From 1dc9e472e19acfe6dc7f41e429236e7eef7ceda1 Mon Sep 17 00:00:00 2001 From: The Android Open Source Project Date: Tue, 3 Mar 2009 19:28:35 -0800 Subject: auto import from //depot/cupcake/@135843 --- libc/bionic/pthread.c | 1587 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1587 insertions(+) create mode 100644 libc/bionic/pthread.c (limited to 'libc/bionic/pthread.c') diff --git a/libc/bionic/pthread.c b/libc/bionic/pthread.c new file mode 100644 index 0000000..ec3c459 --- /dev/null +++ b/libc/bionic/pthread.c @@ -0,0 +1,1587 @@ +/* + * Copyright (C) 2008 The Android Open Source Project + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, + * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS + * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED + * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT + * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "pthread_internal.h" +#include "thread_private.h" +#include +#include +#include +#include + +extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg); +extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode); +extern void _exit_thread(int retCode); +extern int __set_errno(int); + +void _thread_created_hook(pid_t thread_id) __attribute__((noinline)); + +#define PTHREAD_ATTR_FLAG_DETACHED 0x00000001 +#define PTHREAD_ATTR_FLAG_USER_STACK 0x00000002 + +#define DEFAULT_STACKSIZE (1024 * 1024) +#define STACKBASE 0x10000000 + +static uint8_t * gStackBase = (uint8_t *)STACKBASE; + +static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER; + + +static const pthread_attr_t gDefaultPthreadAttr = { + .flags = 0, + .stack_base = NULL, + .stack_size = DEFAULT_STACKSIZE, + .guard_size = PAGE_SIZE, + .sched_policy = SCHED_NORMAL, + .sched_priority = 0 +}; + +#define INIT_THREADS 1 + +static pthread_internal_t* gThreadList = NULL; +static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER; +static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER; + + +/* we simply malloc/free the internal pthread_internal_t structures. we may + * want to use a different allocation scheme in the future, but this one should + * be largely enough + */ +static pthread_internal_t* +_pthread_internal_alloc(void) +{ + pthread_internal_t* thread; + + thread = calloc( sizeof(*thread), 1 ); + if (thread) + thread->intern = 1; + + return thread; +} + +static void +_pthread_internal_free( pthread_internal_t* thread ) +{ + if (thread && thread->intern) { + thread->intern = 0; /* just in case */ + free (thread); + } +} + + +static void +_pthread_internal_remove_locked( pthread_internal_t* thread ) +{ + thread->next->pref = thread->pref; + thread->pref[0] = thread->next; +} + +static void +_pthread_internal_remove( pthread_internal_t* thread ) +{ + pthread_mutex_lock(&gThreadListLock); + _pthread_internal_remove_locked(thread); + pthread_mutex_unlock(&gThreadListLock); +} + +static void +_pthread_internal_add( pthread_internal_t* thread ) +{ + pthread_mutex_lock(&gThreadListLock); + thread->pref = &gThreadList; + thread->next = thread->pref[0]; + if (thread->next) + thread->next->pref = &thread->next; + thread->pref[0] = thread; + pthread_mutex_unlock(&gThreadListLock); +} + +pthread_internal_t* +__get_thread(void) +{ + void** tls = (void**)__get_tls(); + + return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID]; +} + + +void* +__get_stack_base(int *p_stack_size) +{ + pthread_internal_t* thread = __get_thread(); + + *p_stack_size = thread->attr.stack_size; + return thread->attr.stack_base; +} + + +void __init_tls(void** tls, void* thread) +{ + int nn; + + ((pthread_internal_t*)thread)->tls = tls; + + // slot 0 must point to the tls area, this is required by the implementation + // of the x86 Linux kernel thread-local-storage + tls[TLS_SLOT_SELF] = (void*)tls; + tls[TLS_SLOT_THREAD_ID] = thread; + for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++) + tls[nn] = 0; + + __set_tls( (void*)tls ); +} + + +/* + * This trampoline is called from the assembly clone() function + */ +void __thread_entry(int (*func)(void*), void *arg, void **tls) +{ + int retValue; + pthread_internal_t * thrInfo; + + // Wait for our creating thread to release us. This lets it have time to + // notify gdb about this thread before it starts doing anything. + pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF]; + pthread_mutex_lock(start_mutex); + pthread_mutex_destroy(start_mutex); + + thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID]; + + __init_tls( tls, thrInfo ); + + pthread_exit( (void*)func(arg) ); +} + +void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base) +{ + if (attr == NULL) { + thread->attr = gDefaultPthreadAttr; + } else { + thread->attr = *attr; + } + thread->attr.stack_base = stack_base; + thread->kernel_id = kernel_id; + + // set the scheduling policy/priority of the thread + if (thread->attr.sched_policy != SCHED_NORMAL) { + struct sched_param param; + param.sched_priority = thread->attr.sched_priority; + sched_setscheduler(kernel_id, thread->attr.sched_policy, ¶m); + } + + pthread_cond_init(&thread->join_cond, NULL); + thread->join_count = 0; + + thread->cleanup_stack = NULL; + + _pthread_internal_add(thread); +} + + +/* XXX stacks not reclaimed if thread spawn fails */ +/* XXX stacks address spaces should be reused if available again */ + +static void *mkstack(size_t size, size_t guard_size) +{ + void * stack; + + pthread_mutex_lock(&mmap_lock); + + stack = mmap((void *)gStackBase, size, + PROT_READ | PROT_WRITE, + MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, + -1, 0); + + if(stack == MAP_FAILED) { + stack = NULL; + goto done; + } + + if(mprotect(stack, guard_size, PROT_NONE)){ + munmap(stack, size); + stack = NULL; + goto done; + } + +done: + pthread_mutex_unlock(&mmap_lock); + return stack; +} + +/* + * Create a new thread. The thread's stack is layed out like so: + * + * +---------------------------+ + * | pthread_internal_t | + * +---------------------------+ + * | | + * | TLS area | + * | | + * +---------------------------+ + * | | + * . . + * . stack area . + * . . + * | | + * +---------------------------+ + * | guard page | + * +---------------------------+ + * + * note that TLS[0] must be a pointer to itself, this is required + * by the thread-local storage implementation of the x86 Linux + * kernel, where the TLS pointer is read by reading fs:[0] + */ +int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr, + void *(*start_routine)(void *), void * arg) +{ + char* stack; + void** tls; + int tid; + pthread_mutex_t * start_mutex; + pthread_internal_t * thread; + int madestack = 0; + int old_errno = errno; + + /* this will inform the rest of the C library that at least one thread + * was created. this will enforce certain functions to acquire/release + * locks (e.g. atexit()) to protect shared global structures. + * + * this works because pthread_create() is not called by the C library + * initialization routine that sets up the main thread's data structures. + */ + __isthreaded = 1; + + thread = _pthread_internal_alloc(); + if (thread == NULL) + return ENOMEM; + + if (attr == NULL) { + attr = &gDefaultPthreadAttr; + } + + // make sure the stack is PAGE_SIZE aligned + size_t stackSize = (attr->stack_size + + (PAGE_SIZE-1)) & ~(PAGE_SIZE-1); + + if (!attr->stack_base) { + stack = mkstack(stackSize, attr->guard_size); + if(stack == NULL) { + _pthread_internal_free(thread); + return ENOMEM; + } + madestack = 1; + } else { + stack = attr->stack_base; + } + + // Make room for TLS + tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*)); + + // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep + // it from doing anything until after we notify the debugger about it + start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF]; + pthread_mutex_init(start_mutex, NULL); + pthread_mutex_lock(start_mutex); + + tls[TLS_SLOT_THREAD_ID] = thread; + + tid = __pthread_clone((int(*)(void*))start_routine, tls, + CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND + | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED, + arg); + + if(tid < 0) { + int result; + if (madestack) + munmap(stack, stackSize); + _pthread_internal_free(thread); + result = errno; + errno = old_errno; + return result; + } + + _init_thread(thread, tid, (pthread_attr_t*)attr, stack); + + if (!madestack) + thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK; + + // Notify any debuggers about the new thread + pthread_mutex_lock(&gDebuggerNotificationLock); + _thread_created_hook(tid); + pthread_mutex_unlock(&gDebuggerNotificationLock); + + // Let the thread do it's thing + pthread_mutex_unlock(start_mutex); + + *thread_out = (pthread_t)thread; + return 0; +} + + +int pthread_attr_init(pthread_attr_t * attr) +{ + *attr = gDefaultPthreadAttr; + return 0; +} + +int pthread_attr_destroy(pthread_attr_t * attr) +{ + memset(attr, 0x42, sizeof(pthread_attr_t)); + return 0; +} + +int pthread_attr_setdetachstate(pthread_attr_t * attr, int state) +{ + if (state == PTHREAD_CREATE_DETACHED) { + attr->flags |= PTHREAD_ATTR_FLAG_DETACHED; + } else if (state == PTHREAD_CREATE_JOINABLE) { + attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED; + } else { + return EINVAL; + } + return 0; +} + +int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state) +{ + *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED) + ? PTHREAD_CREATE_DETACHED + : PTHREAD_CREATE_JOINABLE; + return 0; +} + +int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy) +{ + attr->sched_policy = policy; + return 0; +} + +int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy) +{ + *policy = attr->sched_policy; + return 0; +} + +int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param) +{ + attr->sched_priority = param->sched_priority; + return 0; +} + +int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param) +{ + param->sched_priority = attr->sched_priority; + return 0; +} + +int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size) +{ + if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) { + return EINVAL; + } + attr->stack_size = stack_size; + return 0; +} + +int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size) +{ + *stack_size = attr->stack_size; + return 0; +} + +int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr) +{ +#if 1 + // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now. + return ENOSYS; +#else + if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) { + return EINVAL; + } + attr->stack_base = stack_addr; + return 0; +#endif +} + +int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr) +{ + *stack_addr = attr->stack_base + attr->stack_size; + return 0; +} + +int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size) +{ + if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) { + return EINVAL; + } + if ((uint32_t)stack_base & (PAGE_SIZE - 1)) { + return EINVAL; + } + attr->stack_base = stack_base; + attr->stack_size = stack_size; + return 0; +} + +int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size) +{ + *stack_base = attr->stack_base; + *stack_size = attr->stack_size; + return 0; +} + +int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size) +{ + if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) { + return EINVAL; + } + + attr->guard_size = guard_size; + return 0; +} + +int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size) +{ + *guard_size = attr->guard_size; + return 0; +} + +int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr) +{ + pthread_internal_t * thread = (pthread_internal_t *)thid; + *attr = thread->attr; + return 0; +} + +int pthread_attr_setscope(pthread_attr_t *attr, int scope) +{ + if (scope == PTHREAD_SCOPE_SYSTEM) + return 0; + if (scope == PTHREAD_SCOPE_PROCESS) + return ENOTSUP; + + return EINVAL; +} + +int pthread_attr_getscope(pthread_attr_t const *attr) +{ + return PTHREAD_SCOPE_SYSTEM; +} + + +/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions + * and thread cancelation + */ + +void __pthread_cleanup_push( __pthread_cleanup_t* c, + __pthread_cleanup_func_t routine, + void* arg ) +{ + pthread_internal_t* thread = __get_thread(); + + c->__cleanup_routine = routine; + c->__cleanup_arg = arg; + c->__cleanup_prev = thread->cleanup_stack; + thread->cleanup_stack = c; +} + +void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute ) +{ + pthread_internal_t* thread = __get_thread(); + + thread->cleanup_stack = c->__cleanup_prev; + if (execute) + c->__cleanup_routine(c->__cleanup_arg); +} + +/* used by pthread_exit() to clean all TLS keys of the current thread */ +static void pthread_key_clean_all(void); + +void pthread_exit(void * retval) +{ + pthread_internal_t* thread = __get_thread(); + void* stack_base = thread->attr.stack_base; + int stack_size = thread->attr.stack_size; + int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0; + + // call the cleanup handlers first + while (thread->cleanup_stack) { + __pthread_cleanup_t* c = thread->cleanup_stack; + thread->cleanup_stack = c->__cleanup_prev; + c->__cleanup_routine(c->__cleanup_arg); + } + + // call the TLS destructors, it is important to do that before removing this + // thread from the global list. this will ensure that if someone else deletes + // a TLS key, the corresponding value will be set to NULL in this thread's TLS + // space (see pthread_key_delete) + pthread_key_clean_all(); + + // if the thread is detached, destroy the pthread_internal_t + // otherwise, keep it in memory and signal any joiners + if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) { + _pthread_internal_remove(thread); + _pthread_internal_free(thread); + } else { + /* the join_count field is used to store the number of threads waiting for + * the termination of this thread with pthread_join(), + * + * if it is positive we need to signal the waiters, and we do not touch + * the count (it will be decremented by the waiters, the last one will + * also remove/free the thread structure + * + * if it is zero, we set the count value to -1 to indicate that the + * thread is in 'zombie' state: it has stopped executing, and its stack + * is gone (as well as its TLS area). when another thread calls pthread_join() + * on it, it will immediately free the thread and return. + */ + pthread_mutex_lock(&gThreadListLock); + thread->return_value = retval; + if (thread->join_count > 0) { + pthread_cond_broadcast(&thread->join_cond); + } else { + thread->join_count = -1; /* zombie thread */ + } + pthread_mutex_unlock(&gThreadListLock); + } + + // destroy the thread stack + if (user_stack) + _exit_thread((int)retval); + else + _exit_with_stack_teardown(stack_base, stack_size, (int)retval); +} + +int pthread_join(pthread_t thid, void ** ret_val) +{ + pthread_internal_t* thread = (pthread_internal_t*)thid; + int count; + + // check that the thread still exists and is not detached + pthread_mutex_lock(&gThreadListLock); + + for (thread = gThreadList; thread != NULL; thread = thread->next) + if (thread == (pthread_internal_t*)thid) + break; + + if (!thread) { + pthread_mutex_unlock(&gThreadListLock); + return ESRCH; + } + + if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) { + pthread_mutex_unlock(&gThreadListLock); + return EINVAL; + } + + /* wait for thread death when needed + * + * if the 'join_count' is negative, this is a 'zombie' thread that + * is already dead and without stack/TLS + * + * otherwise, we need to increment 'join-count' and wait to be signaled + */ + count = thread->join_count; + if (count >= 0) { + thread->join_count += 1; + pthread_cond_wait( &thread->join_cond, &gThreadListLock ); + count = --thread->join_count; + } + if (ret_val) + *ret_val = thread->return_value; + + /* remove thread descriptor when we're the last joiner or when the + * thread was already a zombie. + */ + if (count <= 0) { + _pthread_internal_remove_locked(thread); + _pthread_internal_free(thread); + } + pthread_mutex_unlock(&gThreadListLock); + return 0; +} + +int pthread_detach( pthread_t thid ) +{ + pthread_internal_t* thread; + int result = 0; + int flags; + + pthread_mutex_lock(&gThreadListLock); + for (thread = gThreadList; thread != NULL; thread = thread->next) + if (thread == (pthread_internal_t*)thid) + goto FoundIt; + + result = ESRCH; + goto Exit; + +FoundIt: + do { + flags = thread->attr.flags; + + if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) { + /* thread is not joinable ! */ + result = EINVAL; + goto Exit; + } + } + while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED, + (volatile int*)&thread->attr.flags ) != 0 ); +Exit: + pthread_mutex_unlock(&gThreadListLock); + return result; +} + +pthread_t pthread_self(void) +{ + return (pthread_t)__get_thread(); +} + +int pthread_equal(pthread_t one, pthread_t two) +{ + return (one == two ? 1 : 0); +} + +int pthread_getschedparam(pthread_t thid, int * policy, + struct sched_param * param) +{ + int old_errno = errno; + + pthread_internal_t * thread = (pthread_internal_t *)thid; + int err = sched_getparam(thread->kernel_id, param); + if (!err) { + *policy = sched_getscheduler(thread->kernel_id); + } else { + err = errno; + errno = old_errno; + } + return err; +} + +int pthread_setschedparam(pthread_t thid, int policy, + struct sched_param const * param) +{ + pthread_internal_t * thread = (pthread_internal_t *)thid; + int old_errno = errno; + int ret; + + ret = sched_setscheduler(thread->kernel_id, policy, param); + if (ret < 0) { + ret = errno; + errno = old_errno; + } + return ret; +} + + +int __futex_wait(volatile void *ftx, int val, const struct timespec *timeout); +int __futex_wake(volatile void *ftx, int count); + +// mutex lock states +// +// 0: unlocked +// 1: locked, no waiters +// 2: locked, maybe waiters + +/* a mutex is implemented as a 32-bit integer holding the following fields + * + * bits: name description + * 31-16 tid owner thread's kernel id (recursive and errorcheck only) + * 15-14 type mutex type + * 13-2 counter counter of recursive mutexes + * 1-0 state lock state (0, 1 or 2) + */ + + +#define MUTEX_OWNER(m) (((m)->value >> 16) & 0xffff) +#define MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff) + +#define MUTEX_TYPE_MASK 0xc000 +#define MUTEX_TYPE_NORMAL 0x0000 +#define MUTEX_TYPE_RECURSIVE 0x4000 +#define MUTEX_TYPE_ERRORCHECK 0x8000 + +#define MUTEX_COUNTER_SHIFT 2 +#define MUTEX_COUNTER_MASK 0x3ffc + + + + +int pthread_mutexattr_init(pthread_mutexattr_t *attr) +{ + if (attr) { + *attr = PTHREAD_MUTEX_DEFAULT; + return 0; + } else { + return EINVAL; + } +} + +int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) +{ + if (attr) { + *attr = -1; + return 0; + } else { + return EINVAL; + } +} + +int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type) +{ + if (attr && *attr >= PTHREAD_MUTEX_NORMAL && + *attr <= PTHREAD_MUTEX_ERRORCHECK ) { + *type = *attr; + return 0; + } + return EINVAL; +} + +int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) +{ + if (attr && type >= PTHREAD_MUTEX_NORMAL && + type <= PTHREAD_MUTEX_ERRORCHECK ) { + *attr = type; + return 0; + } + return EINVAL; +} + +/* process-shared mutexes are not supported at the moment */ + +int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared) +{ + if (!attr) + return EINVAL; + + return (pshared == PTHREAD_PROCESS_PRIVATE) ? 0 : ENOTSUP; +} + +int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared) +{ + if (!attr) + return EINVAL; + + *pshared = PTHREAD_PROCESS_PRIVATE; + return 0; +} + +int pthread_mutex_init(pthread_mutex_t *mutex, + const pthread_mutexattr_t *attr) +{ + if ( mutex ) { + if (attr == NULL) { + mutex->value = MUTEX_TYPE_NORMAL; + return 0; + } + switch ( *attr ) { + case PTHREAD_MUTEX_NORMAL: + mutex->value = MUTEX_TYPE_NORMAL; + return 0; + + case PTHREAD_MUTEX_RECURSIVE: + mutex->value = MUTEX_TYPE_RECURSIVE; + return 0; + + case PTHREAD_MUTEX_ERRORCHECK: + mutex->value = MUTEX_TYPE_ERRORCHECK; + return 0; + } + } + return EINVAL; +} + +int pthread_mutex_destroy(pthread_mutex_t *mutex) +{ + mutex->value = 0xdead10cc; + return 0; +} + + +/* + * Lock a non-recursive mutex. + * + * As noted above, there are three states: + * 0 (unlocked, no contention) + * 1 (locked, no contention) + * 2 (locked, contention) + * + * Non-recursive mutexes don't use the thread-id or counter fields, and the + * "type" value is zero, so the only bits that will be set are the ones in + * the lock state field. + */ +static __inline__ void +_normal_lock(pthread_mutex_t* mutex) +{ + /* + * The common case is an unlocked mutex, so we begin by trying to + * change the lock's state from 0 to 1. __atomic_cmpxchg() returns 0 + * if it made the swap successfully. If the result is nonzero, this + * lock is already held by another thread. + */ + if (__atomic_cmpxchg(0, 1, &mutex->value ) != 0) { + /* + * We want to go to sleep until the mutex is available, which + * requires promoting it to state 2. We need to swap in the new + * state value and then wait until somebody wakes us up. + * + * __atomic_swap() returns the previous value. We swap 2 in and + * see if we got zero back; if so, we have acquired the lock. If + * not, another thread still holds the lock and we wait again. + * + * The second argument to the __futex_wait() call is compared + * against the current value. If it doesn't match, __futex_wait() + * returns immediately (otherwise, it sleeps for a time specified + * by the third argument; 0 means sleep forever). This ensures + * that the mutex is in state 2 when we go to sleep on it, which + * guarantees a wake-up call. + */ + while (__atomic_swap(2, &mutex->value ) != 0) + __futex_wait(&mutex->value, 2, 0); + } +} + +/* + * Release a non-recursive mutex. The caller is responsible for determining + * that we are in fact the owner of this lock. + */ +static __inline__ void +_normal_unlock(pthread_mutex_t* mutex) +{ + /* + * The mutex value will be 1 or (rarely) 2. We use an atomic decrement + * to release the lock. __atomic_dec() returns the previous value; + * if it wasn't 1 we have to do some additional work. + */ + if (__atomic_dec(&mutex->value) != 1) { + /* + * Start by releasing the lock. The decrement changed it from + * "contended lock" to "uncontended lock", which means we still + * hold it, and anybody who tries to sneak in will push it back + * to state 2. + * + * Once we set it to zero the lock is up for grabs. We follow + * this with a __futex_wake() to ensure that one of the waiting + * threads has a chance to grab it. + * + * This doesn't cause a race with the swap/wait pair in + * _normal_lock(), because the __futex_wait() call there will + * return immediately if the mutex value isn't 2. + */ + mutex->value = 0; + + /* + * Wake up one waiting thread. We don't know which thread will be + * woken or when it'll start executing -- futexes make no guarantees + * here. There may not even be a thread waiting. + * + * The newly-woken thread will replace the 0 we just set above + * with 2, which means that when it eventually releases the mutex + * it will also call FUTEX_WAKE. This results in one extra wake + * call whenever a lock is contended, but lets us avoid forgetting + * anyone without requiring us to track the number of sleepers. + * + * It's possible for another thread to sneak in and grab the lock + * between the zero assignment above and the wake call below. If + * the new thread is "slow" and holds the lock for a while, we'll + * wake up a sleeper, which will swap in a 2 and then go back to + * sleep since the lock is still held. If the new thread is "fast", + * running to completion before we call wake, the thread we + * eventually wake will find an unlocked mutex and will execute. + * Either way we have correct behavior and nobody is orphaned on + * the wait queue. + */ + __futex_wake(&mutex->value, 1); + } +} + +static pthread_mutex_t __recursive_lock = PTHREAD_MUTEX_INITIALIZER; + +static void +_recursive_lock(void) +{ + _normal_lock( &__recursive_lock); +} + +static void +_recursive_unlock(void) +{ + _normal_unlock( &__recursive_lock ); +} + +#define __likely(cond) __builtin_expect(!!(cond), 1) +#define __unlikely(cond) __builtin_expect(!!(cond), 0) + +int pthread_mutex_lock(pthread_mutex_t *mutex) +{ + if (__likely(mutex != NULL)) + { + int mtype = (mutex->value & MUTEX_TYPE_MASK); + + if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) { + _normal_lock(mutex); + } + else + { + int tid = __get_thread()->kernel_id; + + if ( tid == MUTEX_OWNER(mutex) ) + { + int oldv, counter; + + if (mtype == MUTEX_TYPE_ERRORCHECK) { + /* trying to re-lock a mutex we already acquired */ + return EDEADLK; + } + /* + * We own the mutex, but other threads are able to change + * the contents (e.g. promoting it to "contended"), so we + * need to hold the global lock. + */ + _recursive_lock(); + oldv = mutex->value; + counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK; + mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter; + _recursive_unlock(); + } + else + { + /* + * If the new lock is available immediately, we grab it in + * the "uncontended" state. + */ + int new_lock_type = 1; + + for (;;) { + int oldv; + + _recursive_lock(); + oldv = mutex->value; + if (oldv == mtype) { /* uncontended released lock => 1 or 2 */ + mutex->value = ((tid << 16) | mtype | new_lock_type); + } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */ + oldv ^= 3; + mutex->value = oldv; + } + _recursive_unlock(); + + if (oldv == mtype) + break; + + /* + * The lock was held, possibly contended by others. From + * now on, if we manage to acquire the lock, we have to + * assume that others are still contending for it so that + * we'll wake them when we unlock it. + */ + new_lock_type = 2; + + __futex_wait( &mutex->value, oldv, 0 ); + } + } + } + return 0; + } + return EINVAL; +} + + +int pthread_mutex_unlock(pthread_mutex_t *mutex) +{ + if (__likely(mutex != NULL)) + { + int mtype = (mutex->value & MUTEX_TYPE_MASK); + + if (__likely(mtype == MUTEX_TYPE_NORMAL)) { + _normal_unlock(mutex); + } + else + { + int tid = __get_thread()->kernel_id; + + if ( tid == MUTEX_OWNER(mutex) ) + { + int oldv; + + _recursive_lock(); + oldv = mutex->value; + if (oldv & MUTEX_COUNTER_MASK) { + mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT); + oldv = 0; + } else { + mutex->value = mtype; + } + _recursive_unlock(); + + if ((oldv & 3) == 2) + __futex_wake( &mutex->value, 1 ); + } + else { + /* trying to unlock a lock we do not own */ + return EPERM; + } + } + return 0; + } + return EINVAL; +} + + +int pthread_mutex_trylock(pthread_mutex_t *mutex) +{ + if (__likely(mutex != NULL)) + { + int mtype = (mutex->value & MUTEX_TYPE_MASK); + + if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) + { + if (__atomic_cmpxchg(0, 1, &mutex->value) == 0) + return 0; + + return EBUSY; + } + else + { + int tid = __get_thread()->kernel_id; + int oldv; + + if ( tid == MUTEX_OWNER(mutex) ) + { + int oldv, counter; + + if (mtype == MUTEX_TYPE_ERRORCHECK) { + /* already locked by ourselves */ + return EDEADLK; + } + + _recursive_lock(); + oldv = mutex->value; + counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK; + mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter; + _recursive_unlock(); + return 0; + } + + /* try to lock it */ + _recursive_lock(); + oldv = mutex->value; + if (oldv == mtype) /* uncontended released lock => state 1 */ + mutex->value = ((tid << 16) | mtype | 1); + _recursive_unlock(); + + if (oldv != mtype) + return EBUSY; + + return 0; + } + } + return EINVAL; +} + + +/* XXX *technically* there is a race condition that could allow + * XXX a signal to be missed. If thread A is preempted in _wait() + * XXX after unlocking the mutex and before waiting, and if other + * XXX threads call signal or broadcast UINT_MAX times (exactly), + * XXX before thread A is scheduled again and calls futex_wait(), + * XXX then the signal will be lost. + */ + +int pthread_cond_init(pthread_cond_t *cond, + const pthread_condattr_t *attr) +{ + cond->value = 0; + return 0; +} + +int pthread_cond_destroy(pthread_cond_t *cond) +{ + cond->value = 0xdeadc04d; + return 0; +} + +int pthread_cond_broadcast(pthread_cond_t *cond) +{ + __atomic_dec(&cond->value); + __futex_wake(&cond->value, INT_MAX); + return 0; +} + +int pthread_cond_signal(pthread_cond_t *cond) +{ + __atomic_dec(&cond->value); + __futex_wake(&cond->value, 1); + return 0; +} + +int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) +{ + return pthread_cond_timedwait(cond, mutex, NULL); +} + +int __pthread_cond_timedwait_relative(pthread_cond_t *cond, + pthread_mutex_t * mutex, + const struct timespec *reltime) +{ + int status; + int oldvalue = cond->value; + + pthread_mutex_unlock(mutex); + status = __futex_wait(&cond->value, oldvalue, reltime); + pthread_mutex_lock(mutex); + + if (status == (-ETIMEDOUT)) return ETIMEDOUT; + return 0; +} + +int __pthread_cond_timedwait(pthread_cond_t *cond, + pthread_mutex_t * mutex, + const struct timespec *abstime, + clockid_t clock) +{ + struct timespec ts; + struct timespec * tsp; + + if (abstime != NULL) { + clock_gettime(clock, &ts); + ts.tv_sec = abstime->tv_sec - ts.tv_sec; + ts.tv_nsec = abstime->tv_nsec - ts.tv_nsec; + if (ts.tv_nsec < 0) { + ts.tv_sec--; + ts.tv_nsec += 1000000000; + } + if((ts.tv_nsec < 0) || (ts.tv_sec < 0)) { + return ETIMEDOUT; + } + tsp = &ts; + } else { + tsp = NULL; + } + + return __pthread_cond_timedwait_relative(cond, mutex, tsp); +} + +int pthread_cond_timedwait(pthread_cond_t *cond, + pthread_mutex_t * mutex, + const struct timespec *abstime) +{ + return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME); +} + + +int pthread_cond_timedwait_monotonic(pthread_cond_t *cond, + pthread_mutex_t * mutex, + const struct timespec *abstime) +{ + return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC); +} + +int pthread_cond_timeout_np(pthread_cond_t *cond, + pthread_mutex_t * mutex, + unsigned msecs) +{ + int oldvalue; + struct timespec ts; + int status; + + ts.tv_sec = msecs / 1000; + ts.tv_nsec = (msecs % 1000) * 1000000; + + oldvalue = cond->value; + + pthread_mutex_unlock(mutex); + status = __futex_wait(&cond->value, oldvalue, &ts); + pthread_mutex_lock(mutex); + + if(status == (-ETIMEDOUT)) return ETIMEDOUT; + + return 0; +} + + + +/* A technical note regarding our thread-local-storage (TLS) implementation: + * + * There can be up to TLSMAP_SIZE independent TLS keys in a given process, + * though the first TLSMAP_START keys are reserved for Bionic to hold + * special thread-specific variables like errno or a pointer to + * the current thread's descriptor. + * + * while stored in the TLS area, these entries cannot be accessed through + * pthread_getspecific() / pthread_setspecific() and pthread_key_delete() + * + * also, some entries in the key table are pre-allocated (see tlsmap_lock) + * to greatly simplify and speedup some OpenGL-related operations. though the + * initialy value will be NULL on all threads. + * + * you can use pthread_getspecific()/setspecific() on these, and in theory + * you could also call pthread_key_delete() as well, though this would + * probably break some apps. + * + * The 'tlsmap_t' type defined below implements a shared global map of + * currently created/allocated TLS keys and the destructors associated + * with them. You should use tlsmap_lock/unlock to access it to avoid + * any race condition. + * + * the global TLS map simply contains a bitmap of allocated keys, and + * an array of destructors. + * + * each thread has a TLS area that is a simple array of TLSMAP_SIZE void* + * pointers. the TLS area of the main thread is stack-allocated in + * __libc_init_common, while the TLS area of other threads is placed at + * the top of their stack in pthread_create. + * + * when pthread_key_create() is called, it finds the first free key in the + * bitmap, then set it to 1, saving the destructor altogether + * + * when pthread_key_delete() is called. it will erase the key's bitmap bit + * and its destructor, and will also clear the key data in the TLS area of + * all created threads. As mandated by Posix, it is the responsability of + * the caller of pthread_key_delete() to properly reclaim the objects that + * were pointed to by these data fields (either before or after the call). + * + */ + +/* TLS Map implementation + */ + +#define TLSMAP_START (TLS_SLOT_MAX_WELL_KNOWN+1) +#define TLSMAP_SIZE BIONIC_TLS_SLOTS +#define TLSMAP_BITS 32 +#define TLSMAP_WORDS ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS) +#define TLSMAP_WORD(m,k) (m)->map[(k)/TLSMAP_BITS] +#define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1))) + +/* this macro is used to quickly check that a key belongs to a reasonable range */ +#define TLSMAP_VALIDATE_KEY(key) \ + ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE) + +/* the type of tls key destructor functions */ +typedef void (*tls_dtor_t)(void*); + +typedef struct { + int init; /* see comment in tlsmap_lock() */ + uint32_t map[TLSMAP_WORDS]; /* bitmap of allocated keys */ + tls_dtor_t dtors[TLSMAP_SIZE]; /* key destructors */ +} tlsmap_t; + +static pthread_mutex_t _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER; +static tlsmap_t _tlsmap; + +/* lock the global TLS map lock and return a handle to it */ +static __inline__ tlsmap_t* tlsmap_lock(void) +{ + tlsmap_t* m = &_tlsmap; + + pthread_mutex_lock(&_tlsmap_lock); + /* we need to initialize the first entry of the 'map' array + * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically + * when declaring _tlsmap is a bit awkward and is going to + * produce warnings, so do it the first time we use the map + * instead + */ + if (__unlikely(!m->init)) { + TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP; + m->init = 1; + } + return m; +} + +/* unlock the global TLS map */ +static __inline__ void tlsmap_unlock(tlsmap_t* m) +{ + pthread_mutex_unlock(&_tlsmap_lock); + (void)m; /* a good compiler is a happy compiler */ +} + +/* test to see wether a key is allocated */ +static __inline__ int tlsmap_test(tlsmap_t* m, int key) +{ + return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0; +} + +/* set the destructor and bit flag on a newly allocated key */ +static __inline__ void tlsmap_set(tlsmap_t* m, int key, tls_dtor_t dtor) +{ + TLSMAP_WORD(m,key) |= TLSMAP_MASK(key); + m->dtors[key] = dtor; +} + +/* clear the destructor and bit flag on an existing key */ +static __inline__ void tlsmap_clear(tlsmap_t* m, int key) +{ + TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key); + m->dtors[key] = NULL; +} + +/* allocate a new TLS key, return -1 if no room left */ +static int tlsmap_alloc(tlsmap_t* m, tls_dtor_t dtor) +{ + int key; + + for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) { + if ( !tlsmap_test(m, key) ) { + tlsmap_set(m, key, dtor); + return key; + } + } + return -1; +} + + +int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *)) +{ + uint32_t err = ENOMEM; + tlsmap_t* map = tlsmap_lock(); + int k = tlsmap_alloc(map, destructor_function); + + if (k >= 0) { + *key = k; + err = 0; + } + tlsmap_unlock(map); + return err; +} + + +/* This deletes a pthread_key_t. note that the standard mandates that this does + * not call the destructor of non-NULL key values. Instead, it is the + * responsability of the caller to properly dispose of the corresponding data + * and resources, using any mean it finds suitable. + * + * On the other hand, this function will clear the corresponding key data + * values in all known threads. this prevents later (invalid) calls to + * pthread_getspecific() to receive invalid/stale values. + */ +int pthread_key_delete(pthread_key_t key) +{ + uint32_t err; + pthread_internal_t* thr; + tlsmap_t* map; + + if (!TLSMAP_VALIDATE_KEY(key)) { + return EINVAL; + } + + map = tlsmap_lock(); + + if (!tlsmap_test(map, key)) { + err = EINVAL; + goto err1; + } + + /* clear value in all threads */ + pthread_mutex_lock(&gThreadListLock); + for ( thr = gThreadList; thr != NULL; thr = thr->next ) { + /* avoid zombie threads with a negative 'join_count'. these are really + * already dead and don't have a TLS area anymore. + * + * similarly, it is possible to have thr->tls == NULL for threads that + * were just recently created through pthread_create() but whose + * startup trampoline (__thread_entry) hasn't been run yet by the + * scheduler. so check for this too. + */ + if (thr->join_count < 0 || !thr->tls) + continue; + + thr->tls[key] = NULL; + } + tlsmap_clear(map, key); + + pthread_mutex_unlock(&gThreadListLock); + err = 0; + +err1: + tlsmap_unlock(map); + return err; +} + + +int pthread_setspecific(pthread_key_t key, const void *ptr) +{ + int err = EINVAL; + tlsmap_t* map; + + if (TLSMAP_VALIDATE_KEY(key)) { + /* check that we're trying to set data for an allocated key */ + map = tlsmap_lock(); + if (tlsmap_test(map, key)) { + ((uint32_t *)__get_tls())[key] = (uint32_t)ptr; + err = 0; + } + tlsmap_unlock(map); + } + return err; +} + +void * pthread_getspecific(pthread_key_t key) +{ + if (!TLSMAP_VALIDATE_KEY(key)) { + return NULL; + } + + /* for performance reason, we do not lock/unlock the global TLS map + * to check that the key is properly allocated. if the key was not + * allocated, the value read from the TLS should always be NULL + * due to pthread_key_delete() clearing the values for all threads. + */ + return (void *)(((unsigned *)__get_tls())[key]); +} + +/* Posix mandates that this be defined in but we don't have + * it just yet. + */ +#ifndef PTHREAD_DESTRUCTOR_ITERATIONS +# define PTHREAD_DESTRUCTOR_ITERATIONS 4 +#endif + +/* this function is called from pthread_exit() to remove all TLS key data + * from this thread's TLS area. this must call the destructor of all keys + * that have a non-NULL data value (and a non-NULL destructor). + * + * because destructors can do funky things like deleting/creating other + * keys, we need to implement this in a loop + */ +static void pthread_key_clean_all(void) +{ + tlsmap_t* map; + void** tls = (void**)__get_tls(); + int rounds = PTHREAD_DESTRUCTOR_ITERATIONS; + + map = tlsmap_lock(); + + for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--) + { + int kk, count = 0; + + for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) { + if ( tlsmap_test(map, kk) ) + { + void* data = tls[kk]; + tls_dtor_t dtor = map->dtors[kk]; + + if (data != NULL && dtor != NULL) + { + /* we need to clear the key data now, this will prevent the + * destructor (or a later one) from seeing the old value if + * it calls pthread_getspecific() for some odd reason + * + * we do not do this if 'dtor == NULL' just in case another + * destructor function might be responsible for manually + * releasing the corresponding data. + */ + tls[kk] = NULL; + + /* because the destructor is free to call pthread_key_create + * and/or pthread_key_delete, we need to temporarily unlock + * the TLS map + */ + tlsmap_unlock(map); + (*dtor)(data); + map = tlsmap_lock(); + + count += 1; + } + } + } + + /* if we didn't call any destructor, there is no need to check the + * TLS data again + */ + if (count == 0) + break; + } + tlsmap_unlock(map); +} + +// man says this should be in , but it isn't +extern int tkill(int tid, int sig); + +int pthread_kill(pthread_t tid, int sig) +{ + int ret; + int old_errno = errno; + pthread_internal_t * thread = (pthread_internal_t *)tid; + + ret = tkill(thread->kernel_id, sig); + if (ret < 0) { + ret = errno; + errno = old_errno; + } + + return ret; +} + +extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t); + +int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset) +{ + return __rt_sigprocmask(how, set, oset, _NSIG / 8); +} + + +int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid) +{ + const int CLOCK_IDTYPE_BITS = 3; + pthread_internal_t* thread = (pthread_internal_t*)tid; + + if (!thread) + return ESRCH; + + *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS); + return 0; +} + + +/* NOTE: this implementation doesn't support a init function that throws a C++ exception + * or calls fork() + */ +int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) ) +{ + static pthread_mutex_t once_lock = PTHREAD_MUTEX_INITIALIZER; + + if (*once_control == PTHREAD_ONCE_INIT) { + _normal_lock( &once_lock ); + if (*once_control == PTHREAD_ONCE_INIT) { + (*init_routine)(); + *once_control = ~PTHREAD_ONCE_INIT; + } + _normal_unlock( &once_lock ); + } + return 0; +} -- cgit v1.1