/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _REALLY_INCLUDE_SYS__SYSTEM_PROPERTIES_H_ #include #include #include "private/bionic_futex.h" #include "private/bionic_macros.h" static const char property_service_socket[] = "/dev/socket/" PROP_SERVICE_NAME; /* * Properties are stored in a hybrid trie/binary tree structure. * Each property's name is delimited at '.' characters, and the tokens are put * into a trie structure. Siblings at each level of the trie are stored in a * binary tree. For instance, "ro.secure"="1" could be stored as follows: * * +-----+ children +----+ children +--------+ * | |-------------->| ro |-------------->| secure | * +-----+ +----+ +--------+ * / \ / | * left / \ right left / | prop +===========+ * v v v +-------->| ro.secure | * +-----+ +-----+ +-----+ +-----------+ * | net | | sys | | com | | 1 | * +-----+ +-----+ +-----+ +===========+ */ // Represents a node in the trie. struct prop_bt { uint8_t namelen; uint8_t reserved[3]; // The property trie is updated only by the init process (single threaded) which provides // property service. And it can be read by multiple threads at the same time. // As the property trie is not protected by locks, we use atomic_uint_least32_t types for the // left, right, children "pointers" in the trie node. To make sure readers who see the // change of "pointers" can also notice the change of prop_bt structure contents pointed by // the "pointers", we always use release-consume ordering pair when accessing these "pointers". // prop "points" to prop_info structure if there is a propery associated with the trie node. // Its situation is similar to the left, right, children "pointers". So we use // atomic_uint_least32_t and release-consume ordering to protect it as well. // We should also avoid rereading these fields redundantly, since not // all processor implementations ensure that multiple loads from the // same field are carried out in the right order. atomic_uint_least32_t prop; atomic_uint_least32_t left; atomic_uint_least32_t right; atomic_uint_least32_t children; char name[0]; prop_bt(const char *name, const uint8_t name_length) { this->namelen = name_length; memcpy(this->name, name, name_length); this->name[name_length] = '\0'; } private: DISALLOW_COPY_AND_ASSIGN(prop_bt); }; struct prop_area { uint32_t bytes_used; atomic_uint_least32_t serial; uint32_t magic; uint32_t version; uint32_t reserved[28]; char data[0]; prop_area(const uint32_t magic, const uint32_t version) : magic(magic), version(version) { atomic_init(&serial, 0); memset(reserved, 0, sizeof(reserved)); // Allocate enough space for the root node. bytes_used = sizeof(prop_bt); } private: DISALLOW_COPY_AND_ASSIGN(prop_area); }; struct prop_info { atomic_uint_least32_t serial; char value[PROP_VALUE_MAX]; char name[0]; prop_info(const char *name, const uint8_t namelen, const char *value, const uint8_t valuelen) { memcpy(this->name, name, namelen); this->name[namelen] = '\0'; atomic_init(&this->serial, valuelen << 24); memcpy(this->value, value, valuelen); this->value[valuelen] = '\0'; } private: DISALLOW_COPY_AND_ASSIGN(prop_info); }; struct find_nth_cookie { uint32_t count; const uint32_t n; const prop_info *pi; find_nth_cookie(uint32_t n) : count(0), n(n), pi(NULL) { } }; static char property_filename[PATH_MAX] = PROP_FILENAME; static bool compat_mode = false; static size_t pa_data_size; static size_t pa_size; // NOTE: This isn't static because system_properties_compat.c // requires it. prop_area *__system_property_area__ = NULL; static int get_fd_from_env(void) { // This environment variable consistes of two decimal integer // values separated by a ",". The first value is a file descriptor // and the second is the size of the system properties area. The // size is currently unused. char *env = getenv("ANDROID_PROPERTY_WORKSPACE"); if (!env) { return -1; } return atoi(env); } static int map_prop_area_rw() { /* dev is a tmpfs that we can use to carve a shared workspace * out of, so let's do that... */ const int fd = open(property_filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC | O_EXCL, 0444); if (fd < 0) { if (errno == EACCES) { /* for consistency with the case where the process has already * mapped the page in and segfaults when trying to write to it */ abort(); } return -1; } if (ftruncate(fd, PA_SIZE) < 0) { close(fd); return -1; } pa_size = PA_SIZE; pa_data_size = pa_size - sizeof(prop_area); compat_mode = false; void *const memory_area = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (memory_area == MAP_FAILED) { close(fd); return -1; } prop_area *pa = new(memory_area) prop_area(PROP_AREA_MAGIC, PROP_AREA_VERSION); /* plug into the lib property services */ __system_property_area__ = pa; close(fd); return 0; } static int map_fd_ro(const int fd) { struct stat fd_stat; if (fstat(fd, &fd_stat) < 0) { return -1; } if ((fd_stat.st_uid != 0) || (fd_stat.st_gid != 0) || ((fd_stat.st_mode & (S_IWGRP | S_IWOTH)) != 0) || (fd_stat.st_size < static_cast(sizeof(prop_area))) ) { return -1; } pa_size = fd_stat.st_size; pa_data_size = pa_size - sizeof(prop_area); void* const map_result = mmap(NULL, pa_size, PROT_READ, MAP_SHARED, fd, 0); if (map_result == MAP_FAILED) { return -1; } prop_area* pa = reinterpret_cast(map_result); if ((pa->magic != PROP_AREA_MAGIC) || (pa->version != PROP_AREA_VERSION && pa->version != PROP_AREA_VERSION_COMPAT)) { munmap(pa, pa_size); return -1; } if (pa->version == PROP_AREA_VERSION_COMPAT) { compat_mode = true; } __system_property_area__ = pa; return 0; } static int map_prop_area() { int fd = open(property_filename, O_CLOEXEC | O_NOFOLLOW | O_RDONLY); bool close_fd = true; if (fd == -1 && errno == ENOENT) { /* * For backwards compatibility, if the file doesn't * exist, we use the environment to get the file descriptor. * For security reasons, we only use this backup if the kernel * returns ENOENT. We don't want to use the backup if the kernel * returns other errors such as ENOMEM or ENFILE, since it * might be possible for an external program to trigger this * condition. */ fd = get_fd_from_env(); close_fd = false; } if (fd < 0) { return -1; } const int map_result = map_fd_ro(fd); if (close_fd) { close(fd); } return map_result; } static void *allocate_obj(const size_t size, uint_least32_t *const off) { prop_area *pa = __system_property_area__; const size_t aligned = BIONIC_ALIGN(size, sizeof(uint_least32_t)); if (pa->bytes_used + aligned > pa_data_size) { return NULL; } *off = pa->bytes_used; pa->bytes_used += aligned; return pa->data + *off; } static prop_bt *new_prop_bt(const char *name, uint8_t namelen, uint_least32_t *const off) { uint_least32_t new_offset; void *const p = allocate_obj(sizeof(prop_bt) + namelen + 1, &new_offset); if (p != NULL) { prop_bt* bt = new(p) prop_bt(name, namelen); *off = new_offset; return bt; } return NULL; } static prop_info *new_prop_info(const char *name, uint8_t namelen, const char *value, uint8_t valuelen, uint_least32_t *const off) { uint_least32_t new_offset; void* const p = allocate_obj(sizeof(prop_info) + namelen + 1, &new_offset); if (p != NULL) { prop_info* info = new(p) prop_info(name, namelen, value, valuelen); *off = new_offset; return info; } return NULL; } static void *to_prop_obj(uint_least32_t off) { if (off > pa_data_size) return NULL; if (!__system_property_area__) return NULL; return (__system_property_area__->data + off); } static inline prop_bt *to_prop_bt(atomic_uint_least32_t* off_p) { uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume); return reinterpret_cast(to_prop_obj(off)); } static inline prop_info *to_prop_info(atomic_uint_least32_t* off_p) { uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume); return reinterpret_cast(to_prop_obj(off)); } static inline prop_bt *root_node() { return reinterpret_cast(to_prop_obj(0)); } static int cmp_prop_name(const char *one, uint8_t one_len, const char *two, uint8_t two_len) { if (one_len < two_len) return -1; else if (one_len > two_len) return 1; else return strncmp(one, two, one_len); } static prop_bt *find_prop_bt(prop_bt *const bt, const char *name, uint8_t namelen, bool alloc_if_needed) { prop_bt* current = bt; while (true) { if (!current) { return NULL; } const int ret = cmp_prop_name(name, namelen, current->name, current->namelen); if (ret == 0) { return current; } if (ret < 0) { uint_least32_t left_offset = atomic_load_explicit(¤t->left, memory_order_relaxed); if (left_offset != 0) { current = to_prop_bt(¤t->left); } else { if (!alloc_if_needed) { return NULL; } uint_least32_t new_offset; prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset); if (new_bt) { atomic_store_explicit(¤t->left, new_offset, memory_order_release); } return new_bt; } } else { uint_least32_t right_offset = atomic_load_explicit(¤t->right, memory_order_relaxed); if (right_offset != 0) { current = to_prop_bt(¤t->right); } else { if (!alloc_if_needed) { return NULL; } uint_least32_t new_offset; prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset); if (new_bt) { atomic_store_explicit(¤t->right, new_offset, memory_order_release); } return new_bt; } } } } static const prop_info *find_property(prop_bt *const trie, const char *name, uint8_t namelen, const char *value, uint8_t valuelen, bool alloc_if_needed) { if (!trie) return NULL; const char *remaining_name = name; prop_bt* current = trie; while (true) { const char *sep = strchr(remaining_name, '.'); const bool want_subtree = (sep != NULL); const uint8_t substr_size = (want_subtree) ? sep - remaining_name : strlen(remaining_name); if (!substr_size) { return NULL; } prop_bt* root = NULL; uint_least32_t children_offset = atomic_load_explicit(¤t->children, memory_order_relaxed); if (children_offset != 0) { root = to_prop_bt(¤t->children); } else if (alloc_if_needed) { uint_least32_t new_offset; root = new_prop_bt(remaining_name, substr_size, &new_offset); if (root) { atomic_store_explicit(¤t->children, new_offset, memory_order_release); } } if (!root) { return NULL; } current = find_prop_bt(root, remaining_name, substr_size, alloc_if_needed); if (!current) { return NULL; } if (!want_subtree) break; remaining_name = sep + 1; } uint_least32_t prop_offset = atomic_load_explicit(¤t->prop, memory_order_relaxed); if (prop_offset != 0) { return to_prop_info(¤t->prop); } else if (alloc_if_needed) { uint_least32_t new_offset; prop_info* new_info = new_prop_info(name, namelen, value, valuelen, &new_offset); if (new_info) { atomic_store_explicit(¤t->prop, new_offset, memory_order_release); } return new_info; } else { return NULL; } } static int send_prop_msg(const prop_msg *msg) { const int fd = socket(AF_LOCAL, SOCK_STREAM | SOCK_CLOEXEC, 0); if (fd == -1) { return -1; } const size_t namelen = strlen(property_service_socket); sockaddr_un addr; memset(&addr, 0, sizeof(addr)); strlcpy(addr.sun_path, property_service_socket, sizeof(addr.sun_path)); addr.sun_family = AF_LOCAL; socklen_t alen = namelen + offsetof(sockaddr_un, sun_path) + 1; if (TEMP_FAILURE_RETRY(connect(fd, reinterpret_cast(&addr), alen)) < 0) { close(fd); return -1; } const int num_bytes = TEMP_FAILURE_RETRY(send(fd, msg, sizeof(prop_msg), 0)); int result = -1; if (num_bytes == sizeof(prop_msg)) { // We successfully wrote to the property server but now we // wait for the property server to finish its work. It // acknowledges its completion by closing the socket so we // poll here (on nothing), waiting for the socket to close. // If you 'adb shell setprop foo bar' you'll see the POLLHUP // once the socket closes. Out of paranoia we cap our poll // at 250 ms. pollfd pollfds[1]; pollfds[0].fd = fd; pollfds[0].events = 0; const int poll_result = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */)); if (poll_result == 1 && (pollfds[0].revents & POLLHUP) != 0) { result = 0; } else { // Ignore the timeout and treat it like a success anyway. // The init process is single-threaded and its property // service is sometimes slow to respond (perhaps it's off // starting a child process or something) and thus this // times out and the caller thinks it failed, even though // it's still getting around to it. So we fake it here, // mostly for ctl.* properties, but we do try and wait 250 // ms so callers who do read-after-write can reliably see // what they've written. Most of the time. // TODO: fix the system properties design. result = 0; } } close(fd); return result; } static void find_nth_fn(const prop_info *pi, void *ptr) { find_nth_cookie *cookie = reinterpret_cast(ptr); if (cookie->n == cookie->count) cookie->pi = pi; cookie->count++; } static int foreach_property(prop_bt *const trie, void (*propfn)(const prop_info *pi, void *cookie), void *cookie) { if (!trie) return -1; uint_least32_t left_offset = atomic_load_explicit(&trie->left, memory_order_relaxed); if (left_offset != 0) { const int err = foreach_property(to_prop_bt(&trie->left), propfn, cookie); if (err < 0) return -1; } uint_least32_t prop_offset = atomic_load_explicit(&trie->prop, memory_order_relaxed); if (prop_offset != 0) { prop_info *info = to_prop_info(&trie->prop); if (!info) return -1; propfn(info, cookie); } uint_least32_t children_offset = atomic_load_explicit(&trie->children, memory_order_relaxed); if (children_offset != 0) { const int err = foreach_property(to_prop_bt(&trie->children), propfn, cookie); if (err < 0) return -1; } uint_least32_t right_offset = atomic_load_explicit(&trie->right, memory_order_relaxed); if (right_offset != 0) { const int err = foreach_property(to_prop_bt(&trie->right), propfn, cookie); if (err < 0) return -1; } return 0; } int __system_properties_init() { return map_prop_area(); } int __system_property_set_filename(const char *filename) { size_t len = strlen(filename); if (len >= sizeof(property_filename)) return -1; strcpy(property_filename, filename); return 0; } int __system_property_area_init() { return map_prop_area_rw(); } unsigned int __system_property_area_serial() { prop_area *pa = __system_property_area__; if (!pa) { return -1; } // Make sure this read fulfilled before __system_property_serial return atomic_load_explicit(&(pa->serial), memory_order_acquire); } const prop_info *__system_property_find(const char *name) { if (__predict_false(compat_mode)) { return __system_property_find_compat(name); } return find_property(root_node(), name, strlen(name), NULL, 0, false); } // The C11 standard doesn't allow atomic loads from const fields, // though C++11 does. Fudge it until standards get straightened out. static inline uint_least32_t load_const_atomic(const atomic_uint_least32_t* s, memory_order mo) { atomic_uint_least32_t* non_const_s = const_cast(s); return atomic_load_explicit(non_const_s, mo); } int __system_property_read(const prop_info *pi, char *name, char *value) { if (__predict_false(compat_mode)) { return __system_property_read_compat(pi, name, value); } while (true) { uint32_t serial = __system_property_serial(pi); // acquire semantics size_t len = SERIAL_VALUE_LEN(serial); memcpy(value, pi->value, len + 1); // TODO: Fix the synchronization scheme here. // There is no fully supported way to implement this kind // of synchronization in C++11, since the memcpy races with // updates to pi, and the data being accessed is not atomic. // The following fence is unintuitive, but would be the // correct one if memcpy used memory_order_relaxed atomic accesses. // In practice it seems unlikely that the generated code would // would be any different, so this should be OK. atomic_thread_fence(memory_order_acquire); if (serial == load_const_atomic(&(pi->serial), memory_order_relaxed)) { if (name != 0) { strcpy(name, pi->name); } return len; } } } int __system_property_get(const char *name, char *value) { const prop_info *pi = __system_property_find(name); if (pi != 0) { return __system_property_read(pi, 0, value); } else { value[0] = 0; return 0; } } int __system_property_set(const char *key, const char *value) { if (key == 0) return -1; if (value == 0) value = ""; if (strlen(key) >= PROP_NAME_MAX) return -1; if (strlen(value) >= PROP_VALUE_MAX) return -1; prop_msg msg; memset(&msg, 0, sizeof msg); msg.cmd = PROP_MSG_SETPROP; strlcpy(msg.name, key, sizeof msg.name); strlcpy(msg.value, value, sizeof msg.value); const int err = send_prop_msg(&msg); if (err < 0) { return err; } return 0; } int __system_property_update(prop_info *pi, const char *value, unsigned int len) { prop_area *pa = __system_property_area__; if (len >= PROP_VALUE_MAX) return -1; uint32_t serial = atomic_load_explicit(&pi->serial, memory_order_relaxed); serial |= 1; atomic_store_explicit(&pi->serial, serial, memory_order_relaxed); // The memcpy call here also races. Again pretend it // used memory_order_relaxed atomics, and use the analogous // counterintuitive fence. atomic_thread_fence(memory_order_release); memcpy(pi->value, value, len + 1); atomic_store_explicit( &pi->serial, (len << 24) | ((serial + 1) & 0xffffff), memory_order_release); __futex_wake(&pi->serial, INT32_MAX); atomic_store_explicit( &pa->serial, atomic_load_explicit(&pa->serial, memory_order_relaxed) + 1, memory_order_release); __futex_wake(&pa->serial, INT32_MAX); return 0; } int __system_property_add(const char *name, unsigned int namelen, const char *value, unsigned int valuelen) { prop_area *pa = __system_property_area__; const prop_info *pi; if (namelen >= PROP_NAME_MAX) return -1; if (valuelen >= PROP_VALUE_MAX) return -1; if (namelen < 1) return -1; pi = find_property(root_node(), name, namelen, value, valuelen, true); if (!pi) return -1; // There is only a single mutator, but we want to make sure that // updates are visible to a reader waiting for the update. atomic_store_explicit( &pa->serial, atomic_load_explicit(&pa->serial, memory_order_relaxed) + 1, memory_order_release); __futex_wake(&pa->serial, INT32_MAX); return 0; } // Wait for non-locked serial, and retrieve it with acquire semantics. unsigned int __system_property_serial(const prop_info *pi) { uint32_t serial = load_const_atomic(&pi->serial, memory_order_acquire); while (SERIAL_DIRTY(serial)) { __futex_wait(const_cast( reinterpret_cast(&pi->serial)), serial, NULL); serial = load_const_atomic(&pi->serial, memory_order_acquire); } return serial; } unsigned int __system_property_wait_any(unsigned int serial) { prop_area *pa = __system_property_area__; uint32_t my_serial; do { __futex_wait(&pa->serial, serial, NULL); my_serial = atomic_load_explicit(&pa->serial, memory_order_acquire); } while (my_serial == serial); return my_serial; } const prop_info *__system_property_find_nth(unsigned n) { find_nth_cookie cookie(n); const int err = __system_property_foreach(find_nth_fn, &cookie); if (err < 0) { return NULL; } return cookie.pi; } int __system_property_foreach(void (*propfn)(const prop_info *pi, void *cookie), void *cookie) { if (__predict_false(compat_mode)) { return __system_property_foreach_compat(propfn, cookie); } return foreach_property(root_node(), propfn, cookie); }