summaryrefslogtreecommitdiffstats
path: root/libm/src/e_j0f.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/src/e_j0f.c')
-rw-r--r--libm/src/e_j0f.c338
1 files changed, 0 insertions, 338 deletions
diff --git a/libm/src/e_j0f.c b/libm/src/e_j0f.c
deleted file mode 100644
index b872406..0000000
--- a/libm/src/e_j0f.c
+++ /dev/null
@@ -1,338 +0,0 @@
-/* e_j0f.c -- float version of e_j0.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#ifndef lint
-static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_j0f.c,v 1.7 2002/05/28 18:15:03 alfred Exp $";
-#endif
-
-#include "math.h"
-#include "math_private.h"
-
-static float pzerof(float), qzerof(float);
-
-static const float
-huge = 1e30,
-one = 1.0,
-invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
-tpi = 6.3661974669e-01, /* 0x3f22f983 */
- /* R0/S0 on [0, 2.00] */
-R02 = 1.5625000000e-02, /* 0x3c800000 */
-R03 = -1.8997929874e-04, /* 0xb947352e */
-R04 = 1.8295404516e-06, /* 0x35f58e88 */
-R05 = -4.6183270541e-09, /* 0xb19eaf3c */
-S01 = 1.5619102865e-02, /* 0x3c7fe744 */
-S02 = 1.1692678527e-04, /* 0x38f53697 */
-S03 = 5.1354652442e-07, /* 0x3509daa6 */
-S04 = 1.1661400734e-09; /* 0x30a045e8 */
-
-static const float zero = 0.0;
-
-float
-__ieee754_j0f(float x)
-{
- float z, s,c,ss,cc,r,u,v;
- int32_t hx,ix;
-
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x7f800000) return one/(x*x);
- x = fabsf(x);
- if(ix >= 0x40000000) { /* |x| >= 2.0 */
- s = sinf(x);
- c = cosf(x);
- ss = s-c;
- cc = s+c;
- if(ix<0x7f000000) { /* make sure x+x not overflow */
- z = -cosf(x+x);
- if ((s*c)<zero) cc = z/ss;
- else ss = z/cc;
- }
- /*
- * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
- * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
- */
- if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x);
- else {
- u = pzerof(x); v = qzerof(x);
- z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
- }
- return z;
- }
- if(ix<0x39000000) { /* |x| < 2**-13 */
- if(huge+x>one) { /* raise inexact if x != 0 */
- if(ix<0x32000000) return one; /* |x|<2**-27 */
- else return one - (float)0.25*x*x;
- }
- }
- z = x*x;
- r = z*(R02+z*(R03+z*(R04+z*R05)));
- s = one+z*(S01+z*(S02+z*(S03+z*S04)));
- if(ix < 0x3F800000) { /* |x| < 1.00 */
- return one + z*((float)-0.25+(r/s));
- } else {
- u = (float)0.5*x;
- return((one+u)*(one-u)+z*(r/s));
- }
-}
-
-static const float
-u00 = -7.3804296553e-02, /* 0xbd9726b5 */
-u01 = 1.7666645348e-01, /* 0x3e34e80d */
-u02 = -1.3818567619e-02, /* 0xbc626746 */
-u03 = 3.4745343146e-04, /* 0x39b62a69 */
-u04 = -3.8140706238e-06, /* 0xb67ff53c */
-u05 = 1.9559013964e-08, /* 0x32a802ba */
-u06 = -3.9820518410e-11, /* 0xae2f21eb */
-v01 = 1.2730483897e-02, /* 0x3c509385 */
-v02 = 7.6006865129e-05, /* 0x389f65e0 */
-v03 = 2.5915085189e-07, /* 0x348b216c */
-v04 = 4.4111031494e-10; /* 0x2ff280c2 */
-
-float
-__ieee754_y0f(float x)
-{
- float z, s,c,ss,cc,u,v;
- int32_t hx,ix;
-
- GET_FLOAT_WORD(hx,x);
- ix = 0x7fffffff&hx;
- /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
- if(ix>=0x7f800000) return one/(x+x*x);
- if(ix==0) return -one/zero;
- if(hx<0) return zero/zero;
- if(ix >= 0x40000000) { /* |x| >= 2.0 */
- /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
- * where x0 = x-pi/4
- * Better formula:
- * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
- * = 1/sqrt(2) * (sin(x) + cos(x))
- * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
- * = 1/sqrt(2) * (sin(x) - cos(x))
- * To avoid cancellation, use
- * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- * to compute the worse one.
- */
- s = sinf(x);
- c = cosf(x);
- ss = s-c;
- cc = s+c;
- /*
- * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
- * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
- */
- if(ix<0x7f000000) { /* make sure x+x not overflow */
- z = -cosf(x+x);
- if ((s*c)<zero) cc = z/ss;
- else ss = z/cc;
- }
- if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x);
- else {
- u = pzerof(x); v = qzerof(x);
- z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
- }
- return z;
- }
- if(ix<=0x32000000) { /* x < 2**-27 */
- return(u00 + tpi*__ieee754_logf(x));
- }
- z = x*x;
- u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
- v = one+z*(v01+z*(v02+z*(v03+z*v04)));
- return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
-}
-
-/* The asymptotic expansions of pzero is
- * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
- * For x >= 2, We approximate pzero by
- * pzero(x) = 1 + (R/S)
- * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
- * S = 1 + pS0*s^2 + ... + pS4*s^10
- * and
- * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
- */
-static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
- 0.0000000000e+00, /* 0x00000000 */
- -7.0312500000e-02, /* 0xbd900000 */
- -8.0816707611e+00, /* 0xc1014e86 */
- -2.5706311035e+02, /* 0xc3808814 */
- -2.4852163086e+03, /* 0xc51b5376 */
- -5.2530439453e+03, /* 0xc5a4285a */
-};
-static const float pS8[5] = {
- 1.1653436279e+02, /* 0x42e91198 */
- 3.8337448730e+03, /* 0x456f9beb */
- 4.0597855469e+04, /* 0x471e95db */
- 1.1675296875e+05, /* 0x47e4087c */
- 4.7627726562e+04, /* 0x473a0bba */
-};
-static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
- -1.1412546255e-11, /* 0xad48c58a */
- -7.0312492549e-02, /* 0xbd8fffff */
- -4.1596107483e+00, /* 0xc0851b88 */
- -6.7674766541e+01, /* 0xc287597b */
- -3.3123129272e+02, /* 0xc3a59d9b */
- -3.4643338013e+02, /* 0xc3ad3779 */
-};
-static const float pS5[5] = {
- 6.0753936768e+01, /* 0x42730408 */
- 1.0512523193e+03, /* 0x44836813 */
- 5.9789707031e+03, /* 0x45bad7c4 */
- 9.6254453125e+03, /* 0x461665c8 */
- 2.4060581055e+03, /* 0x451660ee */
-};
-
-static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
- -2.5470459075e-09, /* 0xb12f081b */
- -7.0311963558e-02, /* 0xbd8fffb8 */
- -2.4090321064e+00, /* 0xc01a2d95 */
- -2.1965976715e+01, /* 0xc1afba52 */
- -5.8079170227e+01, /* 0xc2685112 */
- -3.1447946548e+01, /* 0xc1fb9565 */
-};
-static const float pS3[5] = {
- 3.5856033325e+01, /* 0x420f6c94 */
- 3.6151397705e+02, /* 0x43b4c1ca */
- 1.1936077881e+03, /* 0x44953373 */
- 1.1279968262e+03, /* 0x448cffe6 */
- 1.7358093262e+02, /* 0x432d94b8 */
-};
-
-static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
- -8.8753431271e-08, /* 0xb3be98b7 */
- -7.0303097367e-02, /* 0xbd8ffb12 */
- -1.4507384300e+00, /* 0xbfb9b1cc */
- -7.6356959343e+00, /* 0xc0f4579f */
- -1.1193166733e+01, /* 0xc1331736 */
- -3.2336456776e+00, /* 0xc04ef40d */
-};
-static const float pS2[5] = {
- 2.2220300674e+01, /* 0x41b1c32d */
- 1.3620678711e+02, /* 0x430834f0 */
- 2.7047027588e+02, /* 0x43873c32 */
- 1.5387539673e+02, /* 0x4319e01a */
- 1.4657617569e+01, /* 0x416a859a */
-};
-
- static float pzerof(float x)
-{
- const float *p,*q;
- float z,r,s;
- int32_t ix;
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff;
- if(ix>=0x41000000) {p = pR8; q= pS8;}
- else if(ix>=0x40f71c58){p = pR5; q= pS5;}
- else if(ix>=0x4036db68){p = pR3; q= pS3;}
- else if(ix>=0x40000000){p = pR2; q= pS2;}
- z = one/(x*x);
- r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
- s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
- return one+ r/s;
-}
-
-
-/* For x >= 8, the asymptotic expansions of qzero is
- * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
- * We approximate pzero by
- * qzero(x) = s*(-1.25 + (R/S))
- * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
- * S = 1 + qS0*s^2 + ... + qS5*s^12
- * and
- * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
- */
-static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
- 0.0000000000e+00, /* 0x00000000 */
- 7.3242187500e-02, /* 0x3d960000 */
- 1.1768206596e+01, /* 0x413c4a93 */
- 5.5767340088e+02, /* 0x440b6b19 */
- 8.8591972656e+03, /* 0x460a6cca */
- 3.7014625000e+04, /* 0x471096a0 */
-};
-static const float qS8[6] = {
- 1.6377603149e+02, /* 0x4323c6aa */
- 8.0983447266e+03, /* 0x45fd12c2 */
- 1.4253829688e+05, /* 0x480b3293 */
- 8.0330925000e+05, /* 0x49441ed4 */
- 8.4050156250e+05, /* 0x494d3359 */
- -3.4389928125e+05, /* 0xc8a7eb69 */
-};
-
-static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
- 1.8408595828e-11, /* 0x2da1ec79 */
- 7.3242180049e-02, /* 0x3d95ffff */
- 5.8356351852e+00, /* 0x40babd86 */
- 1.3511157227e+02, /* 0x43071c90 */
- 1.0272437744e+03, /* 0x448067cd */
- 1.9899779053e+03, /* 0x44f8bf4b */
-};
-static const float qS5[6] = {
- 8.2776611328e+01, /* 0x42a58da0 */
- 2.0778142090e+03, /* 0x4501dd07 */
- 1.8847289062e+04, /* 0x46933e94 */
- 5.6751113281e+04, /* 0x475daf1d */
- 3.5976753906e+04, /* 0x470c88c1 */
- -5.3543427734e+03, /* 0xc5a752be */
-};
-
-static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
- 4.3774099900e-09, /* 0x3196681b */
- 7.3241114616e-02, /* 0x3d95ff70 */
- 3.3442313671e+00, /* 0x405607e3 */
- 4.2621845245e+01, /* 0x422a7cc5 */
- 1.7080809021e+02, /* 0x432acedf */
- 1.6673394775e+02, /* 0x4326bbe4 */
-};
-static const float qS3[6] = {
- 4.8758872986e+01, /* 0x42430916 */
- 7.0968920898e+02, /* 0x44316c1c */
- 3.7041481934e+03, /* 0x4567825f */
- 6.4604252930e+03, /* 0x45c9e367 */
- 2.5163337402e+03, /* 0x451d4557 */
- -1.4924745178e+02, /* 0xc3153f59 */
-};
-
-static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
- 1.5044444979e-07, /* 0x342189db */
- 7.3223426938e-02, /* 0x3d95f62a */
- 1.9981917143e+00, /* 0x3fffc4bf */
- 1.4495602608e+01, /* 0x4167edfd */
- 3.1666231155e+01, /* 0x41fd5471 */
- 1.6252708435e+01, /* 0x4182058c */
-};
-static const float qS2[6] = {
- 3.0365585327e+01, /* 0x41f2ecb8 */
- 2.6934811401e+02, /* 0x4386ac8f */
- 8.4478375244e+02, /* 0x44533229 */
- 8.8293585205e+02, /* 0x445cbbe5 */
- 2.1266638184e+02, /* 0x4354aa98 */
- -5.3109550476e+00, /* 0xc0a9f358 */
-};
-
- static float qzerof(float x)
-{
- const float *p,*q;
- float s,r,z;
- int32_t ix;
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff;
- if(ix>=0x41000000) {p = qR8; q= qS8;}
- else if(ix>=0x40f71c58){p = qR5; q= qS5;}
- else if(ix>=0x4036db68){p = qR3; q= qS3;}
- else if(ix>=0x40000000){p = qR2; q= qS2;}
- z = one/(x*x);
- r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
- s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
- return (-(float).125 + r/s)/x;
-}