summaryrefslogtreecommitdiffstats
path: root/libm/src/k_tanf.c
blob: 6574030d37316fc87eae2323b3b90e73d498d24f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/* k_tanf.c -- float version of k_tan.c
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
 * Optimized by Bruce D. Evans.
 */

/*
 * ====================================================
 * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#ifndef INLINE_KERNEL_TANDF
#ifndef lint
static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_tanf.c,v 1.20 2005/11/28 11:46:20 bde Exp $";
#endif
#endif

#include "math.h"
#include "math_private.h"

/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
static const double
T[] =  {
  0x15554d3418c99f.0p-54,	/* 0.333331395030791399758 */
  0x1112fd38999f72.0p-55,	/* 0.133392002712976742718 */
  0x1b54c91d865afe.0p-57,	/* 0.0533812378445670393523 */
  0x191df3908c33ce.0p-58,	/* 0.0245283181166547278873 */
  0x185dadfcecf44e.0p-61,	/* 0.00297435743359967304927 */
  0x1362b9bf971bcd.0p-59,	/* 0.00946564784943673166728 */
};

#ifdef INLINE_KERNEL_TANDF
extern inline
#endif
float
__kernel_tandf(double x, int iy)
{
	double z,r,w,s,t,u;

	z	=  x*x;
	/*
	 * Split up the polynomial into small independent terms to give
	 * opportunities for parallel evaluation.  The chosen splitting is
	 * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
	 * relative to Horner's method on sequential machines.
	 *
	 * We add the small terms from lowest degree up for efficiency on
	 * non-sequential machines (the lowest degree terms tend to be ready
	 * earlier).  Apart from this, we don't care about order of
	 * operations, and don't need to to care since we have precision to
	 * spare.  However, the chosen splitting is good for accuracy too,
	 * and would give results as accurate as Horner's method if the
	 * small terms were added from highest degree down.
	 */
	r = T[4]+z*T[5];
	t = T[2]+z*T[3];
	w = z*z;
	s = z*x;
	u = T[0]+z*T[1];
	r = (x+s*u)+(s*w)*(t+w*r);
	if(iy==1) return r;
	else return -1.0/r;
}