diff options
Diffstat (limited to 'libm/src/k_tan.c')
-rw-r--r-- | libm/src/k_tan.c | 133 |
1 files changed, 133 insertions, 0 deletions
diff --git a/libm/src/k_tan.c b/libm/src/k_tan.c new file mode 100644 index 0000000..82fe155 --- /dev/null +++ b/libm/src/k_tan.c @@ -0,0 +1,133 @@ +/* @(#)k_tan.c 1.5 04/04/22 SMI */ + +/* + * ==================================================== + * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* INDENT OFF */ +#ifndef lint +static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_tan.c,v 1.12 2005/11/02 14:01:45 bde Exp $"; +#endif + +/* __kernel_tan( x, y, k ) + * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned. + * + * Algorithm + * 1. Since tan(-x) = -tan(x), we need only to consider positive x. + * 2. Callers must return tan(-0) = -0 without calling here since our + * odd polynomial is not evaluated in a way that preserves -0. + * Callers may do the optimization tan(x) ~ x for tiny x. + * 3. tan(x) is approximated by a odd polynomial of degree 27 on + * [0,0.67434] + * 3 27 + * tan(x) ~ x + T1*x + ... + T13*x + * where + * + * |tan(x) 2 4 26 | -59.2 + * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 + * | x | + * + * Note: tan(x+y) = tan(x) + tan'(x)*y + * ~ tan(x) + (1+x*x)*y + * Therefore, for better accuracy in computing tan(x+y), let + * 3 2 2 2 2 + * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) + * then + * 3 2 + * tan(x+y) = x + (T1*x + (x *(r+y)+y)) + * + * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then + * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) + * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) + */ + +#include "math.h" +#include "math_private.h" +static const double xxx[] = { + 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ + 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ + 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ + 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ + 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ + 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ + 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ + 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ + 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ + 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ + 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ + -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ + 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ +/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ +/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ +/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ +}; +#define one xxx[13] +#define pio4 xxx[14] +#define pio4lo xxx[15] +#define T xxx +/* INDENT ON */ + +double +__kernel_tan(double x, double y, int iy) { + double z, r, v, w, s; + int32_t ix, hx; + + GET_HIGH_WORD(hx,x); + ix = hx & 0x7fffffff; /* high word of |x| */ + if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ + if (hx < 0) { + x = -x; + y = -y; + } + z = pio4 - x; + w = pio4lo - y; + x = z + w; + y = 0.0; + } + z = x * x; + w = z * z; + /* + * Break x^5*(T[1]+x^2*T[2]+...) into + * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) + */ + r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + + w * T[11])))); + v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + + w * T[12]))))); + s = z * x; + r = y + z * (s * (r + v) + y); + r += T[0] * s; + w = x + r; + if (ix >= 0x3FE59428) { + v = (double) iy; + return (double) (1 - ((hx >> 30) & 2)) * + (v - 2.0 * (x - (w * w / (w + v) - r))); + } + if (iy == 1) + return w; + else { + /* + * if allow error up to 2 ulp, simply return + * -1.0 / (x+r) here + */ + /* compute -1.0 / (x+r) accurately */ + double a, t; + z = w; + SET_LOW_WORD(z,0); + v = r - (z - x); /* z+v = r+x */ + t = a = -1.0 / w; /* a = -1.0/w */ + SET_LOW_WORD(t,0); + s = 1.0 + t * z; + return t + a * (s + t * v); + } +} |