diff options
Diffstat (limited to 'libm/src/e_asin.c')
-rw-r--r-- | libm/src/e_asin.c | 113 |
1 files changed, 113 insertions, 0 deletions
diff --git a/libm/src/e_asin.c b/libm/src/e_asin.c new file mode 100644 index 0000000..1ba7026 --- /dev/null +++ b/libm/src/e_asin.c @@ -0,0 +1,113 @@ + +/* @(#)e_asin.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#ifndef lint +static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_asin.c,v 1.11 2005/02/04 18:26:05 das Exp $"; +#endif + +/* __ieee754_asin(x) + * Method : + * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... + * we approximate asin(x) on [0,0.5] by + * asin(x) = x + x*x^2*R(x^2) + * where + * R(x^2) is a rational approximation of (asin(x)-x)/x^3 + * and its remez error is bounded by + * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) + * + * For x in [0.5,1] + * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) + * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; + * then for x>0.98 + * asin(x) = pi/2 - 2*(s+s*z*R(z)) + * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) + * For x<=0.98, let pio4_hi = pio2_hi/2, then + * f = hi part of s; + * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) + * and + * asin(x) = pi/2 - 2*(s+s*z*R(z)) + * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) + * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) + * + * Special cases: + * if x is NaN, return x itself; + * if |x|>1, return NaN with invalid signal. + * + */ + + +#include "math.h" +#include "math_private.h" + +static const double +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +huge = 1.000e+300, +pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ +pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ +pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ + /* coefficient for R(x^2) */ +pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ +pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ +pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ +pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ +pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ +pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ +qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ +qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ +qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ +qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ + +double +__ieee754_asin(double x) +{ + double t=0.0,w,p,q,c,r,s; + int32_t hx,ix; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>= 0x3ff00000) { /* |x|>= 1 */ + u_int32_t lx; + GET_LOW_WORD(lx,x); + if(((ix-0x3ff00000)|lx)==0) + /* asin(1)=+-pi/2 with inexact */ + return x*pio2_hi+x*pio2_lo; + return (x-x)/(x-x); /* asin(|x|>1) is NaN */ + } else if (ix<0x3fe00000) { /* |x|<0.5 */ + if(ix<0x3e400000) { /* if |x| < 2**-27 */ + if(huge+x>one) return x;/* return x with inexact if x!=0*/ + } else + t = x*x; + p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); + q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); + w = p/q; + return x+x*w; + } + /* 1> |x|>= 0.5 */ + w = one-fabs(x); + t = w*0.5; + p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); + q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); + s = sqrt(t); + if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ + w = p/q; + t = pio2_hi-(2.0*(s+s*w)-pio2_lo); + } else { + w = s; + SET_LOW_WORD(w,0); + c = (t-w*w)/(s+w); + r = p/q; + p = 2.0*s*r-(pio2_lo-2.0*c); + q = pio4_hi-2.0*w; + t = pio4_hi-(p-q); + } + if(hx>0) return t; else return -t; +} |