/* * memchr - find a character in a memory zone * * Copyright (c) 2014, ARM Limited * All rights Reserved. * Copyright (c) 2014, Linaro Ltd. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the company nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Assumptions: * * ARMv8-a, AArch64 * Neon Available. */ #include /* Arguments and results. */ #define srcin x0 #define chrin w1 #define cntin x2 #define result x0 #define src x3 #define tmp x4 #define wtmp2 w5 #define synd x6 #define soff x9 #define cntrem x10 #define vrepchr v0 #define vdata1 v1 #define vdata2 v2 #define vhas_chr1 v3 #define vhas_chr2 v4 #define vrepmask v5 #define vend v6 /* * Core algorithm: * * For each 32-byte chunk we calculate a 64-bit syndrome value, with two bits * per byte. For each tuple, bit 0 is set if the relevant byte matched the * requested character and bit 1 is not used (faster than using a 32bit * syndrome). Since the bits in the syndrome reflect exactly the order in which * things occur in the original string, counting trailing zeros allows to * identify exactly which byte has matched. */ ENTRY(memchr) /* * Magic constant 0x40100401 allows us to identify which lane matches * the requested byte. */ cbz cntin, .Lzero_length mov wtmp2, #0x0401 movk wtmp2, #0x4010, lsl #16 dup vrepchr.16b, chrin /* Work with aligned 32-byte chunks */ bic src, srcin, #31 dup vrepmask.4s, wtmp2 ands soff, srcin, #31 and cntrem, cntin, #31 b.eq .Lloop /* * Input string is not 32-byte aligned. We calculate the syndrome * value for the aligned 32 bytes block containing the first bytes * and mask the irrelevant part. */ ld1 {vdata1.16b, vdata2.16b}, [src], #32 sub tmp, soff, #32 adds cntin, cntin, tmp cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b and vhas_chr1.16b, vhas_chr1.16b, vrepmask.16b and vhas_chr2.16b, vhas_chr2.16b, vrepmask.16b addp vend.16b, vhas_chr1.16b, vhas_chr2.16b /* 256->128 */ addp vend.16b, vend.16b, vend.16b /* 128->64 */ mov synd, vend.d[0] /* Clear the soff*2 lower bits */ lsl tmp, soff, #1 lsr synd, synd, tmp lsl synd, synd, tmp /* The first block can also be the last */ b.ls .Lmasklast /* Have we found something already? */ cbnz synd, .Ltail .Lloop: ld1 {vdata1.16b, vdata2.16b}, [src], #32 subs cntin, cntin, #32 cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b /* If we're out of data we finish regardless of the result */ b.ls .Lend /* Use a fast check for the termination condition */ orr vend.16b, vhas_chr1.16b, vhas_chr2.16b addp vend.2d, vend.2d, vend.2d mov synd, vend.d[0] /* We're not out of data, loop if we haven't found the character */ cbz synd, .Lloop .Lend: /* Termination condition found, let's calculate the syndrome value */ and vhas_chr1.16b, vhas_chr1.16b, vrepmask.16b and vhas_chr2.16b, vhas_chr2.16b, vrepmask.16b addp vend.16b, vhas_chr1.16b, vhas_chr2.16b /* 256->128 */ addp vend.16b, vend.16b, vend.16b /* 128->64 */ mov synd, vend.d[0] /* Only do the clear for the last possible block */ b.hi .Ltail .Lmasklast: /* Clear the (32 - ((cntrem + soff) % 32)) * 2 upper bits */ add tmp, cntrem, soff and tmp, tmp, #31 sub tmp, tmp, #32 neg tmp, tmp, lsl #1 lsl synd, synd, tmp lsr synd, synd, tmp .Ltail: /* Count the trailing zeros using bit reversing */ rbit synd, synd /* Compensate the last post-increment */ sub src, src, #32 /* Check that we have found a character */ cmp synd, #0 /* And count the leading zeros */ clz synd, synd /* Compute the potential result */ add result, src, synd, lsr #1 /* Select result or NULL */ csel result, xzr, result, eq ret .Lzero_length: mov result, xzr ret END(memchr)