1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
|
/*
Copyright (c) 2014, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/******************************************************************************/
// ALGORITHM DESCRIPTION
// ---------------------
//
// 1. RANGE REDUCTION
//
// We perform an initial range reduction from X to r with
//
// X =~= N * pi/32 + r
//
// so that |r| <= pi/64 + epsilon. We restrict inputs to those
// where |N| <= 932560. Beyond this, the range reduction is
// insufficiently accurate. For extremely small inputs,
// denormalization can occur internally, impacting performance.
// This means that the main path is actually only taken for
// 2^-252 <= |X| < 90112.
//
// To avoid branches, we perform the range reduction to full
// accuracy each time.
//
// X - N * (P_1 + P_2 + P_3)
//
// where P_1 and P_2 are 32-bit numbers (so multiplication by N
// is exact) and P_3 is a 53-bit number. Together, these
// approximate pi well enough for all cases in the restricted
// range.
//
// The main reduction sequence is:
//
// y = 32/pi * x
// N = integer(y)
// (computed by adding and subtracting off SHIFTER)
//
// m_1 = N * P_1
// m_2 = N * P_2
// r_1 = x - m_1
// r = r_1 - m_2
// (this r can be used for most of the calculation)
//
// c_1 = r_1 - r
// m_3 = N * P_3
// c_2 = c_1 - m_2
// c = c_2 - m_3
//
// 2. MAIN ALGORITHM
//
// The algorithm uses a table lookup based on B = M * pi / 32
// where M = N mod 64. The stored values are:
// sigma closest power of 2 to cos(B)
// C_hl 53-bit cos(B) - sigma
// S_hi + S_lo 2 * 53-bit sin(B)
//
// The computation is organized as follows:
//
// sin(B + r + c) = [sin(B) + sigma * r] +
// r * (cos(B) - sigma) +
// sin(B) * [cos(r + c) - 1] +
// cos(B) * [sin(r + c) - r]
//
// which is approximately:
//
// [S_hi + sigma * r] +
// C_hl * r +
// S_lo + S_hi * [(cos(r) - 1) - r * c] +
// (C_hl + sigma) * [(sin(r) - r) + c]
//
// and this is what is actually computed. We separate this sum
// into four parts:
//
// hi + med + pols + corr
//
// where
//
// hi = S_hi + sigma r
// med = C_hl * r
// pols = S_hi * (cos(r) - 1) + (C_hl + sigma) * (sin(r) - r)
// corr = S_lo + c * ((C_hl + sigma) - S_hi * r)
//
// 3. POLYNOMIAL
//
// The polynomial S_hi * (cos(r) - 1) + (C_hl + sigma) *
// (sin(r) - r) can be rearranged freely, since it is quite
// small, so we exploit parallelism to the fullest.
//
// psc4 = SC_4 * r_1
// msc4 = psc4 * r
// r2 = r * r
// msc2 = SC_2 * r2
// r4 = r2 * r2
// psc3 = SC_3 + msc4
// psc1 = SC_1 + msc2
// msc3 = r4 * psc3
// sincospols = psc1 + msc3
// pols = sincospols *
// <S_hi * r^2 | (C_hl + sigma) * r^3>
//
// 4. CORRECTION TERM
//
// This is where the "c" component of the range reduction is
// taken into account; recall that just "r" is used for most of
// the calculation.
//
// -c = m_3 - c_2
// -d = S_hi * r - (C_hl + sigma)
// corr = -c * -d + S_lo
//
// 5. COMPENSATED SUMMATIONS
//
// The two successive compensated summations add up the high
// and medium parts, leaving just the low parts to add up at
// the end.
//
// rs = sigma * r
// res_int = S_hi + rs
// k_0 = S_hi - res_int
// k_2 = k_0 + rs
// med = C_hl * r
// res_hi = res_int + med
// k_1 = res_int - res_hi
// k_3 = k_1 + med
//
// 6. FINAL SUMMATION
//
// We now add up all the small parts:
//
// res_lo = pols(hi) + pols(lo) + corr + k_1 + k_3
//
// Now the overall result is just:
//
// res_hi + res_lo
//
// 7. SMALL ARGUMENTS
//
// If |x| < SNN (SNN meaning the smallest normal number), we
// simply perform 0.1111111 cdots 1111 * x. For SNN <= |x|, we
// do 2^-55 * (2^55 * x - x).
//
// Special cases:
// sin(NaN) = quiet NaN, and raise invalid exception
// sin(INF) = NaN and raise invalid exception
// sin(+/-0) = +/-0
//
/******************************************************************************/
#include <private/bionic_asm.h>
# -- Begin static_func
.text
.align __bionic_asm_align
.type static_func, @function
static_func:
..B1.1:
call ..L2
..L2:
popl %eax
lea _GLOBAL_OFFSET_TABLE_+[. - ..L2](%eax), %eax
lea static_const_table@GOTOFF(%eax), %eax
ret
.size static_func,.-static_func
# -- End static_func
# -- Begin sin
ENTRY(sin)
# parameter 1: 8 + %ebp
..B2.1:
..B2.2:
pushl %ebp
movl %esp, %ebp
subl $120, %esp
movl %ebx, 56(%esp)
call static_func
movl %eax, %ebx
movsd 128(%esp), %xmm0
pextrw $3, %xmm0, %eax
andl $32767, %eax
subl $12336, %eax
cmpl $4293, %eax
ja .L_2TAG_PACKET_0.0.2
movsd 2160(%ebx), %xmm1
mulsd %xmm0, %xmm1
movsd 2272(%ebx), %xmm5
movapd 2256(%ebx), %xmm4
andpd %xmm0, %xmm4
orps %xmm4, %xmm5
movsd 2128(%ebx), %xmm3
movapd 2112(%ebx), %xmm2
addpd %xmm5, %xmm1
cvttsd2si %xmm1, %edx
cvtsi2sdl %edx, %xmm1
mulsd %xmm1, %xmm3
unpcklpd %xmm1, %xmm1
addl $1865216, %edx
movapd %xmm0, %xmm4
andl $63, %edx
movapd 2096(%ebx), %xmm5
lea (%ebx), %eax
shll $5, %edx
addl %edx, %eax
mulpd %xmm1, %xmm2
subsd %xmm3, %xmm0
mulsd 2144(%ebx), %xmm1
subsd %xmm3, %xmm4
movsd 8(%eax), %xmm7
unpcklpd %xmm0, %xmm0
movapd %xmm4, %xmm3
subsd %xmm2, %xmm4
mulpd %xmm0, %xmm5
subpd %xmm2, %xmm0
movapd 2064(%ebx), %xmm6
mulsd %xmm4, %xmm7
subsd %xmm4, %xmm3
mulpd %xmm0, %xmm5
mulpd %xmm0, %xmm0
subsd %xmm2, %xmm3
movapd (%eax), %xmm2
subsd %xmm3, %xmm1
movsd 24(%eax), %xmm3
addsd %xmm3, %xmm2
subsd %xmm2, %xmm7
mulsd %xmm4, %xmm2
mulpd %xmm0, %xmm6
mulsd %xmm4, %xmm3
mulpd %xmm0, %xmm2
mulpd %xmm0, %xmm0
addpd 2080(%ebx), %xmm5
mulsd (%eax), %xmm4
addpd 2048(%ebx), %xmm6
mulpd %xmm0, %xmm5
movapd %xmm3, %xmm0
addsd 8(%eax), %xmm3
mulpd %xmm7, %xmm1
movapd %xmm4, %xmm7
addsd %xmm3, %xmm4
addpd %xmm5, %xmm6
movsd 8(%eax), %xmm5
subsd %xmm3, %xmm5
subsd %xmm4, %xmm3
addsd 16(%eax), %xmm1
mulpd %xmm2, %xmm6
addsd %xmm0, %xmm5
addsd %xmm7, %xmm3
addsd %xmm5, %xmm1
addsd %xmm3, %xmm1
addsd %xmm6, %xmm1
unpckhpd %xmm6, %xmm6
addsd %xmm6, %xmm1
addsd %xmm1, %xmm4
movsd %xmm4, (%esp)
fldl (%esp)
jmp .L_2TAG_PACKET_1.0.2
.L_2TAG_PACKET_0.0.2:
jg .L_2TAG_PACKET_2.0.2
shrl $4, %eax
cmpl $268434685, %eax
jne .L_2TAG_PACKET_3.0.2
movsd %xmm0, (%esp)
fldl (%esp)
jmp .L_2TAG_PACKET_1.0.2
.L_2TAG_PACKET_3.0.2:
movsd 2192(%ebx), %xmm3
mulsd %xmm0, %xmm3
subsd %xmm0, %xmm3
mulsd 2208(%ebx), %xmm3
movsd %xmm0, (%esp)
fldl (%esp)
jmp .L_2TAG_PACKET_1.0.2
.L_2TAG_PACKET_2.0.2:
movl 132(%esp), %eax
andl $2146435072, %eax
cmpl $2146435072, %eax
je .L_2TAG_PACKET_4.0.2
subl $32, %esp
movsd %xmm0, (%esp)
lea 40(%esp), %eax
movl %eax, 8(%esp)
movl $2, %eax
movl %eax, 12(%esp)
call __libm_sincos_huge
addl $32, %esp
fldl 16(%esp)
jmp .L_2TAG_PACKET_1.0.2
.L_2TAG_PACKET_4.0.2:
fldl 128(%esp)
fmull 2240(%ebx)
.L_2TAG_PACKET_1.0.2:
movl 56(%esp), %ebx
movl %ebp, %esp
popl %ebp
ret
..B2.3:
END(sin)
# -- End sin
# Start file scope ASM
.weak sinl
.equ sinl, sin
# End file scope ASM
.section .rodata, "a"
.align 16
.align 16
static_const_table:
.long 0
.long 0
.long 0
.long 0
.long 0
.long 0
.long 0
.long 1072693248
.long 393047345
.long 3212032302
.long 3156849708
.long 1069094822
.long 3758096384
.long 3158189848
.long 0
.long 1072693248
.long 18115067
.long 3214126342
.long 1013556747
.long 1070135480
.long 3221225472
.long 3160567065
.long 0
.long 1072693248
.long 2476548698
.long 3215330282
.long 785751814
.long 1070765062
.long 2684354560
.long 3161838221
.long 0
.long 1072693248
.long 2255197647
.long 3216211105
.long 2796464483
.long 1071152610
.long 3758096384
.long 3160878317
.long 0
.long 1072693248
.long 1945768569
.long 3216915048
.long 939980347
.long 1071524701
.long 536870912
.long 1012796809
.long 0
.long 1072693248
.long 1539668340
.long 3217396327
.long 967731400
.long 1071761211
.long 536870912
.long 1015752157
.long 0
.long 1072693248
.long 1403757309
.long 3217886718
.long 621354454
.long 1071926515
.long 536870912
.long 1013450602
.long 0
.long 1072693248
.long 2583490354
.long 1070236281
.long 1719614413
.long 1072079006
.long 536870912
.long 3163282740
.long 0
.long 1071644672
.long 2485417816
.long 1069626316
.long 1796544321
.long 1072217216
.long 536870912
.long 3162686945
.long 0
.long 1071644672
.long 2598800519
.long 1068266419
.long 688824739
.long 1072339814
.long 3758096384
.long 1010431536
.long 0
.long 1071644672
.long 2140183630
.long 3214756396
.long 4051746225
.long 1072445618
.long 2147483648
.long 3161907377
.long 0
.long 1071644672
.long 1699043957
.long 3216902261
.long 3476196678
.long 1072533611
.long 536870912
.long 1014257638
.long 0
.long 1071644672
.long 1991047213
.long 1067753521
.long 1455828442
.long 1072602945
.long 3758096384
.long 1015505073
.long 0
.long 1070596096
.long 240740309
.long 3215727903
.long 3489094832
.long 1072652951
.long 536870912
.long 1014325783
.long 0
.long 1070596096
.long 257503056
.long 3214647653
.long 2748392742
.long 1072683149
.long 1073741824
.long 3163061750
.long 0
.long 1069547520
.long 0
.long 0
.long 0
.long 1072693248
.long 0
.long 0
.long 0
.long 0
.long 257503056
.long 1067164005
.long 2748392742
.long 1072683149
.long 1073741824
.long 3163061750
.long 0
.long 3217031168
.long 240740309
.long 1068244255
.long 3489094832
.long 1072652951
.long 536870912
.long 1014325783
.long 0
.long 3218079744
.long 1991047213
.long 3215237169
.long 1455828442
.long 1072602945
.long 3758096384
.long 1015505073
.long 0
.long 3218079744
.long 1699043957
.long 1069418613
.long 3476196678
.long 1072533611
.long 536870912
.long 1014257638
.long 0
.long 3219128320
.long 2140183630
.long 1067272748
.long 4051746225
.long 1072445618
.long 2147483648
.long 3161907377
.long 0
.long 3219128320
.long 2598800519
.long 3215750067
.long 688824739
.long 1072339814
.long 3758096384
.long 1010431536
.long 0
.long 3219128320
.long 2485417816
.long 3217109964
.long 1796544321
.long 1072217216
.long 536870912
.long 3162686945
.long 0
.long 3219128320
.long 2583490354
.long 3217719929
.long 1719614413
.long 1072079006
.long 536870912
.long 3163282740
.long 0
.long 3219128320
.long 1403757309
.long 1070403070
.long 621354454
.long 1071926515
.long 536870912
.long 1013450602
.long 0
.long 3220176896
.long 1539668340
.long 1069912679
.long 967731400
.long 1071761211
.long 536870912
.long 1015752157
.long 0
.long 3220176896
.long 1945768569
.long 1069431400
.long 939980347
.long 1071524701
.long 536870912
.long 1012796809
.long 0
.long 3220176896
.long 2255197647
.long 1068727457
.long 2796464483
.long 1071152610
.long 3758096384
.long 3160878317
.long 0
.long 3220176896
.long 2476548698
.long 1067846634
.long 785751814
.long 1070765062
.long 2684354560
.long 3161838221
.long 0
.long 3220176896
.long 18115067
.long 1066642694
.long 1013556747
.long 1070135480
.long 3221225472
.long 3160567065
.long 0
.long 3220176896
.long 393047345
.long 1064548654
.long 3156849708
.long 1069094822
.long 3758096384
.long 3158189848
.long 0
.long 3220176896
.long 0
.long 0
.long 0
.long 0
.long 0
.long 0
.long 0
.long 3220176896
.long 393047345
.long 1064548654
.long 3156849708
.long 3216578470
.long 3758096384
.long 1010706200
.long 0
.long 3220176896
.long 18115067
.long 1066642694
.long 1013556747
.long 3217619128
.long 3221225472
.long 1013083417
.long 0
.long 3220176896
.long 2476548698
.long 1067846634
.long 785751814
.long 3218248710
.long 2684354560
.long 1014354573
.long 0
.long 3220176896
.long 2255197647
.long 1068727457
.long 2796464483
.long 3218636258
.long 3758096384
.long 1013394669
.long 0
.long 3220176896
.long 1945768569
.long 1069431400
.long 939980347
.long 3219008349
.long 536870912
.long 3160280457
.long 0
.long 3220176896
.long 1539668340
.long 1069912679
.long 967731400
.long 3219244859
.long 536870912
.long 3163235805
.long 0
.long 3220176896
.long 1403757309
.long 1070403070
.long 621354454
.long 3219410163
.long 536870912
.long 3160934250
.long 0
.long 3220176896
.long 2583490354
.long 3217719929
.long 1719614413
.long 3219562654
.long 536870912
.long 1015799092
.long 0
.long 3219128320
.long 2485417816
.long 3217109964
.long 1796544321
.long 3219700864
.long 536870912
.long 1015203297
.long 0
.long 3219128320
.long 2598800519
.long 3215750067
.long 688824739
.long 3219823462
.long 3758096384
.long 3157915184
.long 0
.long 3219128320
.long 2140183630
.long 1067272748
.long 4051746225
.long 3219929266
.long 2147483648
.long 1014423729
.long 0
.long 3219128320
.long 1699043957
.long 1069418613
.long 3476196678
.long 3220017259
.long 536870912
.long 3161741286
.long 0
.long 3219128320
.long 1991047213
.long 3215237169
.long 1455828442
.long 3220086593
.long 3758096384
.long 3162988721
.long 0
.long 3218079744
.long 240740309
.long 1068244255
.long 3489094832
.long 3220136599
.long 536870912
.long 3161809431
.long 0
.long 3218079744
.long 257503056
.long 1067164005
.long 2748392742
.long 3220166797
.long 1073741824
.long 1015578102
.long 0
.long 3217031168
.long 0
.long 0
.long 0
.long 3220176896
.long 0
.long 0
.long 0
.long 0
.long 257503056
.long 3214647653
.long 2748392742
.long 3220166797
.long 1073741824
.long 1015578102
.long 0
.long 1069547520
.long 240740309
.long 3215727903
.long 3489094832
.long 3220136599
.long 536870912
.long 3161809431
.long 0
.long 1070596096
.long 1991047213
.long 1067753521
.long 1455828442
.long 3220086593
.long 3758096384
.long 3162988721
.long 0
.long 1070596096
.long 1699043957
.long 3216902261
.long 3476196678
.long 3220017259
.long 536870912
.long 3161741286
.long 0
.long 1071644672
.long 2140183630
.long 3214756396
.long 4051746225
.long 3219929266
.long 2147483648
.long 1014423729
.long 0
.long 1071644672
.long 2598800519
.long 1068266419
.long 688824739
.long 3219823462
.long 3758096384
.long 3157915184
.long 0
.long 1071644672
.long 2485417816
.long 1069626316
.long 1796544321
.long 3219700864
.long 536870912
.long 1015203297
.long 0
.long 1071644672
.long 2583490354
.long 1070236281
.long 1719614413
.long 3219562654
.long 536870912
.long 1015799092
.long 0
.long 1071644672
.long 1403757309
.long 3217886718
.long 621354454
.long 3219410163
.long 536870912
.long 3160934250
.long 0
.long 1072693248
.long 1539668340
.long 3217396327
.long 967731400
.long 3219244859
.long 536870912
.long 3163235805
.long 0
.long 1072693248
.long 1945768569
.long 3216915048
.long 939980347
.long 3219008349
.long 536870912
.long 3160280457
.long 0
.long 1072693248
.long 2255197647
.long 3216211105
.long 2796464483
.long 3218636258
.long 3758096384
.long 1013394669
.long 0
.long 1072693248
.long 2476548698
.long 3215330282
.long 785751814
.long 3218248710
.long 2684354560
.long 1014354573
.long 0
.long 1072693248
.long 18115067
.long 3214126342
.long 1013556747
.long 3217619128
.long 3221225472
.long 1013083417
.long 0
.long 1072693248
.long 393047345
.long 3212032302
.long 3156849708
.long 3216578470
.long 3758096384
.long 1010706200
.long 0
.long 1072693248
.long 1431655765
.long 3217380693
.long 0
.long 3219128320
.long 286331153
.long 1065423121
.long 1431655765
.long 1067799893
.long 436314138
.long 3207201184
.long 381774871
.long 3210133868
.long 2773927732
.long 1053236707
.long 436314138
.long 1056571808
.long 442499072
.long 1032893537
.long 442499072
.long 1032893537
.long 1413480448
.long 1069097467
.long 0
.long 0
.long 771977331
.long 996350346
.long 0
.long 0
.long 1841940611
.long 1076125488
.long 0
.long 0
.long 0
.long 1127743488
.long 0
.long 0
.long 0
.long 1130364928
.long 0
.long 0
.long 0
.long 1015021568
.long 0
.long 0
.long 4294967295
.long 1072693247
.long 0
.long 0
.long 0
.long 2147483648
.long 0
.long 0
.long 0
.long 2147483648
.long 0
.long 2147483648
.long 0
.long 1071644672
.long 0
.long 1071644672
.type static_const_table,@object
.size static_const_table,2288
.data
.hidden __libm_sincos_huge
.section .note.GNU-stack, ""
# End
|