/* Copyright (c) 2007-2008 Michael G Schwern This software originally derived from Paul Sheer's pivotal_gmtime_r.c. The MIT License: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* See http://code.google.com/p/y2038 for this code's origin */ /* Programmers who have available to them 64-bit time values as a 'long long' type can use localtime64_r() and gmtime64_r() which correctly converts the time even on 32-bit systems. Whether you have 64-bit time values will depend on the operating system. localtime64_r() is a 64-bit equivalent of localtime_r(). gmtime64_r() is a 64-bit equivalent of gmtime_r(). */ #include #include #include #include #include #include #include "time64.h" /* BIONIC_BEGIN */ /* the following are here to avoid exposing time64_config.h and * other types in our public time64.h header */ #include "time64_config.h" /* Not everyone has gm/localtime_r(), provide a replacement */ #ifdef HAS_LOCALTIME_R # define LOCALTIME_R(clock, result) localtime_r(clock, result) #else # define LOCALTIME_R(clock, result) fake_localtime_r(clock, result) #endif #ifdef HAS_GMTIME_R # define GMTIME_R(clock, result) gmtime_r(clock, result) #else # define GMTIME_R(clock, result) fake_gmtime_r(clock, result) #endif typedef int64_t Int64; typedef time64_t Time64_T; typedef int64_t Year; #define TM tm /* BIONIC_END */ /* Spec says except for stftime() and the _r() functions, these all return static memory. Stabbings! */ static struct TM Static_Return_Date; static char Static_Return_String[35]; static const int days_in_month[2][12] = { {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, }; static const int julian_days_by_month[2][12] = { {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}, }; static char const wday_name[7][3] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; static char const mon_name[12][3] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; static const int length_of_year[2] = { 365, 366 }; /* Some numbers relating to the gregorian cycle */ static const Year years_in_gregorian_cycle = 400; #define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1) static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL; /* Year range we can trust the time funcitons with */ #define MAX_SAFE_YEAR 2037 #define MIN_SAFE_YEAR 1971 /* 28 year Julian calendar cycle */ #define SOLAR_CYCLE_LENGTH 28 /* Year cycle from MAX_SAFE_YEAR down. */ static const int safe_years_high[SOLAR_CYCLE_LENGTH] = { 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2010, 2011, 2012, 2013, 2014, 2015 }; /* Year cycle from MIN_SAFE_YEAR up */ static const int safe_years_low[SOLAR_CYCLE_LENGTH] = { 1996, 1997, 1998, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, }; /* This isn't used, but it's handy to look at */ static const int dow_year_start[SOLAR_CYCLE_LENGTH] = { 5, 0, 1, 2, /* 0 2016 - 2019 */ 3, 5, 6, 0, /* 4 */ 1, 3, 4, 5, /* 8 1996 - 1998, 1971*/ 6, 1, 2, 3, /* 12 1972 - 1975 */ 4, 6, 0, 1, /* 16 */ 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */ 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */ }; /* Let's assume people are going to be looking for dates in the future. Let's provide some cheats so you can skip ahead. This has a 4x speed boost when near 2008. */ /* Number of days since epoch on Jan 1st, 2008 GMT */ #define CHEAT_DAYS (1199145600 / 24 / 60 / 60) #define CHEAT_YEARS 108 #define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0) #define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a)) #ifdef USE_SYSTEM_LOCALTIME # define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \ (a) <= SYSTEM_LOCALTIME_MAX && \ (a) >= SYSTEM_LOCALTIME_MIN \ ) #else # define SHOULD_USE_SYSTEM_LOCALTIME(a) (0) #endif #ifdef USE_SYSTEM_GMTIME # define SHOULD_USE_SYSTEM_GMTIME(a) ( \ (a) <= SYSTEM_GMTIME_MAX && \ (a) >= SYSTEM_GMTIME_MIN \ ) #else # define SHOULD_USE_SYSTEM_GMTIME(a) (0) #endif /* Multi varadic macros are a C99 thing, alas */ #ifdef TIME_64_DEBUG # define TRACE(format) (fprintf(stderr, format)) # define TRACE1(format, var1) (fprintf(stderr, format, var1)) # define TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2)) # define TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3)) #else # define TRACE(format) ((void)0) # define TRACE1(format, var1) ((void)0) # define TRACE2(format, var1, var2) ((void)0) # define TRACE3(format, var1, var2, var3) ((void)0) #endif static int is_exception_century(Year year) { int is_exception = ((year % 100 == 0) && !(year % 400 == 0)); TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no"); return(is_exception); } /* timegm() is not in the C or POSIX spec, but it is such a useful extension I would be remiss in leaving it out. Also I need it for localtime64() */ Time64_T timegm64(const struct TM *date) { Time64_T days = 0; Time64_T seconds = 0; Year year; Year orig_year = (Year)date->tm_year; int cycles = 0; if( orig_year > 100 ) { cycles = (orig_year - 100) / 400; orig_year -= cycles * 400; days += (Time64_T)cycles * days_in_gregorian_cycle; } else if( orig_year < -300 ) { cycles = (orig_year - 100) / 400; orig_year -= cycles * 400; days += (Time64_T)cycles * days_in_gregorian_cycle; } TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year); if( orig_year > 70 ) { year = 70; while( year < orig_year ) { days += length_of_year[IS_LEAP(year)]; year++; } } else if ( orig_year < 70 ) { year = 69; do { days -= length_of_year[IS_LEAP(year)]; year--; } while( year >= orig_year ); } days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon]; days += date->tm_mday - 1; seconds = days * 60 * 60 * 24; seconds += date->tm_hour * 60 * 60; seconds += date->tm_min * 60; seconds += date->tm_sec; return(seconds); } static int check_tm(struct TM *tm) { /* Don't forget leap seconds */ assert(tm->tm_sec >= 0); assert(tm->tm_sec <= 61); assert(tm->tm_min >= 0); assert(tm->tm_min <= 59); assert(tm->tm_hour >= 0); assert(tm->tm_hour <= 23); assert(tm->tm_mday >= 1); assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]); assert(tm->tm_mon >= 0); assert(tm->tm_mon <= 11); assert(tm->tm_wday >= 0); assert(tm->tm_wday <= 6); assert(tm->tm_yday >= 0); assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]); #ifdef HAS_TM_TM_GMTOFF assert(tm->tm_gmtoff >= -24 * 60 * 60); assert(tm->tm_gmtoff <= 24 * 60 * 60); #endif return 1; } /* The exceptional centuries without leap years cause the cycle to shift by 16 */ static Year cycle_offset(Year year) { const Year start_year = 2000; Year year_diff = year - start_year; Year exceptions; if( year > start_year ) year_diff--; exceptions = year_diff / 100; exceptions -= year_diff / 400; TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n", year, exceptions, year_diff); return exceptions * 16; } /* For a given year after 2038, pick the latest possible matching year in the 28 year calendar cycle. A matching year... 1) Starts on the same day of the week. 2) Has the same leap year status. This is so the calendars match up. Also the previous year must match. When doing Jan 1st you might wind up on Dec 31st the previous year when doing a -UTC time zone. Finally, the next year must have the same start day of week. This is for Dec 31st with a +UTC time zone. It doesn't need the same leap year status since we only care about January 1st. */ static int safe_year(const Year year) { int safe_year = 0; Year year_cycle; if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) { return (int)year; } year_cycle = year + cycle_offset(year); /* safe_years_low is off from safe_years_high by 8 years */ if( year < MIN_SAFE_YEAR ) year_cycle -= 8; /* Change non-leap xx00 years to an equivalent */ if( is_exception_century(year) ) year_cycle += 11; /* Also xx01 years, since the previous year will be wrong */ if( is_exception_century(year - 1) ) year_cycle += 17; year_cycle %= SOLAR_CYCLE_LENGTH; if( year_cycle < 0 ) year_cycle = SOLAR_CYCLE_LENGTH + year_cycle; assert( year_cycle >= 0 ); assert( year_cycle < SOLAR_CYCLE_LENGTH ); if( year < MIN_SAFE_YEAR ) safe_year = safe_years_low[year_cycle]; else if( year > MAX_SAFE_YEAR ) safe_year = safe_years_high[year_cycle]; else assert(0); TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n", year, year_cycle, safe_year); assert(safe_year <= MAX_SAFE_YEAR && safe_year >= MIN_SAFE_YEAR); return safe_year; } void copy_tm_to_TM(const struct tm *src, struct TM *dest) { if( src == NULL ) { memset(dest, 0, sizeof(*dest)); } else { # ifdef USE_TM64 dest->tm_sec = src->tm_sec; dest->tm_min = src->tm_min; dest->tm_hour = src->tm_hour; dest->tm_mday = src->tm_mday; dest->tm_mon = src->tm_mon; dest->tm_year = (Year)src->tm_year; dest->tm_wday = src->tm_wday; dest->tm_yday = src->tm_yday; dest->tm_isdst = src->tm_isdst; # ifdef HAS_TM_TM_GMTOFF dest->tm_gmtoff = src->tm_gmtoff; # endif # ifdef HAS_TM_TM_ZONE dest->tm_zone = src->tm_zone; # endif # else /* They're the same type */ memcpy(dest, src, sizeof(*dest)); # endif } } void copy_TM_to_tm(const struct TM *src, struct tm *dest) { if( src == NULL ) { memset(dest, 0, sizeof(*dest)); } else { # ifdef USE_TM64 dest->tm_sec = src->tm_sec; dest->tm_min = src->tm_min; dest->tm_hour = src->tm_hour; dest->tm_mday = src->tm_mday; dest->tm_mon = src->tm_mon; dest->tm_year = (int)src->tm_year; dest->tm_wday = src->tm_wday; dest->tm_yday = src->tm_yday; dest->tm_isdst = src->tm_isdst; # ifdef HAS_TM_TM_GMTOFF dest->tm_gmtoff = src->tm_gmtoff; # endif # ifdef HAS_TM_TM_ZONE dest->tm_zone = src->tm_zone; # endif # else /* They're the same type */ memcpy(dest, src, sizeof(*dest)); # endif } } /* Simulate localtime_r() to the best of our ability */ struct tm * fake_localtime_r(const time_t *clock, struct tm *result) { const struct tm *static_result = localtime(clock); assert(result != NULL); if( static_result == NULL ) { memset(result, 0, sizeof(*result)); return NULL; } else { memcpy(result, static_result, sizeof(*result)); return result; } } /* Simulate gmtime_r() to the best of our ability */ struct tm * fake_gmtime_r(const time_t *clock, struct tm *result) { const struct tm *static_result = gmtime(clock); assert(result != NULL); if( static_result == NULL ) { memset(result, 0, sizeof(*result)); return NULL; } else { memcpy(result, static_result, sizeof(*result)); return result; } } static Time64_T seconds_between_years(Year left_year, Year right_year) { int increment = (left_year > right_year) ? 1 : -1; Time64_T seconds = 0; int cycles; if( left_year > 2400 ) { cycles = (left_year - 2400) / 400; left_year -= cycles * 400; seconds += cycles * seconds_in_gregorian_cycle; } else if( left_year < 1600 ) { cycles = (left_year - 1600) / 400; left_year += cycles * 400; seconds += cycles * seconds_in_gregorian_cycle; } while( left_year != right_year ) { seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24; right_year += increment; } return seconds * increment; } Time64_T mktime64(const struct TM *input_date) { struct tm safe_date; struct TM date; Time64_T time; Year year = input_date->tm_year + 1900; if( MIN_SAFE_YEAR <= year && year <= MAX_SAFE_YEAR ) { copy_TM_to_tm(input_date, &safe_date); return (Time64_T)mktime(&safe_date); } /* Have to make the year safe in date else it won't fit in safe_date */ date = *input_date; date.tm_year = safe_year(year) - 1900; copy_TM_to_tm(&date, &safe_date); time = (Time64_T)mktime(&safe_date); time += seconds_between_years(year, (Year)(safe_date.tm_year + 1900)); return time; } /* Because I think mktime() is a crappy name */ Time64_T timelocal64(const struct TM *date) { return mktime64(date); } struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p) { int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday; Time64_T v_tm_tday; int leap; Time64_T m; Time64_T time = *in_time; Year year = 70; int cycles = 0; assert(p != NULL); /* Use the system gmtime() if time_t is small enough */ if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) { time_t safe_time = *in_time; struct tm safe_date; GMTIME_R(&safe_time, &safe_date); copy_tm_to_TM(&safe_date, p); assert(check_tm(p)); return p; } #ifdef HAS_TM_TM_GMTOFF p->tm_gmtoff = 0; #endif p->tm_isdst = 0; #ifdef HAS_TM_TM_ZONE p->tm_zone = "UTC"; #endif v_tm_sec = (int)(time % 60); time /= 60; v_tm_min = (int)(time % 60); time /= 60; v_tm_hour = (int)(time % 24); time /= 24; v_tm_tday = time; WRAP (v_tm_sec, v_tm_min, 60); WRAP (v_tm_min, v_tm_hour, 60); WRAP (v_tm_hour, v_tm_tday, 24); v_tm_wday = (int)((v_tm_tday + 4) % 7); if (v_tm_wday < 0) v_tm_wday += 7; m = v_tm_tday; if (m >= CHEAT_DAYS) { year = CHEAT_YEARS; m -= CHEAT_DAYS; } if (m >= 0) { /* Gregorian cycles, this is huge optimization for distant times */ cycles = (int)(m / (Time64_T) days_in_gregorian_cycle); if( cycles ) { m -= (cycles * (Time64_T) days_in_gregorian_cycle); year += (cycles * years_in_gregorian_cycle); } /* Years */ leap = IS_LEAP (year); while (m >= (Time64_T) length_of_year[leap]) { m -= (Time64_T) length_of_year[leap]; year++; leap = IS_LEAP (year); } /* Months */ v_tm_mon = 0; while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) { m -= (Time64_T) days_in_month[leap][v_tm_mon]; v_tm_mon++; } } else { year--; /* Gregorian cycles */ cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1); if( cycles ) { m -= (cycles * (Time64_T) days_in_gregorian_cycle); year += (cycles * years_in_gregorian_cycle); } /* Years */ leap = IS_LEAP (year); while (m < (Time64_T) -length_of_year[leap]) { m += (Time64_T) length_of_year[leap]; year--; leap = IS_LEAP (year); } /* Months */ v_tm_mon = 11; while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) { m += (Time64_T) days_in_month[leap][v_tm_mon]; v_tm_mon--; } m += (Time64_T) days_in_month[leap][v_tm_mon]; } p->tm_year = year; if( p->tm_year != year ) { #ifdef EOVERFLOW errno = EOVERFLOW; #endif return NULL; } /* At this point m is less than a year so casting to an int is safe */ p->tm_mday = (int) m + 1; p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m; p->tm_sec = v_tm_sec; p->tm_min = v_tm_min; p->tm_hour = v_tm_hour; p->tm_mon = v_tm_mon; p->tm_wday = v_tm_wday; assert(check_tm(p)); return p; } struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm) { time_t safe_time; struct tm safe_date; struct TM gm_tm; Year orig_year; int month_diff; assert(local_tm != NULL); /* Use the system localtime() if time_t is small enough */ if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) { safe_time = *time; TRACE1("Using system localtime for %lld\n", *time); LOCALTIME_R(&safe_time, &safe_date); copy_tm_to_TM(&safe_date, local_tm); assert(check_tm(local_tm)); return local_tm; } if( gmtime64_r(time, &gm_tm) == NULL ) { TRACE1("gmtime64_r returned null for %lld\n", *time); return NULL; } orig_year = gm_tm.tm_year; if (gm_tm.tm_year > (2037 - 1900) || gm_tm.tm_year < (1970 - 1900) ) { TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year); gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900; } safe_time = timegm64(&gm_tm); if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) { TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time); return NULL; } copy_tm_to_TM(&safe_date, local_tm); local_tm->tm_year = orig_year; if( local_tm->tm_year != orig_year ) { TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n", (Year)local_tm->tm_year, (Year)orig_year); #ifdef EOVERFLOW errno = EOVERFLOW; #endif return NULL; } month_diff = local_tm->tm_mon - gm_tm.tm_mon; /* When localtime is Dec 31st previous year and gmtime is Jan 1st next year. */ if( month_diff == 11 ) { local_tm->tm_year--; } /* When localtime is Jan 1st, next year and gmtime is Dec 31st, previous year. */ if( month_diff == -11 ) { local_tm->tm_year++; } /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st in a non-leap xx00. There is one point in the cycle we can't account for which the safe xx00 year is a leap year. So we need to correct for Dec 31st comming out as the 366th day of the year. */ if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 ) local_tm->tm_yday--; assert(check_tm(local_tm)); return local_tm; } int valid_tm_wday( const struct TM* date ) { if( 0 <= date->tm_wday && date->tm_wday <= 6 ) return 1; else return 0; } int valid_tm_mon( const struct TM* date ) { if( 0 <= date->tm_mon && date->tm_mon <= 11 ) return 1; else return 0; } char *asctime64_r( const struct TM* date, char *result ) { /* I figure everything else can be displayed, even hour 25, but if these are out of range we walk off the name arrays */ if( !valid_tm_wday(date) || !valid_tm_mon(date) ) return NULL; sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n", wday_name[date->tm_wday], mon_name[date->tm_mon], date->tm_mday, date->tm_hour, date->tm_min, date->tm_sec, 1900 + date->tm_year); return result; } char *ctime64_r( const Time64_T* time, char* result ) { struct TM date; localtime64_r( time, &date ); return asctime64_r( &date, result ); } /* Non-thread safe versions of the above */ struct TM *localtime64(const Time64_T *time) { return localtime64_r(time, &Static_Return_Date); } struct TM *gmtime64(const Time64_T *time) { return gmtime64_r(time, &Static_Return_Date); } char *asctime64( const struct TM* date ) { return asctime64_r( date, Static_Return_String ); } char *ctime64( const Time64_T* time ) { return asctime64(localtime64(time)); }