diff options
Diffstat (limited to 'libm/bsdsrc')
-rw-r--r-- | libm/bsdsrc/b_exp.c | 177 | ||||
-rw-r--r-- | libm/bsdsrc/b_log.c | 473 | ||||
-rw-r--r-- | libm/bsdsrc/b_tgamma.c | 316 | ||||
-rw-r--r-- | libm/bsdsrc/mathimpl.h | 74 |
4 files changed, 1040 insertions, 0 deletions
diff --git a/libm/bsdsrc/b_exp.c b/libm/bsdsrc/b_exp.c new file mode 100644 index 0000000..32873b9 --- /dev/null +++ b/libm/bsdsrc/b_exp.c @@ -0,0 +1,177 @@ +/* + * Copyright (c) 1985, 1993 + * The Regents of the University of California. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#ifndef lint +static char sccsid[] = "@(#)exp.c 8.1 (Berkeley) 6/4/93"; +#endif /* not lint */ +#include <sys/cdefs.h> +/* __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_exp.c,v 1.7 2004/12/16 20:40:37 das Exp $"); */ + + +/* EXP(X) + * RETURN THE EXPONENTIAL OF X + * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) + * CODED IN C BY K.C. NG, 1/19/85; + * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86. + * + * Required system supported functions: + * scalb(x,n) + * copysign(x,y) + * finite(x) + * + * Method: + * 1. Argument Reduction: given the input x, find r and integer k such + * that + * x = k*ln2 + r, |r| <= 0.5*ln2 . + * r will be represented as r := z+c for better accuracy. + * + * 2. Compute exp(r) by + * + * exp(r) = 1 + r + r*R1/(2-R1), + * where + * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))). + * + * 3. exp(x) = 2^k * exp(r) . + * + * Special cases: + * exp(INF) is INF, exp(NaN) is NaN; + * exp(-INF)= 0; + * for finite argument, only exp(0)=1 is exact. + * + * Accuracy: + * exp(x) returns the exponential of x nearly rounded. In a test run + * with 1,156,000 random arguments on a VAX, the maximum observed + * error was 0.869 ulps (units in the last place). + */ + +#include "mathimpl.h" + +const static double p1 = 0x1.555555555553ep-3; +const static double p2 = -0x1.6c16c16bebd93p-9; +const static double p3 = 0x1.1566aaf25de2cp-14; +const static double p4 = -0x1.bbd41c5d26bf1p-20; +const static double p5 = 0x1.6376972bea4d0p-25; +const static double ln2hi = 0x1.62e42fee00000p-1; +const static double ln2lo = 0x1.a39ef35793c76p-33; +const static double lnhuge = 0x1.6602b15b7ecf2p9; +const static double lntiny = -0x1.77af8ebeae354p9; +const static double invln2 = 0x1.71547652b82fep0; + +#if 0 +double exp(x) +double x; +{ + double z,hi,lo,c; + int k; + +#if !defined(vax)&&!defined(tahoe) + if(x!=x) return(x); /* x is NaN */ +#endif /* !defined(vax)&&!defined(tahoe) */ + if( x <= lnhuge ) { + if( x >= lntiny ) { + + /* argument reduction : x --> x - k*ln2 */ + + k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ + + /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */ + + hi=x-k*ln2hi; + x=hi-(lo=k*ln2lo); + + /* return 2^k*[1+x+x*c/(2+c)] */ + z=x*x; + c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); + return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k); + + } + /* end of x > lntiny */ + + else + /* exp(-big#) underflows to zero */ + if(finite(x)) return(scalb(1.0,-5000)); + + /* exp(-INF) is zero */ + else return(0.0); + } + /* end of x < lnhuge */ + + else + /* exp(INF) is INF, exp(+big#) overflows to INF */ + return( finite(x) ? scalb(1.0,5000) : x); +} +#endif + +/* returns exp(r = x + c) for |c| < |x| with no overlap. */ + +double __exp__D(x, c) +double x, c; +{ + double z,hi,lo; + int k; + + if (x != x) /* x is NaN */ + return(x); + if ( x <= lnhuge ) { + if ( x >= lntiny ) { + + /* argument reduction : x --> x - k*ln2 */ + z = invln2*x; + k = z + copysign(.5, x); + + /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */ + + hi=(x-k*ln2hi); /* Exact. */ + x= hi - (lo = k*ln2lo-c); + /* return 2^k*[1+x+x*c/(2+c)] */ + z=x*x; + c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); + c = (x*c)/(2.0-c); + + return scalb(1.+(hi-(lo - c)), k); + } + /* end of x > lntiny */ + + else + /* exp(-big#) underflows to zero */ + if(finite(x)) return(scalb(1.0,-5000)); + + /* exp(-INF) is zero */ + else return(0.0); + } + /* end of x < lnhuge */ + + else + /* exp(INF) is INF, exp(+big#) overflows to INF */ + return( finite(x) ? scalb(1.0,5000) : x); +} diff --git a/libm/bsdsrc/b_log.c b/libm/bsdsrc/b_log.c new file mode 100644 index 0000000..d4e5f65 --- /dev/null +++ b/libm/bsdsrc/b_log.c @@ -0,0 +1,473 @@ +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#ifndef lint +static char sccsid[] = "@(#)log.c 8.2 (Berkeley) 11/30/93"; +#endif /* not lint */ +#include <sys/cdefs.h> +/* __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_log.c,v 1.8 2005/09/19 11:28:19 bde Exp $"); */ + +#include <math.h> +#include <errno.h> + +#include "mathimpl.h" + +/* Table-driven natural logarithm. + * + * This code was derived, with minor modifications, from: + * Peter Tang, "Table-Driven Implementation of the + * Logarithm in IEEE Floating-Point arithmetic." ACM Trans. + * Math Software, vol 16. no 4, pp 378-400, Dec 1990). + * + * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256, + * where F = j/128 for j an integer in [0, 128]. + * + * log(2^m) = log2_hi*m + log2_tail*m + * since m is an integer, the dominant term is exact. + * m has at most 10 digits (for subnormal numbers), + * and log2_hi has 11 trailing zero bits. + * + * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h + * logF_hi[] + 512 is exact. + * + * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ... + * the leading term is calculated to extra precision in two + * parts, the larger of which adds exactly to the dominant + * m and F terms. + * There are two cases: + * 1. when m, j are non-zero (m | j), use absolute + * precision for the leading term. + * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1). + * In this case, use a relative precision of 24 bits. + * (This is done differently in the original paper) + * + * Special cases: + * 0 return signalling -Inf + * neg return signalling NaN + * +Inf return +Inf +*/ + +#define N 128 + +/* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128. + * Used for generation of extend precision logarithms. + * The constant 35184372088832 is 2^45, so the divide is exact. + * It ensures correct reading of logF_head, even for inaccurate + * decimal-to-binary conversion routines. (Everybody gets the + * right answer for integers less than 2^53.) + * Values for log(F) were generated using error < 10^-57 absolute + * with the bc -l package. +*/ +static double A1 = .08333333333333178827; +static double A2 = .01250000000377174923; +static double A3 = .002232139987919447809; +static double A4 = .0004348877777076145742; + +static double logF_head[N+1] = { + 0., + .007782140442060381246, + .015504186535963526694, + .023167059281547608406, + .030771658666765233647, + .038318864302141264488, + .045809536031242714670, + .053244514518837604555, + .060624621816486978786, + .067950661908525944454, + .075223421237524235039, + .082443669210988446138, + .089612158689760690322, + .096729626458454731618, + .103796793681567578460, + .110814366340264314203, + .117783035656430001836, + .124703478501032805070, + .131576357788617315236, + .138402322859292326029, + .145182009844575077295, + .151916042025732167530, + .158605030176659056451, + .165249572895390883786, + .171850256926518341060, + .178407657472689606947, + .184922338493834104156, + .191394852999565046047, + .197825743329758552135, + .204215541428766300668, + .210564769107350002741, + .216873938300523150246, + .223143551314024080056, + .229374101064877322642, + .235566071312860003672, + .241719936886966024758, + .247836163904594286577, + .253915209980732470285, + .259957524436686071567, + .265963548496984003577, + .271933715484010463114, + .277868451003087102435, + .283768173130738432519, + .289633292582948342896, + .295464212893421063199, + .301261330578199704177, + .307025035294827830512, + .312755710004239517729, + .318453731118097493890, + .324119468654316733591, + .329753286372579168528, + .335355541920762334484, + .340926586970454081892, + .346466767346100823488, + .351976423156884266063, + .357455888922231679316, + .362905493689140712376, + .368325561158599157352, + .373716409793814818840, + .379078352934811846353, + .384411698910298582632, + .389716751140440464951, + .394993808240542421117, + .400243164127459749579, + .405465108107819105498, + .410659924985338875558, + .415827895143593195825, + .420969294644237379543, + .426084395310681429691, + .431173464818130014464, + .436236766774527495726, + .441274560805140936281, + .446287102628048160113, + .451274644139630254358, + .456237433481874177232, + .461175715122408291790, + .466089729924533457960, + .470979715219073113985, + .475845904869856894947, + .480688529345570714212, + .485507815781602403149, + .490303988045525329653, + .495077266798034543171, + .499827869556611403822, + .504556010751912253908, + .509261901790523552335, + .513945751101346104405, + .518607764208354637958, + .523248143765158602036, + .527867089620485785417, + .532464798869114019908, + .537041465897345915436, + .541597282432121573947, + .546132437597407260909, + .550647117952394182793, + .555141507540611200965, + .559615787935399566777, + .564070138285387656651, + .568504735352689749561, + .572919753562018740922, + .577315365035246941260, + .581691739635061821900, + .586049045003164792433, + .590387446602107957005, + .594707107746216934174, + .599008189645246602594, + .603290851438941899687, + .607555250224322662688, + .611801541106615331955, + .616029877215623855590, + .620240409751204424537, + .624433288012369303032, + .628608659422752680256, + .632766669570628437213, + .636907462236194987781, + .641031179420679109171, + .645137961373620782978, + .649227946625615004450, + .653301272011958644725, + .657358072709030238911, + .661398482245203922502, + .665422632544505177065, + .669430653942981734871, + .673422675212350441142, + .677398823590920073911, + .681359224807238206267, + .685304003098281100392, + .689233281238557538017, + .693147180560117703862 +}; + +static double logF_tail[N+1] = { + 0., + -.00000000000000543229938420049, + .00000000000000172745674997061, + -.00000000000001323017818229233, + -.00000000000001154527628289872, + -.00000000000000466529469958300, + .00000000000005148849572685810, + -.00000000000002532168943117445, + -.00000000000005213620639136504, + -.00000000000001819506003016881, + .00000000000006329065958724544, + .00000000000008614512936087814, + -.00000000000007355770219435028, + .00000000000009638067658552277, + .00000000000007598636597194141, + .00000000000002579999128306990, + -.00000000000004654729747598444, + -.00000000000007556920687451336, + .00000000000010195735223708472, + -.00000000000017319034406422306, + -.00000000000007718001336828098, + .00000000000010980754099855238, + -.00000000000002047235780046195, + -.00000000000008372091099235912, + .00000000000014088127937111135, + .00000000000012869017157588257, + .00000000000017788850778198106, + .00000000000006440856150696891, + .00000000000016132822667240822, + -.00000000000007540916511956188, + -.00000000000000036507188831790, + .00000000000009120937249914984, + .00000000000018567570959796010, + -.00000000000003149265065191483, + -.00000000000009309459495196889, + .00000000000017914338601329117, + -.00000000000001302979717330866, + .00000000000023097385217586939, + .00000000000023999540484211737, + .00000000000015393776174455408, + -.00000000000036870428315837678, + .00000000000036920375082080089, + -.00000000000009383417223663699, + .00000000000009433398189512690, + .00000000000041481318704258568, + -.00000000000003792316480209314, + .00000000000008403156304792424, + -.00000000000034262934348285429, + .00000000000043712191957429145, + -.00000000000010475750058776541, + -.00000000000011118671389559323, + .00000000000037549577257259853, + .00000000000013912841212197565, + .00000000000010775743037572640, + .00000000000029391859187648000, + -.00000000000042790509060060774, + .00000000000022774076114039555, + .00000000000010849569622967912, + -.00000000000023073801945705758, + .00000000000015761203773969435, + .00000000000003345710269544082, + -.00000000000041525158063436123, + .00000000000032655698896907146, + -.00000000000044704265010452446, + .00000000000034527647952039772, + -.00000000000007048962392109746, + .00000000000011776978751369214, + -.00000000000010774341461609578, + .00000000000021863343293215910, + .00000000000024132639491333131, + .00000000000039057462209830700, + -.00000000000026570679203560751, + .00000000000037135141919592021, + -.00000000000017166921336082431, + -.00000000000028658285157914353, + -.00000000000023812542263446809, + .00000000000006576659768580062, + -.00000000000028210143846181267, + .00000000000010701931762114254, + .00000000000018119346366441110, + .00000000000009840465278232627, + -.00000000000033149150282752542, + -.00000000000018302857356041668, + -.00000000000016207400156744949, + .00000000000048303314949553201, + -.00000000000071560553172382115, + .00000000000088821239518571855, + -.00000000000030900580513238244, + -.00000000000061076551972851496, + .00000000000035659969663347830, + .00000000000035782396591276383, + -.00000000000046226087001544578, + .00000000000062279762917225156, + .00000000000072838947272065741, + .00000000000026809646615211673, + -.00000000000010960825046059278, + .00000000000002311949383800537, + -.00000000000058469058005299247, + -.00000000000002103748251144494, + -.00000000000023323182945587408, + -.00000000000042333694288141916, + -.00000000000043933937969737844, + .00000000000041341647073835565, + .00000000000006841763641591466, + .00000000000047585534004430641, + .00000000000083679678674757695, + -.00000000000085763734646658640, + .00000000000021913281229340092, + -.00000000000062242842536431148, + -.00000000000010983594325438430, + .00000000000065310431377633651, + -.00000000000047580199021710769, + -.00000000000037854251265457040, + .00000000000040939233218678664, + .00000000000087424383914858291, + .00000000000025218188456842882, + -.00000000000003608131360422557, + -.00000000000050518555924280902, + .00000000000078699403323355317, + -.00000000000067020876961949060, + .00000000000016108575753932458, + .00000000000058527188436251509, + -.00000000000035246757297904791, + -.00000000000018372084495629058, + .00000000000088606689813494916, + .00000000000066486268071468700, + .00000000000063831615170646519, + .00000000000025144230728376072, + -.00000000000017239444525614834 +}; + +#if 0 +double +#ifdef _ANSI_SOURCE +log(double x) +#else +log(x) double x; +#endif +{ + int m, j; + double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0; + volatile double u1; + + /* Catch special cases */ + if (x <= 0) + if (x == zero) /* log(0) = -Inf */ + return (-one/zero); + else /* log(neg) = NaN */ + return (zero/zero); + else if (!finite(x)) + return (x+x); /* x = NaN, Inf */ + + /* Argument reduction: 1 <= g < 2; x/2^m = g; */ + /* y = F*(1 + f/F) for |f| <= 2^-8 */ + + m = logb(x); + g = ldexp(x, -m); + if (m == -1022) { + j = logb(g), m += j; + g = ldexp(g, -j); + } + j = N*(g-1) + .5; + F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */ + f = g - F; + + /* Approximate expansion for log(1+f/F) ~= u + q */ + g = 1/(2*F+f); + u = 2*f*g; + v = u*u; + q = u*v*(A1 + v*(A2 + v*(A3 + v*A4))); + + /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8, + * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits. + * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750 + */ + if (m | j) + u1 = u + 513, u1 -= 513; + + /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero; + * u1 = u to 24 bits. + */ + else + u1 = u, TRUNC(u1); + u2 = (2.0*(f - F*u1) - u1*f) * g; + /* u1 + u2 = 2f/(2F+f) to extra precision. */ + + /* log(x) = log(2^m*F*(1+f/F)) = */ + /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */ + /* (exact) + (tiny) */ + + u1 += m*logF_head[N] + logF_head[j]; /* exact */ + u2 = (u2 + logF_tail[j]) + q; /* tiny */ + u2 += logF_tail[N]*m; + return (u1 + u2); +} +#endif + +/* + * Extra precision variant, returning struct {double a, b;}; + * log(x) = a+b to 63 bits, with a rounded to 26 bits. + */ +struct Double +#ifdef _ANSI_SOURCE +__log__D(double x) +#else +__log__D(x) double x; +#endif +{ + int m, j; + double F, f, g, q, u, v, u2; + volatile double u1; + struct Double r; + + /* Argument reduction: 1 <= g < 2; x/2^m = g; */ + /* y = F*(1 + f/F) for |f| <= 2^-8 */ + + m = logb(x); + g = ldexp(x, -m); + if (m == -1022) { + j = logb(g), m += j; + g = ldexp(g, -j); + } + j = N*(g-1) + .5; + F = (1.0/N) * j + 1; + f = g - F; + + g = 1/(2*F+f); + u = 2*f*g; + v = u*u; + q = u*v*(A1 + v*(A2 + v*(A3 + v*A4))); + if (m | j) + u1 = u + 513, u1 -= 513; + else + u1 = u, TRUNC(u1); + u2 = (2.0*(f - F*u1) - u1*f) * g; + + u1 += m*logF_head[N] + logF_head[j]; + + u2 += logF_tail[j]; u2 += q; + u2 += logF_tail[N]*m; + r.a = u1 + u2; /* Only difference is here */ + TRUNC(r.a); + r.b = (u1 - r.a) + u2; + return (r); +} diff --git a/libm/bsdsrc/b_tgamma.c b/libm/bsdsrc/b_tgamma.c new file mode 100644 index 0000000..ff6c5ac --- /dev/null +++ b/libm/bsdsrc/b_tgamma.c @@ -0,0 +1,316 @@ +/*- + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#ifndef lint +static char sccsid[] = "@(#)gamma.c 8.1 (Berkeley) 6/4/93"; +#endif /* not lint */ +#include <sys/cdefs.h> +/* __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_tgamma.c,v 1.7 2005/09/19 11:28:19 bde Exp $"); */ + +/* + * This code by P. McIlroy, Oct 1992; + * + * The financial support of UUNET Communications Services is greatfully + * acknowledged. + */ + +//#include <math.h> +#include "../include/math.h" +#include "mathimpl.h" +#include <errno.h> + +/* METHOD: + * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)) + * At negative integers, return +Inf, and set errno. + * + * x < 6.5: + * Use argument reduction G(x+1) = xG(x) to reach the + * range [1.066124,2.066124]. Use a rational + * approximation centered at the minimum (x0+1) to + * ensure monotonicity. + * + * x >= 6.5: Use the asymptotic approximation (Stirling's formula) + * adjusted for equal-ripples: + * + * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x)) + * + * Keep extra precision in multiplying (x-.5)(log(x)-1), to + * avoid premature round-off. + * + * Special values: + * non-positive integer: Set overflow trap; return +Inf; + * x > 171.63: Set overflow trap; return +Inf; + * NaN: Set invalid trap; return NaN + * + * Accuracy: Gamma(x) is accurate to within + * x > 0: error provably < 0.9ulp. + * Maximum observed in 1,000,000 trials was .87ulp. + * x < 0: + * Maximum observed error < 4ulp in 1,000,000 trials. + */ + +static double neg_gam(double); +static double small_gam(double); +static double smaller_gam(double); +static struct Double large_gam(double); +static struct Double ratfun_gam(double, double); + +/* + * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval + * [1.066.., 2.066..] accurate to 4.25e-19. + */ +#define LEFT -.3955078125 /* left boundary for rat. approx */ +#define x0 .461632144968362356785 /* xmin - 1 */ + +#define a0_hi 0.88560319441088874992 +#define a0_lo -.00000000000000004996427036469019695 +#define P0 6.21389571821820863029017800727e-01 +#define P1 2.65757198651533466104979197553e-01 +#define P2 5.53859446429917461063308081748e-03 +#define P3 1.38456698304096573887145282811e-03 +#define P4 2.40659950032711365819348969808e-03 +#define Q0 1.45019531250000000000000000000e+00 +#define Q1 1.06258521948016171343454061571e+00 +#define Q2 -2.07474561943859936441469926649e-01 +#define Q3 -1.46734131782005422506287573015e-01 +#define Q4 3.07878176156175520361557573779e-02 +#define Q5 5.12449347980666221336054633184e-03 +#define Q6 -1.76012741431666995019222898833e-03 +#define Q7 9.35021023573788935372153030556e-05 +#define Q8 6.13275507472443958924745652239e-06 +/* + * Constants for large x approximation (x in [6, Inf]) + * (Accurate to 2.8*10^-19 absolute) + */ +#define lns2pi_hi 0.418945312500000 +#define lns2pi_lo -.000006779295327258219670263595 +#define Pa0 8.33333333333333148296162562474e-02 +#define Pa1 -2.77777777774548123579378966497e-03 +#define Pa2 7.93650778754435631476282786423e-04 +#define Pa3 -5.95235082566672847950717262222e-04 +#define Pa4 8.41428560346653702135821806252e-04 +#define Pa5 -1.89773526463879200348872089421e-03 +#define Pa6 5.69394463439411649408050664078e-03 +#define Pa7 -1.44705562421428915453880392761e-02 + +static const double zero = 0., one = 1.0, tiny = 1e-300; + +double +tgamma(x) + double x; +{ + struct Double u; + + if (x >= 6) { + if(x > 171.63) + return(one/zero); + u = large_gam(x); + return(__exp__D(u.a, u.b)); + } else if (x >= 1.0 + LEFT + x0) + return (small_gam(x)); + else if (x > 1.e-17) + return (smaller_gam(x)); + else if (x > -1.e-17) { + if (x == 0.0) + return (one/x); + one+1e-20; /* Raise inexact flag. */ + return (one/x); + } else if (!finite(x)) + return (x*x); /* x = NaN, -Inf */ + else + return (neg_gam(x)); +} +/* + * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error. + */ +static struct Double +large_gam(x) + double x; +{ + double z, p; + struct Double t, u, v; + + z = one/(x*x); + p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7)))))); + p = p/x; + + u = __log__D(x); + u.a -= one; + v.a = (x -= .5); + TRUNC(v.a); + v.b = x - v.a; + t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */ + t.b = v.b*u.a + x*u.b; + /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */ + t.b += lns2pi_lo; t.b += p; + u.a = lns2pi_hi + t.b; u.a += t.a; + u.b = t.a - u.a; + u.b += lns2pi_hi; u.b += t.b; + return (u); +} +/* + * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.) + * It also has correct monotonicity. + */ +static double +small_gam(x) + double x; +{ + double y, ym1, t; + struct Double yy, r; + y = x - one; + ym1 = y - one; + if (y <= 1.0 + (LEFT + x0)) { + yy = ratfun_gam(y - x0, 0); + return (yy.a + yy.b); + } + r.a = y; + TRUNC(r.a); + yy.a = r.a - one; + y = ym1; + yy.b = r.b = y - yy.a; + /* Argument reduction: G(x+1) = x*G(x) */ + for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) { + t = r.a*yy.a; + r.b = r.a*yy.b + y*r.b; + r.a = t; + TRUNC(r.a); + r.b += (t - r.a); + } + /* Return r*tgamma(y). */ + yy = ratfun_gam(y - x0, 0); + y = r.b*(yy.a + yy.b) + r.a*yy.b; + y += yy.a*r.a; + return (y); +} +/* + * Good on (0, 1+x0+LEFT]. Accurate to 1ulp. + */ +static double +smaller_gam(x) + double x; +{ + double t, d; + struct Double r, xx; + if (x < x0 + LEFT) { + t = x, TRUNC(t); + d = (t+x)*(x-t); + t *= t; + xx.a = (t + x), TRUNC(xx.a); + xx.b = x - xx.a; xx.b += t; xx.b += d; + t = (one-x0); t += x; + d = (one-x0); d -= t; d += x; + x = xx.a + xx.b; + } else { + xx.a = x, TRUNC(xx.a); + xx.b = x - xx.a; + t = x - x0; + d = (-x0 -t); d += x; + } + r = ratfun_gam(t, d); + d = r.a/x, TRUNC(d); + r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b; + return (d + r.a/x); +} +/* + * returns (z+c)^2 * P(z)/Q(z) + a0 + */ +static struct Double +ratfun_gam(z, c) + double z, c; +{ + double p, q; + struct Double r, t; + + q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8))))))); + p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4))); + + /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */ + p = p/q; + t.a = z, TRUNC(t.a); /* t ~= z + c */ + t.b = (z - t.a) + c; + t.b *= (t.a + z); + q = (t.a *= t.a); /* t = (z+c)^2 */ + TRUNC(t.a); + t.b += (q - t.a); + r.a = p, TRUNC(r.a); /* r = P/Q */ + r.b = p - r.a; + t.b = t.b*p + t.a*r.b + a0_lo; + t.a *= r.a; /* t = (z+c)^2*(P/Q) */ + r.a = t.a + a0_hi, TRUNC(r.a); + r.b = ((a0_hi-r.a) + t.a) + t.b; + return (r); /* r = a0 + t */ +} + +static double +neg_gam(x) + double x; +{ + int sgn = 1; + struct Double lg, lsine; + double y, z; + + y = floor(x + .5); + if (y == x) /* Negative integer. */ + return (one/zero); + z = fabs(x - y); + y = .5*ceil(x); + if (y == ceil(y)) + sgn = -1; + if (z < .25) + z = sin(M_PI*z); + else + z = cos(M_PI*(0.5-z)); + /* Special case: G(1-x) = Inf; G(x) may be nonzero. */ + if (x < -170) { + if (x < -190) + return ((double)sgn*tiny*tiny); + y = one - x; /* exact: 128 < |x| < 255 */ + lg = large_gam(y); + lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */ + lg.a -= lsine.a; /* exact (opposite signs) */ + lg.b -= lsine.b; + y = -(lg.a + lg.b); + z = (y + lg.a) + lg.b; + y = __exp__D(y, z); + if (sgn < 0) y = -y; + return (y); + } + y = one-x; + if (one-y == x) + y = tgamma(y); + else /* 1-x is inexact */ + y = -x*tgamma(-x); + if (sgn < 0) y = -y; + return (M_PI / (y*z)); +} diff --git a/libm/bsdsrc/mathimpl.h b/libm/bsdsrc/mathimpl.h new file mode 100644 index 0000000..2a3b246 --- /dev/null +++ b/libm/bsdsrc/mathimpl.h @@ -0,0 +1,74 @@ +/* + * Copyright (c) 1988, 1993 + * The Regents of the University of California. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)mathimpl.h 8.1 (Berkeley) 6/4/93 + * $FreeBSD: src/lib/msun/bsdsrc/mathimpl.h,v 1.7 2005/11/18 05:03:12 bde Exp $ + */ + +#ifndef _MATHIMPL_H_ +#define _MATHIMPL_H_ + +#include <sys/cdefs.h> +#include <math.h> + +#include "../src/math_private.h" + +/* + * TRUNC() is a macro that sets the trailing 27 bits in the mantissa of an + * IEEE double variable to zero. It must be expression-like for syntactic + * reasons, and we implement this expression using an inline function + * instead of a pure macro to avoid depending on the gcc feature of + * statement-expressions. + */ +#define TRUNC(d) (_b_trunc(&(d))) + +static __inline void +_b_trunc(volatile double *_dp) +{ + uint32_t _lw; + + GET_LOW_WORD(_lw, *_dp); + SET_LOW_WORD(*_dp, _lw & 0xf8000000); +} + +struct Double { + double a; + double b; +}; + +/* + * Functions internal to the math package, yet not static. + */ +double __exp__D(double, double); +struct Double __log__D(double); + +#endif /* !_MATHIMPL_H_ */ |