } + __futex_wait_ex(mutex_value_ptr, shared, locked_contended, &ts); + } - // First try a quick lock. - if (mvalue == mtype) { - mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; - if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) { - ANDROID_MEMBAR_FULL(); - return 0; - } - mvalue = mutex->value; - } - - ScopedTrace trace("Contending for timed pthread mutex"); - - while (true) { - // If the value is 'unlocked', try to acquire it directly. - // NOTE: put state to 2 since we know there is contention. - if (mvalue == mtype) { // Unlocked. - mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED; - if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) { - ANDROID_MEMBAR_FULL(); return 0; - } - // The value changed before we could lock it. We need to check - // the time to avoid livelocks, reload the value, then loop again. - if (!timespec_from_absolute_timespec(ts, *abs_ts, clock)) { - return ETIMEDOUT; - } - - mvalue = mutex->value; - continue; } - // The value is locked. If 'uncontended', try to switch its state - // to 'contented' to ensure we get woken up later. - if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) { - int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); - if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) { - // This failed because the value changed, reload it. - mvalue = mutex->value; - } else { - // This succeeded, update mvalue. - mvalue = newval; - } + // Do we already own this recursive or error-check mutex? + pid_t tid = __get_thread()->tid; + if (tid == MUTEX_OWNER_FROM_BITS(mvalue)) { + return _recursive_increment(mutex_value_ptr, mvalue, mtype); } - // Check time and update 'ts'. - if (timespec_from_absolute_timespec(ts, *abs_ts, clock)) { - return ETIMEDOUT; + mtype |= shared; + + // First try a quick lock. + if (mvalue == mtype) { + int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; + // If exchanged successfully, An acquire fence is required to make + // all memory accesses made by other threads visible in current CPU. + if (__predict_true(atomic_compare_exchange_strong_explicit(mutex_value_ptr, + &mvalue, newval, + memory_order_acquire, + memory_order_relaxed))) { + return 0; + } } - // Only wait to be woken up if the state is '2', otherwise we'll - // simply loop right now. This can happen when the second cmpxchg - // in our loop failed because the mutex was unlocked by another thread. - if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) { - if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == -ETIMEDOUT) { - return ETIMEDOUT; - } - mvalue = mutex->value; + ScopedTrace trace("Contending for timed pthread mutex"); + + // The following implements the same loop as pthread_mutex_lock, + // but adds checks to ensure that the operation never exceeds the + // absolute expiration time. + while (true) { + if (mvalue == mtype) { // Unlocked. + int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED; + // An acquire fence is needed for successful exchange. + if (!atomic_compare_exchange_strong_explicit(mutex_value_ptr, &mvalue, newval, + memory_order_acquire, + memory_order_relaxed)) { + goto check_time; + } + + return 0; + } else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) { + // The value is locked. If the state is locked_uncontended, we need to switch + // it to locked_contended before sleep, so we can get woken up later. + int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); + if (!atomic_compare_exchange_strong_explicit(mutex_value_ptr, &mvalue, newval, + memory_order_relaxed, + memory_order_relaxed)) { + goto check_time; + } + mvalue = newval; + } + + if (!timespec_from_absolute_timespec(ts, *abs_ts, clock)) { + return ETIMEDOUT; + } + + if (__futex_wait_ex(mutex_value_ptr, shared, mvalue, &ts) == -ETIMEDOUT) { + return ETIMEDOUT; + } + +check_time: + if (!timespec_from_absolute_timespec(ts, *abs_ts, clock)) { + return ETIMEDOUT; + } + // After futex_wait or time costly timespec_from_absolte_timespec, + // we'd better read mvalue again in case it is changed. + mvalue = atomic_load_explicit(mutex_value_ptr, memory_order_relaxed); } - } - /* NOTREACHED */ } #if !defined(__LP64__) extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex, unsigned ms) { - timespec abs_timeout; - clock_gettime(CLOCK_MONOTONIC, &abs_timeout); - abs_timeout.tv_sec += ms / 1000; - abs_timeout.tv_nsec += (ms % 1000) * 1000000; - if (abs_timeout.tv_nsec >= NS_PER_S) { - abs_timeout.tv_sec++; - abs_timeout.tv_nsec -= NS_PER_S; - } - - int error = __pthread_mutex_timedlock(mutex, &abs_timeout, CLOCK_MONOTONIC); - if (error == ETIMEDOUT) { - error = EBUSY; - } - return error; + timespec abs_timeout; + clock_gettime(CLOCK_MONOTONIC, &abs_timeout); + abs_timeout.tv_sec += ms / 1000; + abs_timeout.tv_nsec += (ms % 1000) * 1000000; + if (abs_timeout.tv_nsec >= NS_PER_S) { + abs_timeout.tv_sec++; + abs_timeout.tv_nsec -= NS_PER_S; + } + + int error = __pthread_mutex_timedlock(mutex, &abs_timeout, CLOCK_MONOTONIC); + if (error == ETIMEDOUT) { + error = EBUSY; + } + return error; } #endif int pthread_mutex_timedlock(pthread_mutex_t* mutex, const timespec* abs_timeout) { - return __pthread_mutex_timedlock(mutex, abs_timeout, CLOCK_REALTIME); + return __pthread_mutex_timedlock(mutex, abs_timeout, CLOCK_REALTIME); } int pthread_mutex_destroy(pthread_mutex_t* mutex) { - // Use trylock to ensure that the mutex is valid and not already locked. - int error = pthread_mutex_trylock(mutex); - if (error != 0) { - return error; - } - mutex->value = 0xdead10cc; - return 0; + // Use trylock to ensure that the mutex is valid and not already locked. + int error = pthread_mutex_trylock(mutex); + if (error != 0) { + return error; + } + + atomic_int* mutex_value_ptr = MUTEX_TO_ATOMIC_POINTER(mutex); + atomic_store_explicit(mutex_value_ptr, 0xdead10cc, memory_order_relaxed); + return 0; } diff --git a/libc/include/pthread.h b/libc/include/pthread.h index 4281132..8d053ae 100644 --- a/libc/include/pthread.h +++ b/libc/include/pthread.h @@ -43,7 +43,7 @@ #endif typedef struct { - int volatile value; + int value; #ifdef __LP64__ char __reserved[36]; #endif |