/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dlmalloc.h" #include "logd.h" // ============================================================================= // Utilities directly used by Dalvik // ============================================================================= #define HASHTABLE_SIZE 1543 #define BACKTRACE_SIZE 32 /* flag definitions, currently sharing storage with "size" */ #define SIZE_FLAG_ZYGOTE_CHILD (1<<31) #define SIZE_FLAG_MASK (SIZE_FLAG_ZYGOTE_CHILD) #define MAX_SIZE_T (~(size_t)0) /* * In a VM process, this is set to 1 after fork()ing out of zygote. */ int gMallocLeakZygoteChild = 0; // ============================================================================= // Structures // ============================================================================= typedef struct HashEntry HashEntry; struct HashEntry { size_t slot; HashEntry* prev; HashEntry* next; size_t numEntries; // fields above "size" are NOT sent to the host size_t size; size_t allocations; intptr_t backtrace[0]; }; typedef struct HashTable HashTable; struct HashTable { size_t count; HashEntry* slots[HASHTABLE_SIZE]; }; static pthread_mutex_t gAllocationsMutex = PTHREAD_MUTEX_INITIALIZER; static HashTable gHashTable; // ============================================================================= // output fucntions // ============================================================================= static int hash_entry_compare(const void* arg1, const void* arg2) { HashEntry* e1 = *(HashEntry**)arg1; HashEntry* e2 = *(HashEntry**)arg2; size_t nbAlloc1 = e1->allocations; size_t nbAlloc2 = e2->allocations; size_t size1 = e1->size & ~SIZE_FLAG_MASK; size_t size2 = e2->size & ~SIZE_FLAG_MASK; size_t alloc1 = nbAlloc1 * size1; size_t alloc2 = nbAlloc2 * size2; // sort in descending order by: // 1) total size // 2) number of allocations // // This is used for sorting, not determination of equality, so we don't // need to compare the bit flags. int result; if (alloc1 > alloc2) { result = -1; } else if (alloc1 < alloc2) { result = 1; } else { if (nbAlloc1 > nbAlloc2) { result = -1; } else if (nbAlloc1 < nbAlloc2) { result = 1; } else { result = 0; } } return result; } /* * Retrieve native heap information. * * "*info" is set to a buffer we allocate * "*overallSize" is set to the size of the "info" buffer * "*infoSize" is set to the size of a single entry * "*totalMemory" is set to the sum of all allocations we're tracking; does * not include heap overhead * "*backtraceSize" is set to the maximum number of entries in the back trace */ void get_malloc_leak_info(uint8_t** info, size_t* overallSize, size_t* infoSize, size_t* totalMemory, size_t* backtraceSize) { // don't do anything if we have invalid arguments if (info == NULL || overallSize == NULL || infoSize == NULL || totalMemory == NULL || backtraceSize == NULL) { return; } pthread_mutex_lock(&gAllocationsMutex); if (gHashTable.count == 0) { *info = NULL; *overallSize = 0; *infoSize = 0; *totalMemory = 0; *backtraceSize = 0; goto done; } void** list = (void**)dlmalloc(sizeof(void*) * gHashTable.count); // debug_log("*****\ngHashTable.count = %d\n", gHashTable.count); // debug_log("list = %p\n", list); // get the entries into an array to be sorted int index = 0; int i; for (i = 0 ; i < HASHTABLE_SIZE ; i++) { HashEntry* entry = gHashTable.slots[i]; while (entry != NULL) { list[index] = entry; *totalMemory = *totalMemory + ((entry->size & ~SIZE_FLAG_MASK) * entry->allocations); index++; entry = entry->next; } } // debug_log("sorted list!\n"); // XXX: the protocol doesn't allow variable size for the stack trace (yet) *infoSize = (sizeof(size_t) * 2) + (sizeof(intptr_t) * BACKTRACE_SIZE); *overallSize = *infoSize * gHashTable.count; *backtraceSize = BACKTRACE_SIZE; // debug_log("infoSize = 0x%x overall = 0x%x\n", *infoSize, *overallSize); // now get A byte array big enough for this *info = (uint8_t*)dlmalloc(*overallSize); // debug_log("info = %p\n", info); if (*info == NULL) { *overallSize = 0; goto done; } // debug_log("sorting list...\n"); qsort((void*)list, gHashTable.count, sizeof(void*), hash_entry_compare); uint8_t* head = *info; const int count = gHashTable.count; for (i = 0 ; i < count ; i++) { HashEntry* entry = list[i]; size_t entrySize = (sizeof(size_t) * 2) + (sizeof(intptr_t) * entry->numEntries); if (entrySize < *infoSize) { /* we're writing less than a full entry, clear out the rest */ /* TODO: only clear out the part we're not overwriting? */ memset(head, 0, *infoSize); } else { /* make sure the amount we're copying doesn't exceed the limit */ entrySize = *infoSize; } memcpy(head, &(entry->size), entrySize); head += *infoSize; } dlfree(list); done: // debug_log("+++++ done!\n"); pthread_mutex_unlock(&gAllocationsMutex); } void free_malloc_leak_info(uint8_t* info) { dlfree(info); } struct mallinfo mallinfo() { return dlmallinfo(); } void* valloc(size_t bytes) { /* assume page size of 4096 bytes */ return memalign( getpagesize(), bytes ); } /* * Code guarded by MALLOC_LEAK_CHECK is only needed when malloc check is * enabled. Currently we exclude them in libc.so, and only include them in * libc_debug.so. */ #ifdef MALLOC_LEAK_CHECK #define MALLOC_ALIGNMENT 8 #define GUARD 0x48151642 #define DEBUG 0 // ============================================================================= // Structures // ============================================================================= typedef struct AllocationEntry AllocationEntry; struct AllocationEntry { HashEntry* entry; uint32_t guard; }; // ============================================================================= // log funtions // ============================================================================= #define debug_log(format, ...) \ __libc_android_log_print(ANDROID_LOG_DEBUG, "malloc_leak", (format), ##__VA_ARGS__ ) // ============================================================================= // Hash Table functions // ============================================================================= static uint32_t get_hash(intptr_t* backtrace, size_t numEntries) { if (backtrace == NULL) return 0; int hash = 0; size_t i; for (i = 0 ; i < numEntries ; i++) { hash = (hash * 33) + (backtrace[i] >> 2); } return hash; } static HashEntry* find_entry(HashTable* table, int slot, intptr_t* backtrace, size_t numEntries, size_t size) { HashEntry* entry = table->slots[slot]; while (entry != NULL) { //debug_log("backtrace: %p, entry: %p entry->backtrace: %p\n", // backtrace, entry, (entry != NULL) ? entry->backtrace : NULL); /* * See if the entry matches exactly. We compare the "size" field, * including the flag bits. */ if (entry->size == size && entry->numEntries == numEntries && !memcmp(backtrace, entry->backtrace, numEntries * sizeof(intptr_t))) { return entry; } entry = entry->next; } return NULL; } static HashEntry* record_backtrace(intptr_t* backtrace, size_t numEntries, size_t size) { size_t hash = get_hash(backtrace, numEntries); size_t slot = hash % HASHTABLE_SIZE; if (size & SIZE_FLAG_MASK) { debug_log("malloc_debug: allocation %zx exceeds bit width\n", size); abort(); } if (gMallocLeakZygoteChild) size |= SIZE_FLAG_ZYGOTE_CHILD; HashEntry* entry = find_entry(&gHashTable, slot, backtrace, numEntries, size); if (entry != NULL) { entry->allocations++; } else { // create a new entry entry = (HashEntry*)dlmalloc(sizeof(HashEntry) + numEntries*sizeof(intptr_t)); entry->allocations = 1; entry->slot = slot; entry->prev = NULL; entry->next = gHashTable.slots[slot]; entry->numEntries = numEntries; entry->size = size; memcpy(entry->backtrace, backtrace, numEntries * sizeof(intptr_t)); gHashTable.slots[slot] = entry; if (entry->next != NULL) { entry->next->prev = entry; } // we just added an entry, increase the size of the hashtable gHashTable.count++; } return entry; } static int is_valid_entry(HashEntry* entry) { if (entry != NULL) { int i; for (i = 0 ; i < HASHTABLE_SIZE ; i++) { HashEntry* e1 = gHashTable.slots[i]; while (e1 != NULL) { if (e1 == entry) { return 1; } e1 = e1->next; } } } return 0; } static void remove_entry(HashEntry* entry) { HashEntry* prev = entry->prev; HashEntry* next = entry->next; if (prev != NULL) entry->prev->next = next; if (next != NULL) entry->next->prev = prev; if (prev == NULL) { // we are the head of the list. set the head to be next gHashTable.slots[entry->slot] = entry->next; } // we just removed and entry, decrease the size of the hashtable gHashTable.count--; } // ============================================================================= // stack trace functions // ============================================================================= typedef struct { size_t count; intptr_t* addrs; } stack_crawl_state_t; /* depends how the system includes define this */ #ifdef HAVE_UNWIND_CONTEXT_STRUCT typedef struct _Unwind_Context __unwind_context; #else typedef _Unwind_Context __unwind_context; #endif static _Unwind_Reason_Code trace_function(__unwind_context *context, void *arg) { stack_crawl_state_t* state = (stack_crawl_state_t*)arg; if (state->count) { intptr_t ip = (intptr_t)_Unwind_GetIP(context); if (ip) { state->addrs[0] = ip; state->addrs++; state->count--; return _URC_NO_REASON; } } /* * If we run out of space to record the address or 0 has been seen, stop * unwinding the stack. */ return _URC_END_OF_STACK; } static inline int get_backtrace(intptr_t* addrs, size_t max_entries) { stack_crawl_state_t state; state.count = max_entries; state.addrs = (intptr_t*)addrs; _Unwind_Backtrace(trace_function, (void*)&state); return max_entries - state.count; } // ============================================================================= // malloc leak function dispatcher // ============================================================================= static void* leak_malloc(size_t bytes); static void leak_free(void* mem); static void* leak_calloc(size_t n_elements, size_t elem_size); static void* leak_realloc(void* oldMem, size_t bytes); static void* leak_memalign(size_t alignment, size_t bytes); static void* fill_malloc(size_t bytes); static void fill_free(void* mem); static void* fill_realloc(void* oldMem, size_t bytes); static void* fill_memalign(size_t alignment, size_t bytes); static void* chk_malloc(size_t bytes); static void chk_free(void* mem); static void* chk_calloc(size_t n_elements, size_t elem_size); static void* chk_realloc(void* oldMem, size_t bytes); static void* chk_memalign(size_t alignment, size_t bytes); typedef struct { void* (*malloc)(size_t bytes); void (*free)(void* mem); void* (*calloc)(size_t n_elements, size_t elem_size); void* (*realloc)(void* oldMem, size_t bytes); void* (*memalign)(size_t alignment, size_t bytes); } MallocDebug; static const MallocDebug gMallocEngineTable[] __attribute__((aligned(32))) = { { dlmalloc, dlfree, dlcalloc, dlrealloc, dlmemalign }, { leak_malloc, leak_free, leak_calloc, leak_realloc, leak_memalign }, { fill_malloc, fill_free, dlcalloc, fill_realloc, fill_memalign }, { chk_malloc, chk_free, chk_calloc, chk_realloc, chk_memalign } }; enum { INDEX_NORMAL = 0, INDEX_LEAK_CHECK, INDEX_MALLOC_FILL, INDEX_MALLOC_CHECK, }; static MallocDebug const * gMallocDispatch = &gMallocEngineTable[INDEX_NORMAL]; static int gMallocDebugLevel; static int gTrapOnError = 1; void* malloc(size_t bytes) { return gMallocDispatch->malloc(bytes); } void free(void* mem) { gMallocDispatch->free(mem); } void* calloc(size_t n_elements, size_t elem_size) { return gMallocDispatch->calloc(n_elements, elem_size); } void* realloc(void* oldMem, size_t bytes) { return gMallocDispatch->realloc(oldMem, bytes); } void* memalign(size_t alignment, size_t bytes) { return gMallocDispatch->memalign(alignment, bytes); } // ============================================================================= // malloc check functions // ============================================================================= #define CHK_FILL_FREE 0xef #define CHK_SENTINEL_VALUE 0xeb #define CHK_SENTINEL_HEAD_SIZE 16 #define CHK_SENTINEL_TAIL_SIZE 16 #define CHK_OVERHEAD_SIZE ( CHK_SENTINEL_HEAD_SIZE + \ CHK_SENTINEL_TAIL_SIZE + \ sizeof(size_t) ) static void dump_stack_trace() { intptr_t addrs[20]; int c = get_backtrace(addrs, 20); char buf[16]; char tmp[16*20]; int i; tmp[0] = 0; // Need to initialize tmp[0] for the first strcat for (i=0 ; i=0 ; i--) { if (buf[i] != CHK_SENTINEL_VALUE) { gMallocDispatch = &gMallocEngineTable[INDEX_NORMAL]; __libc_android_log_print(ANDROID_LOG_ERROR, "libc", "*** MALLOC CHECK: buffer %p, size=%lu, " "corrupted %d bytes after allocation", buffer, size, i+1); dump_stack_trace(); if (gTrapOnError) { __builtin_trap(); } gMallocDispatch = &gMallocEngineTable[INDEX_MALLOC_CHECK]; } } } void* chk_malloc(size_t bytes) { char* buffer = (char*)dlmalloc(bytes + CHK_OVERHEAD_SIZE); if (buffer) { pthread_mutex_lock(&gAllocationsMutex); memset(buffer, CHK_SENTINEL_VALUE, bytes + CHK_OVERHEAD_SIZE); size_t offset = dlmalloc_usable_size(buffer) - sizeof(size_t); *(size_t *)(buffer + offset) = bytes; buffer += CHK_SENTINEL_HEAD_SIZE; pthread_mutex_unlock(&gAllocationsMutex); } return buffer; } void chk_free(void* mem) { assert_valid_malloc_pointer(mem); if (mem) { pthread_mutex_lock(&gAllocationsMutex); char* buffer = (char*)mem - CHK_SENTINEL_HEAD_SIZE; size_t offset = dlmalloc_usable_size(buffer) - sizeof(size_t); size_t bytes = *(size_t *)(buffer + offset); chk_out_of_bounds_check__locked(mem, bytes); pthread_mutex_unlock(&gAllocationsMutex); memset(buffer, CHK_FILL_FREE, bytes); dlfree(buffer); } } void* chk_calloc(size_t n_elements, size_t elem_size) { size_t size; void* ptr; /* Fail on overflow - just to be safe even though this code runs only * within the debugging C library, not the production one */ if (n_elements && MAX_SIZE_T / n_elements < elem_size) { return NULL; } size = n_elements * elem_size; ptr = chk_malloc(size); if (ptr != NULL) { memset(ptr, 0, size); } return ptr; } void* chk_realloc(void* mem, size_t bytes) { assert_valid_malloc_pointer(mem); char* new_buffer = chk_malloc(bytes); if (mem == NULL) { return new_buffer; } pthread_mutex_lock(&gAllocationsMutex); char* buffer = (char*)mem - CHK_SENTINEL_HEAD_SIZE; size_t offset = dlmalloc_usable_size(buffer) - sizeof(size_t); size_t old_bytes = *(size_t *)(buffer + offset); chk_out_of_bounds_check__locked(mem, old_bytes); pthread_mutex_unlock(&gAllocationsMutex); if (new_buffer) { size_t size = (bytes < old_bytes)?(bytes):(old_bytes); memcpy(new_buffer, mem, size); chk_free(mem); } return new_buffer; } void* chk_memalign(size_t alignment, size_t bytes) { // XXX: it's better to use malloc, than being wrong return chk_malloc(bytes); } // ============================================================================= // malloc fill functions // ============================================================================= void* fill_malloc(size_t bytes) { void* buffer = dlmalloc(bytes); if (buffer) { memset(buffer, CHK_SENTINEL_VALUE, bytes); } return buffer; } void fill_free(void* mem) { size_t bytes = dlmalloc_usable_size(mem); memset(mem, CHK_FILL_FREE, bytes); dlfree(mem); } void* fill_realloc(void* mem, size_t bytes) { void* buffer = fill_malloc(bytes); if (mem == NULL) { return buffer; } if (buffer) { size_t old_size = dlmalloc_usable_size(mem); size_t size = (bytes < old_size)?(bytes):(old_size); memcpy(buffer, mem, size); fill_free(mem); } return buffer; } void* fill_memalign(size_t alignment, size_t bytes) { void* buffer = dlmemalign(alignment, bytes); if (buffer) { memset(buffer, CHK_SENTINEL_VALUE, bytes); } return buffer; } // ============================================================================= // malloc leak functions // ============================================================================= #define MEMALIGN_GUARD ((void*)0xA1A41520) void* leak_malloc(size_t bytes) { // allocate enough space infront of the allocation to store the pointer for // the alloc structure. This will making free'ing the structer really fast! // 1. allocate enough memory and include our header // 2. set the base pointer to be right after our header void* base = dlmalloc(bytes + sizeof(AllocationEntry)); if (base != NULL) { pthread_mutex_lock(&gAllocationsMutex); intptr_t backtrace[BACKTRACE_SIZE]; size_t numEntries = get_backtrace(backtrace, BACKTRACE_SIZE); AllocationEntry* header = (AllocationEntry*)base; header->entry = record_backtrace(backtrace, numEntries, bytes); header->guard = GUARD; // now increment base to point to after our header. // this should just work since our header is 8 bytes. base = (AllocationEntry*)base + 1; pthread_mutex_unlock(&gAllocationsMutex); } return base; } void leak_free(void* mem) { if (mem != NULL) { pthread_mutex_lock(&gAllocationsMutex); // check the guard to make sure it is valid AllocationEntry* header = (AllocationEntry*)mem - 1; if (header->guard != GUARD) { // could be a memaligned block if (((void**)mem)[-1] == MEMALIGN_GUARD) { mem = ((void**)mem)[-2]; header = (AllocationEntry*)mem - 1; } } if (header->guard == GUARD || is_valid_entry(header->entry)) { // decrement the allocations HashEntry* entry = header->entry; entry->allocations--; if (entry->allocations <= 0) { remove_entry(entry); dlfree(entry); } // now free the memory! dlfree(header); } else { debug_log("WARNING bad header guard: '0x%x'! and invalid entry: %p\n", header->guard, header->entry); } pthread_mutex_unlock(&gAllocationsMutex); } } void* leak_calloc(size_t n_elements, size_t elem_size) { size_t size; void* ptr; /* Fail on overflow - just to be safe even though this code runs only * within the debugging C library, not the production one */ if (n_elements && MAX_SIZE_T / n_elements < elem_size) { return NULL; } size = n_elements * elem_size; ptr = leak_malloc(size); if (ptr != NULL) { memset(ptr, 0, size); } return ptr; } void* leak_realloc(void* oldMem, size_t bytes) { if (oldMem == NULL) { return leak_malloc(bytes); } void* newMem = NULL; AllocationEntry* header = (AllocationEntry*)oldMem - 1; if (header && header->guard == GUARD) { size_t oldSize = header->entry->size & ~SIZE_FLAG_MASK; newMem = leak_malloc(bytes); if (newMem != NULL) { size_t copySize = (oldSize <= bytes) ? oldSize : bytes; memcpy(newMem, oldMem, copySize); leak_free(oldMem); } } else { newMem = dlrealloc(oldMem, bytes); } return newMem; } void* leak_memalign(size_t alignment, size_t bytes) { // we can just use malloc if (alignment <= MALLOC_ALIGNMENT) return leak_malloc(bytes); // need to make sure it's a power of two if (alignment & (alignment-1)) alignment = 1L << (31 - __builtin_clz(alignment)); // here, aligment is at least MALLOC_ALIGNMENT<<1 bytes // we will align by at least MALLOC_ALIGNMENT bytes // and at most alignment-MALLOC_ALIGNMENT bytes size_t size = (alignment-MALLOC_ALIGNMENT) + bytes; void* base = leak_malloc(size); if (base != NULL) { intptr_t ptr = (intptr_t)base; if ((ptr % alignment) == 0) return base; // align the pointer ptr += ((-ptr) % alignment); // there is always enough space for the base pointer and the guard ((void**)ptr)[-1] = MEMALIGN_GUARD; ((void**)ptr)[-2] = base; return (void*)ptr; } return base; } #endif /* MALLOC_LEAK_CHECK */ // called from libc_init() extern char* __progname; void malloc_debug_init() { unsigned int level = 0; #ifdef MALLOC_LEAK_CHECK // if MALLOC_LEAK_CHECK is enabled, use level=1 by default level = 1; #endif char env[PROP_VALUE_MAX]; int len = __system_property_get("libc.debug.malloc", env); if (len) { level = atoi(env); #ifndef MALLOC_LEAK_CHECK /* Alert the user that libc_debug.so needs to be installed as libc.so * when performing malloc checks. */ if (level != 0) { __libc_android_log_print(ANDROID_LOG_INFO, "libc", "Malloc checks need libc_debug.so pushed to the device!\n"); } #endif } #ifdef MALLOC_LEAK_CHECK gMallocDebugLevel = level; switch (level) { default: case 0: gMallocDispatch = &gMallocEngineTable[INDEX_NORMAL]; break; case 1: __libc_android_log_print(ANDROID_LOG_INFO, "libc", "%s using MALLOC_DEBUG = %d (leak checker)\n", __progname, level); gMallocDispatch = &gMallocEngineTable[INDEX_LEAK_CHECK]; break; case 5: __libc_android_log_print(ANDROID_LOG_INFO, "libc", "%s using MALLOC_DEBUG = %d (fill)\n", __progname, level); gMallocDispatch = &gMallocEngineTable[INDEX_MALLOC_FILL]; break; case 10: __libc_android_log_print(ANDROID_LOG_INFO, "libc", "%s using MALLOC_DEBUG = %d (sentinels, fill)\n", __progname, level); gMallocDispatch = &gMallocEngineTable[INDEX_MALLOC_CHECK]; break; } #endif }