1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include "private/ScopeGuard.h"
#include "BionicDeathTest.h"
#include "ScopedSignalHandler.h"
#include "gtest_ex.h"
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <malloc.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <time.h>
#include <unistd.h>
TEST(pthread, pthread_key_create) {
pthread_key_t key;
ASSERT_EQ(0, pthread_key_create(&key, NULL));
ASSERT_EQ(0, pthread_key_delete(key));
// Can't delete a key that's already been deleted.
ASSERT_EQ(EINVAL, pthread_key_delete(key));
}
TEST(pthread, pthread_keys_max) {
// POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
}
TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
}
TEST(pthread, pthread_key_many_distinct) {
// As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
// pthread keys, but We should be able to allocate at least this many keys.
int nkeys = PTHREAD_KEYS_MAX / 2;
std::vector<pthread_key_t> keys;
auto scope_guard = make_scope_guard([&keys]{
for (auto key : keys) {
EXPECT_EQ(0, pthread_key_delete(key));
}
});
for (int i = 0; i < nkeys; ++i) {
pthread_key_t key;
// If this fails, it's likely that GLOBAL_INIT_THREAD_LOCAL_BUFFER_COUNT is
// wrong.
ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
keys.push_back(key);
ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
}
for (int i = keys.size() - 1; i >= 0; --i) {
ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
pthread_key_t key = keys.back();
keys.pop_back();
ASSERT_EQ(0, pthread_key_delete(key));
}
}
TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
std::vector<pthread_key_t> keys;
int rv = 0;
// Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
// be more than we are allowed to allocate now.
for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
pthread_key_t key;
rv = pthread_key_create(&key, NULL);
if (rv == EAGAIN) {
break;
}
EXPECT_EQ(0, rv);
keys.push_back(key);
}
// Don't leak keys.
for (auto key : keys) {
EXPECT_EQ(0, pthread_key_delete(key));
}
keys.clear();
// We should have eventually reached the maximum number of keys and received
// EAGAIN.
ASSERT_EQ(EAGAIN, rv);
}
TEST(pthread, pthread_key_delete) {
void* expected = reinterpret_cast<void*>(1234);
pthread_key_t key;
ASSERT_EQ(0, pthread_key_create(&key, NULL));
ASSERT_EQ(0, pthread_setspecific(key, expected));
ASSERT_EQ(expected, pthread_getspecific(key));
ASSERT_EQ(0, pthread_key_delete(key));
// After deletion, pthread_getspecific returns NULL.
ASSERT_EQ(NULL, pthread_getspecific(key));
// And you can't use pthread_setspecific with the deleted key.
ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
}
TEST(pthread, pthread_key_fork) {
void* expected = reinterpret_cast<void*>(1234);
pthread_key_t key;
ASSERT_EQ(0, pthread_key_create(&key, NULL));
ASSERT_EQ(0, pthread_setspecific(key, expected));
ASSERT_EQ(expected, pthread_getspecific(key));
pid_t pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
if (pid == 0) {
// The surviving thread inherits all the forking thread's TLS values...
ASSERT_EQ(expected, pthread_getspecific(key));
_exit(99);
}
int status;
ASSERT_EQ(pid, waitpid(pid, &status, 0));
ASSERT_TRUE(WIFEXITED(status));
ASSERT_EQ(99, WEXITSTATUS(status));
ASSERT_EQ(expected, pthread_getspecific(key));
ASSERT_EQ(0, pthread_key_delete(key));
}
static void* DirtyKeyFn(void* key) {
return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
}
TEST(pthread, pthread_key_dirty) {
pthread_key_t key;
ASSERT_EQ(0, pthread_key_create(&key, NULL));
size_t stack_size = 128 * 1024;
void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
ASSERT_NE(MAP_FAILED, stack);
memset(stack, 0xff, stack_size);
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
void* result;
ASSERT_EQ(0, pthread_join(t, &result));
ASSERT_EQ(nullptr, result); // Not ~0!
ASSERT_EQ(0, munmap(stack, stack_size));
ASSERT_EQ(0, pthread_key_delete(key));
}
static void* IdFn(void* arg) {
return arg;
}
class SpinFunctionHelper {
public:
SpinFunctionHelper() {
SpinFunctionHelper::spin_flag_ = true;
}
~SpinFunctionHelper() {
UnSpin();
}
auto GetFunction() -> void* (*)(void*) {
return SpinFunctionHelper::SpinFn;
}
void UnSpin() {
SpinFunctionHelper::spin_flag_ = false;
}
private:
static void* SpinFn(void*) {
while (spin_flag_) {}
return NULL;
}
static volatile bool spin_flag_;
};
// It doesn't matter if spin_flag_ is used in several tests,
// because it is always set to false after each test. Each thread
// loops on spin_flag_ can find it becomes false at some time.
volatile bool SpinFunctionHelper::spin_flag_ = false;
static void* JoinFn(void* arg) {
return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
}
static void AssertDetached(pthread_t t, bool is_detached) {
pthread_attr_t attr;
ASSERT_EQ(0, pthread_getattr_np(t, &attr));
int detach_state;
ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
pthread_attr_destroy(&attr);
ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
}
static void MakeDeadThread(pthread_t& t) {
ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
ASSERT_EQ(0, pthread_join(t, NULL));
}
TEST(pthread, pthread_create) {
void* expected_result = reinterpret_cast<void*>(123);
// Can we create a thread?
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
// If we join, do we get the expected value back?
void* result;
ASSERT_EQ(0, pthread_join(t, &result));
ASSERT_EQ(expected_result, result);
}
TEST(pthread, pthread_create_EAGAIN) {
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_attr_init(&attributes));
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
pthread_t t;
ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
}
TEST(pthread, pthread_no_join_after_detach) {
SpinFunctionHelper spinhelper;
pthread_t t1;
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
// After a pthread_detach...
ASSERT_EQ(0, pthread_detach(t1));
AssertDetached(t1, true);
// ...pthread_join should fail.
ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
}
TEST(pthread, pthread_no_op_detach_after_join) {
SpinFunctionHelper spinhelper;
pthread_t t1;
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
// If thread 2 is already waiting to join thread 1...
pthread_t t2;
ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
sleep(1); // (Give t2 a chance to call pthread_join.)
// ...a call to pthread_detach on thread 1 will "succeed" (silently fail)...
ASSERT_EQ(0, pthread_detach(t1));
AssertDetached(t1, false);
spinhelper.UnSpin();
// ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
void* join_result;
ASSERT_EQ(0, pthread_join(t2, &join_result));
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
}
TEST(pthread, pthread_join_self) {
ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
}
struct TestBug37410 {
pthread_t main_thread;
pthread_mutex_t mutex;
static void main() {
TestBug37410 data;
data.main_thread = pthread_self();
ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
// Wait for the thread to be running...
ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
// ...and exit.
pthread_exit(NULL);
}
private:
static void* thread_fn(void* arg) {
TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
// Let the main thread know we're running.
pthread_mutex_unlock(&data->mutex);
// And wait for the main thread to exit.
pthread_join(data->main_thread, NULL);
return NULL;
}
};
// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
// run this test (which exits normally) in its own process.
class pthread_DeathTest : public BionicDeathTest {};
TEST_F(pthread_DeathTest, pthread_bug_37410) {
// http://code.google.com/p/android/issues/detail?id=37410
ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
}
static void* SignalHandlerFn(void* arg) {
sigset_t wait_set;
sigfillset(&wait_set);
return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
}
TEST(pthread, pthread_sigmask) {
// Check that SIGUSR1 isn't blocked.
sigset_t original_set;
sigemptyset(&original_set);
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
// Block SIGUSR1.
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGUSR1);
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
// Check that SIGUSR1 is blocked.
sigset_t final_set;
sigemptyset(&final_set);
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
// ...and that sigprocmask agrees with pthread_sigmask.
sigemptyset(&final_set);
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
// Spawn a thread that calls sigwait and tells us what it received.
pthread_t signal_thread;
int received_signal = -1;
ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
// Send that thread SIGUSR1.
pthread_kill(signal_thread, SIGUSR1);
// See what it got.
void* join_result;
ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
ASSERT_EQ(SIGUSR1, received_signal);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
// Restore the original signal mask.
ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
}
TEST(pthread, pthread_setname_np__too_long) {
ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "this name is far too long for linux"));
}
TEST(pthread, pthread_setname_np__self) {
ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
}
TEST(pthread, pthread_setname_np__other) {
SpinFunctionHelper spinhelper;
pthread_t t1;
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
}
TEST(pthread, pthread_setname_np__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
// Call pthread_setname_np after thread has already exited.
ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
}
TEST(pthread, pthread_kill__0) {
// Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
}
TEST(pthread, pthread_kill__invalid_signal) {
ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
}
static void pthread_kill__in_signal_handler_helper(int signal_number) {
static int count = 0;
ASSERT_EQ(SIGALRM, signal_number);
if (++count == 1) {
// Can we call pthread_kill from a signal handler?
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
}
}
TEST(pthread, pthread_kill__in_signal_handler) {
ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
}
TEST(pthread, pthread_detach__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
}
TEST(pthread, pthread_detach_no_leak) {
size_t initial_bytes = 0;
// Run this loop more than once since the first loop causes some memory
// to be allocated permenantly. Run an extra loop to help catch any subtle
// memory leaks.
for (size_t loop = 0; loop < 3; loop++) {
// Set the initial bytes on the second loop since the memory in use
// should have stabilized.
if (loop == 1) {
initial_bytes = mallinfo().uordblks;
}
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
std::vector<pthread_t> threads;
for (size_t i = 0; i < 32; ++i) {
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, NULL));
threads.push_back(t);
}
sleep(1);
for (size_t i = 0; i < 32; ++i) {
ASSERT_EQ(0, pthread_detach(threads[i])) << i;
}
}
size_t final_bytes = mallinfo().uordblks;
int leaked_bytes = (final_bytes - initial_bytes);
ASSERT_EQ(0, leaked_bytes);
}
TEST(pthread, pthread_getcpuclockid__clock_gettime) {
SpinFunctionHelper spinhelper;
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
clockid_t c;
ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
timespec ts;
ASSERT_EQ(0, clock_gettime(c, &ts));
}
TEST(pthread, pthread_getcpuclockid__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
clockid_t c;
ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
}
TEST(pthread, pthread_getschedparam__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
int policy;
sched_param param;
ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m));
}
TEST(pthread, pthread_setschedparam__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
int policy = 0;
sched_param param;
ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m));
}
TEST(pthread, pthread_join__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
}
TEST(pthread, pthread_kill__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
}
TEST(pthread, pthread_join__multijoin) {
SpinFunctionHelper spinhelper;
pthread_t t1;
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
pthread_t t2;
ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
sleep(1); // (Give t2 a chance to call pthread_join.)
// Multiple joins to the same thread should fail.
ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
spinhelper.UnSpin();
// ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
void* join_result;
ASSERT_EQ(0, pthread_join(t2, &join_result));
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
}
TEST(pthread, pthread_join__race) {
// http://b/11693195 --- pthread_join could return before the thread had actually exited.
// If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
for (size_t i = 0; i < 1024; ++i) {
size_t stack_size = 64*1024;
void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
pthread_attr_t a;
pthread_attr_init(&a);
pthread_attr_setstack(&a, stack, stack_size);
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
ASSERT_EQ(0, pthread_join(t, NULL));
ASSERT_EQ(0, munmap(stack, stack_size));
}
}
static void* GetActualGuardSizeFn(void* arg) {
pthread_attr_t attributes;
pthread_getattr_np(pthread_self(), &attributes);
pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
return NULL;
}
static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
size_t result;
pthread_t t;
pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
pthread_join(t, NULL);
return result;
}
static void* GetActualStackSizeFn(void* arg) {
pthread_attr_t attributes;
pthread_getattr_np(pthread_self(), &attributes);
pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
return NULL;
}
static size_t GetActualStackSize(const pthread_attr_t& attributes) {
size_t result;
pthread_t t;
pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
pthread_join(t, NULL);
return result;
}
TEST(pthread, pthread_attr_setguardsize) {
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_attr_init(&attributes));
// Get the default guard size.
size_t default_guard_size;
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
// No such thing as too small: will be rounded up to one page by pthread_create.
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
size_t guard_size;
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
ASSERT_EQ(128U, guard_size);
ASSERT_EQ(4096U, GetActualGuardSize(attributes));
// Large enough and a multiple of the page size.
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
ASSERT_EQ(32*1024U, guard_size);
// Large enough but not a multiple of the page size; will be rounded up by pthread_create.
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
ASSERT_EQ(32*1024U + 1, guard_size);
}
TEST(pthread, pthread_attr_setstacksize) {
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_attr_init(&attributes));
// Get the default stack size.
size_t default_stack_size;
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
// Too small.
ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
size_t stack_size;
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
ASSERT_EQ(default_stack_size, stack_size);
ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
// Large enough and a multiple of the page size; may be rounded up by pthread_create.
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
ASSERT_EQ(32*1024U, stack_size);
ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
// Large enough but not aligned; will be rounded up by pthread_create.
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
ASSERT_EQ(32*1024U + 1, stack_size);
#if defined(__BIONIC__)
ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
#else // __BIONIC__
// glibc rounds down, in violation of POSIX. They document this in their BUGS section.
ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
#endif // __BIONIC__
}
TEST(pthread, pthread_rwlock_smoke) {
pthread_rwlock_t l;
ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
// Single read lock
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// Multiple read lock
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// Write lock
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// Try writer lock
ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// Try reader lock
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// Try writer lock after unlock
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
#ifdef __BIONIC__
// EDEADLK in "read after write"
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// EDEADLK in "write after write"
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
#endif
ASSERT_EQ(0, pthread_rwlock_destroy(&l));
}
static int g_once_fn_call_count = 0;
static void OnceFn() {
++g_once_fn_call_count;
}
TEST(pthread, pthread_once_smoke) {
pthread_once_t once_control = PTHREAD_ONCE_INIT;
ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
ASSERT_EQ(1, g_once_fn_call_count);
}
static std::string pthread_once_1934122_result = "";
static void Routine2() {
pthread_once_1934122_result += "2";
}
static void Routine1() {
pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
pthread_once_1934122_result += "1";
pthread_once(&once_control_2, &Routine2);
}
TEST(pthread, pthread_once_1934122) {
// Very old versions of Android couldn't call pthread_once from a
// pthread_once init routine. http://b/1934122.
pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
ASSERT_EQ("12", pthread_once_1934122_result);
}
static int g_atfork_prepare_calls = 0;
static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 1; }
static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 2; }
static int g_atfork_parent_calls = 0;
static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 1; }
static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 2; }
static int g_atfork_child_calls = 0;
static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 1; }
static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 2; }
TEST(pthread, pthread_atfork_smoke) {
test_isolated([] {
ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
int pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
// Child and parent calls are made in the order they were registered.
if (pid == 0) {
ASSERT_EQ(0x12, g_atfork_child_calls);
_exit(0);
}
ASSERT_EQ(0x12, g_atfork_parent_calls);
// Prepare calls are made in the reverse order.
ASSERT_EQ(0x21, g_atfork_prepare_calls);
});
}
TEST(pthread, pthread_attr_getscope) {
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
int scope;
ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
}
TEST(pthread, pthread_condattr_init) {
pthread_condattr_t attr;
pthread_condattr_init(&attr);
clockid_t clock;
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
ASSERT_EQ(CLOCK_REALTIME, clock);
int pshared;
ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
}
TEST(pthread, pthread_condattr_setclock) {
pthread_condattr_t attr;
pthread_condattr_init(&attr);
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
clockid_t clock;
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
ASSERT_EQ(CLOCK_REALTIME, clock);
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
ASSERT_EQ(CLOCK_MONOTONIC, clock);
ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
}
TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
#if defined(__BIONIC__) // This tests a bionic implementation detail.
pthread_condattr_t attr;
pthread_condattr_init(&attr);
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
pthread_cond_t cond_var;
ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
ASSERT_EQ(0, pthread_cond_signal(&cond_var));
ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
attr = static_cast<pthread_condattr_t>(cond_var.value);
clockid_t clock;
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
ASSERT_EQ(CLOCK_MONOTONIC, clock);
int pshared;
ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
#else // __BIONIC__
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif // __BIONIC__
}
TEST(pthread, pthread_mutex_timedlock) {
pthread_mutex_t m;
ASSERT_EQ(0, pthread_mutex_init(&m, NULL));
// If the mutex is already locked, pthread_mutex_timedlock should time out.
ASSERT_EQ(0, pthread_mutex_lock(&m));
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_nsec += 1;
ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
// If the mutex is unlocked, pthread_mutex_timedlock should succeed.
ASSERT_EQ(0, pthread_mutex_unlock(&m));
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_nsec += 1;
ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
ASSERT_EQ(0, pthread_mutex_unlock(&m));
ASSERT_EQ(0, pthread_mutex_destroy(&m));
}
TEST(pthread, pthread_attr_getstack__main_thread) {
// This test is only meaningful for the main thread, so make sure we're running on it!
ASSERT_EQ(getpid(), syscall(__NR_gettid));
// Get the main thread's attributes.
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
// Check that we correctly report that the main thread has no guard page.
size_t guard_size;
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
// Get the stack base and the stack size (both ways).
void* stack_base;
size_t stack_size;
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
size_t stack_size2;
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
// The two methods of asking for the stack size should agree.
EXPECT_EQ(stack_size, stack_size2);
// What does /proc/self/maps' [stack] line say?
void* maps_stack_hi = NULL;
FILE* fp = fopen("/proc/self/maps", "r");
ASSERT_TRUE(fp != NULL);
char line[BUFSIZ];
while (fgets(line, sizeof(line), fp) != NULL) {
uintptr_t lo, hi;
char name[10];
sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name);
if (strcmp(name, "[stack]") == 0) {
maps_stack_hi = reinterpret_cast<void*>(hi);
break;
}
}
fclose(fp);
// The stack size should correspond to RLIMIT_STACK.
rlimit rl;
ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
uint64_t original_rlim_cur = rl.rlim_cur;
#if defined(__BIONIC__)
if (rl.rlim_cur == RLIM_INFINITY) {
rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
}
#endif
EXPECT_EQ(rl.rlim_cur, stack_size);
auto guard = make_scope_guard([&rl, original_rlim_cur]() {
rl.rlim_cur = original_rlim_cur;
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
});
// The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
// Remember that the stack grows down (and is mapped in on demand), so the low address of the
// region isn't very interesting.
EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
//
// What if RLIMIT_STACK is smaller than the stack's current extent?
//
rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
rl.rlim_max = RLIM_INFINITY;
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
EXPECT_EQ(stack_size, stack_size2);
ASSERT_EQ(1024U, stack_size);
//
// What if RLIMIT_STACK isn't a whole number of pages?
//
rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
rl.rlim_max = RLIM_INFINITY;
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
EXPECT_EQ(stack_size, stack_size2);
ASSERT_EQ(6666U, stack_size);
}
static void pthread_attr_getstack_18908062_helper(void*) {
char local_variable;
pthread_attr_t attributes;
pthread_getattr_np(pthread_self(), &attributes);
void* stack_base;
size_t stack_size;
pthread_attr_getstack(&attributes, &stack_base, &stack_size);
// Test whether &local_variable is in [stack_base, stack_base + stack_size).
ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
}
// Check whether something on stack is in the range of
// [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread, pthread_attr_getstack_18908062) {
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, NULL,
reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
NULL));
pthread_join(t, NULL);
}
#if defined(__BIONIC__)
static void* pthread_gettid_np_helper(void* arg) {
*reinterpret_cast<pid_t*>(arg) = gettid();
return NULL;
}
#endif
TEST(pthread, pthread_gettid_np) {
#if defined(__BIONIC__)
ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
pid_t t_gettid_result;
pthread_t t;
pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
pthread_join(t, NULL);
ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
static size_t cleanup_counter = 0;
static void AbortCleanupRoutine(void*) {
abort();
}
static void CountCleanupRoutine(void*) {
++cleanup_counter;
}
static void PthreadCleanupTester() {
pthread_cleanup_push(CountCleanupRoutine, NULL);
pthread_cleanup_push(CountCleanupRoutine, NULL);
pthread_cleanup_push(AbortCleanupRoutine, NULL);
pthread_cleanup_pop(0); // Pop the abort without executing it.
pthread_cleanup_pop(1); // Pop one count while executing it.
ASSERT_EQ(1U, cleanup_counter);
// Exit while the other count is still on the cleanup stack.
pthread_exit(NULL);
// Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
pthread_cleanup_pop(0);
}
static void* PthreadCleanupStartRoutine(void*) {
PthreadCleanupTester();
return NULL;
}
TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
pthread_join(t, NULL);
ASSERT_EQ(2U, cleanup_counter);
}
TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
}
TEST(pthread, pthread_mutexattr_gettype) {
pthread_mutexattr_t attr;
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
int attr_type;
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
}
TEST(pthread, pthread_mutex_lock_NORMAL) {
pthread_mutexattr_t attr;
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
pthread_mutex_t lock;
ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
ASSERT_EQ(0, pthread_mutex_lock(&lock));
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
ASSERT_EQ(0, pthread_mutex_destroy(&lock));
}
TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
pthread_mutexattr_t attr;
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
pthread_mutex_t lock;
ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
ASSERT_EQ(0, pthread_mutex_lock(&lock));
ASSERT_EQ(EDEADLK, pthread_mutex_lock(&lock));
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
ASSERT_EQ(0, pthread_mutex_trylock(&lock));
ASSERT_EQ(EBUSY, pthread_mutex_trylock(&lock));
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock));
ASSERT_EQ(0, pthread_mutex_destroy(&lock));
}
TEST(pthread, pthread_mutex_lock_RECURSIVE) {
pthread_mutexattr_t attr;
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
pthread_mutex_t lock;
ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
ASSERT_EQ(0, pthread_mutex_lock(&lock));
ASSERT_EQ(0, pthread_mutex_lock(&lock));
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
ASSERT_EQ(0, pthread_mutex_trylock(&lock));
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock));
ASSERT_EQ(0, pthread_mutex_destroy(&lock));
}
TEST(pthread, pthread_mutex_owner_tid_limit) {
FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
ASSERT_TRUE(fp != NULL);
long pid_max;
ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
fclose(fp);
// Current pthread_mutex uses 16 bits to represent owner tid.
// Change the implementation if we need to support higher value than 65535.
ASSERT_LE(pid_max, 65536);
}
|