summaryrefslogtreecommitdiffstats
path: root/tests/pthread_test.cpp
blob: e21025578d407a59543242be7caec17ebf78ca99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <gtest/gtest.h>

#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <malloc.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <time.h>
#include <unistd.h>
#include <unwind.h>

#include <atomic>
#include <regex>
#include <vector>

#include <base/file.h>
#include <base/stringprintf.h>

#include "private/bionic_macros.h"
#include "private/ScopeGuard.h"
#include "BionicDeathTest.h"
#include "ScopedSignalHandler.h"

extern "C" pid_t gettid();

TEST(pthread, pthread_key_create) {
  pthread_key_t key;
  ASSERT_EQ(0, pthread_key_create(&key, NULL));
  ASSERT_EQ(0, pthread_key_delete(key));
  // Can't delete a key that's already been deleted.
  ASSERT_EQ(EINVAL, pthread_key_delete(key));
}

TEST(pthread, pthread_keys_max) {
  // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
  ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
}

TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
  int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
  ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
}

TEST(pthread, pthread_key_many_distinct) {
  // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
  // pthread keys, but We should be able to allocate at least this many keys.
  int nkeys = PTHREAD_KEYS_MAX / 2;
  std::vector<pthread_key_t> keys;

  auto scope_guard = make_scope_guard([&keys]{
    for (auto key : keys) {
      EXPECT_EQ(0, pthread_key_delete(key));
    }
  });

  for (int i = 0; i < nkeys; ++i) {
    pthread_key_t key;
    // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
    ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
    keys.push_back(key);
    ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
  }

  for (int i = keys.size() - 1; i >= 0; --i) {
    ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
    pthread_key_t key = keys.back();
    keys.pop_back();
    ASSERT_EQ(0, pthread_key_delete(key));
  }
}

TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
  std::vector<pthread_key_t> keys;
  int rv = 0;

  // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
  // be more than we are allowed to allocate now.
  for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
    pthread_key_t key;
    rv = pthread_key_create(&key, NULL);
    if (rv == EAGAIN) {
      break;
    }
    EXPECT_EQ(0, rv);
    keys.push_back(key);
  }

  // Don't leak keys.
  for (auto key : keys) {
    EXPECT_EQ(0, pthread_key_delete(key));
  }
  keys.clear();

  // We should have eventually reached the maximum number of keys and received
  // EAGAIN.
  ASSERT_EQ(EAGAIN, rv);
}

TEST(pthread, pthread_key_delete) {
  void* expected = reinterpret_cast<void*>(1234);
  pthread_key_t key;
  ASSERT_EQ(0, pthread_key_create(&key, NULL));
  ASSERT_EQ(0, pthread_setspecific(key, expected));
  ASSERT_EQ(expected, pthread_getspecific(key));
  ASSERT_EQ(0, pthread_key_delete(key));
  // After deletion, pthread_getspecific returns NULL.
  ASSERT_EQ(NULL, pthread_getspecific(key));
  // And you can't use pthread_setspecific with the deleted key.
  ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
}

TEST(pthread, pthread_key_fork) {
  void* expected = reinterpret_cast<void*>(1234);
  pthread_key_t key;
  ASSERT_EQ(0, pthread_key_create(&key, NULL));
  ASSERT_EQ(0, pthread_setspecific(key, expected));
  ASSERT_EQ(expected, pthread_getspecific(key));

  pid_t pid = fork();
  ASSERT_NE(-1, pid) << strerror(errno);

  if (pid == 0) {
    // The surviving thread inherits all the forking thread's TLS values...
    ASSERT_EQ(expected, pthread_getspecific(key));
    _exit(99);
  }

  int status;
  ASSERT_EQ(pid, waitpid(pid, &status, 0));
  ASSERT_TRUE(WIFEXITED(status));
  ASSERT_EQ(99, WEXITSTATUS(status));

  ASSERT_EQ(expected, pthread_getspecific(key));
  ASSERT_EQ(0, pthread_key_delete(key));
}

static void* DirtyKeyFn(void* key) {
  return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
}

TEST(pthread, pthread_key_dirty) {
  pthread_key_t key;
  ASSERT_EQ(0, pthread_key_create(&key, NULL));

  size_t stack_size = 128 * 1024;
  void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  ASSERT_NE(MAP_FAILED, stack);
  memset(stack, 0xff, stack_size);

  pthread_attr_t attr;
  ASSERT_EQ(0, pthread_attr_init(&attr));
  ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));

  pthread_t t;
  ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));

  void* result;
  ASSERT_EQ(0, pthread_join(t, &result));
  ASSERT_EQ(nullptr, result); // Not ~0!

  ASSERT_EQ(0, munmap(stack, stack_size));
  ASSERT_EQ(0, pthread_key_delete(key));
}

TEST(pthread, static_pthread_key_used_before_creation) {
#if defined(__BIONIC__)
  // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
  // So here tests if the static/global default value 0 can be detected as invalid key.
  static pthread_key_t key;
  ASSERT_EQ(nullptr, pthread_getspecific(key));
  ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
  ASSERT_EQ(EINVAL, pthread_key_delete(key));
#else
  GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
#endif
}

static void* IdFn(void* arg) {
  return arg;
}

class SpinFunctionHelper {
 public:
  SpinFunctionHelper() {
    SpinFunctionHelper::spin_flag_ = true;
  }
  ~SpinFunctionHelper() {
    UnSpin();
  }
  auto GetFunction() -> void* (*)(void*) {
    return SpinFunctionHelper::SpinFn;
  }

  void UnSpin() {
    SpinFunctionHelper::spin_flag_ = false;
  }

 private:
  static void* SpinFn(void*) {
    while (spin_flag_) {}
    return NULL;
  }
  static volatile bool spin_flag_;
};

// It doesn't matter if spin_flag_ is used in several tests,
// because it is always set to false after each test. Each thread
// loops on spin_flag_ can find it becomes false at some time.
volatile bool SpinFunctionHelper::spin_flag_ = false;

static void* JoinFn(void* arg) {
  return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
}

static void AssertDetached(pthread_t t, bool is_detached) {
  pthread_attr_t attr;
  ASSERT_EQ(0, pthread_getattr_np(t, &attr));
  int detach_state;
  ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
  pthread_attr_destroy(&attr);
  ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
}

static void MakeDeadThread(pthread_t& t) {
  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
  ASSERT_EQ(0, pthread_join(t, NULL));
}

TEST(pthread, pthread_create) {
  void* expected_result = reinterpret_cast<void*>(123);
  // Can we create a thread?
  pthread_t t;
  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
  // If we join, do we get the expected value back?
  void* result;
  ASSERT_EQ(0, pthread_join(t, &result));
  ASSERT_EQ(expected_result, result);
}

TEST(pthread, pthread_create_EAGAIN) {
  pthread_attr_t attributes;
  ASSERT_EQ(0, pthread_attr_init(&attributes));
  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));

  pthread_t t;
  ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
}

TEST(pthread, pthread_no_join_after_detach) {
  SpinFunctionHelper spinhelper;

  pthread_t t1;
  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));

  // After a pthread_detach...
  ASSERT_EQ(0, pthread_detach(t1));
  AssertDetached(t1, true);

  // ...pthread_join should fail.
  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
}

TEST(pthread, pthread_no_op_detach_after_join) {
  SpinFunctionHelper spinhelper;

  pthread_t t1;
  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));

  // If thread 2 is already waiting to join thread 1...
  pthread_t t2;
  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));

  sleep(1); // (Give t2 a chance to call pthread_join.)

#if defined(__BIONIC__)
  ASSERT_EQ(EINVAL, pthread_detach(t1));
#else
  ASSERT_EQ(0, pthread_detach(t1));
#endif
  AssertDetached(t1, false);

  spinhelper.UnSpin();

  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
  void* join_result;
  ASSERT_EQ(0, pthread_join(t2, &join_result));
  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
}

TEST(pthread, pthread_join_self) {
  ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
}

struct TestBug37410 {
  pthread_t main_thread;
  pthread_mutex_t mutex;

  static void main() {
    TestBug37410 data;
    data.main_thread = pthread_self();
    ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));

    pthread_t t;
    ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));

    // Wait for the thread to be running...
    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
    ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));

    // ...and exit.
    pthread_exit(NULL);
  }

 private:
  static void* thread_fn(void* arg) {
    TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);

    // Let the main thread know we're running.
    pthread_mutex_unlock(&data->mutex);

    // And wait for the main thread to exit.
    pthread_join(data->main_thread, NULL);

    return NULL;
  }
};

// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
// run this test (which exits normally) in its own process.

class pthread_DeathTest : public BionicDeathTest {};

TEST_F(pthread_DeathTest, pthread_bug_37410) {
  // http://code.google.com/p/android/issues/detail?id=37410
  ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
}

static void* SignalHandlerFn(void* arg) {
  sigset_t wait_set;
  sigfillset(&wait_set);
  return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
}

TEST(pthread, pthread_sigmask) {
  // Check that SIGUSR1 isn't blocked.
  sigset_t original_set;
  sigemptyset(&original_set);
  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
  ASSERT_FALSE(sigismember(&original_set, SIGUSR1));

  // Block SIGUSR1.
  sigset_t set;
  sigemptyset(&set);
  sigaddset(&set, SIGUSR1);
  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));

  // Check that SIGUSR1 is blocked.
  sigset_t final_set;
  sigemptyset(&final_set);
  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
  // ...and that sigprocmask agrees with pthread_sigmask.
  sigemptyset(&final_set);
  ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));

  // Spawn a thread that calls sigwait and tells us what it received.
  pthread_t signal_thread;
  int received_signal = -1;
  ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));

  // Send that thread SIGUSR1.
  pthread_kill(signal_thread, SIGUSR1);

  // See what it got.
  void* join_result;
  ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
  ASSERT_EQ(SIGUSR1, received_signal);
  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));

  // Restore the original signal mask.
  ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
}

TEST(pthread, pthread_setname_np__too_long) {
  // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
  ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
}

TEST(pthread, pthread_setname_np__self) {
  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
}

TEST(pthread, pthread_setname_np__other) {
  SpinFunctionHelper spinhelper;

  pthread_t t1;
  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
  ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
}

TEST(pthread, pthread_setname_np__no_such_thread) {
  pthread_t dead_thread;
  MakeDeadThread(dead_thread);

  // Call pthread_setname_np after thread has already exited.
  ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
}

TEST(pthread, pthread_kill__0) {
  // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
  ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
}

TEST(pthread, pthread_kill__invalid_signal) {
  ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
}

static void pthread_kill__in_signal_handler_helper(int signal_number) {
  static int count = 0;
  ASSERT_EQ(SIGALRM, signal_number);
  if (++count == 1) {
    // Can we call pthread_kill from a signal handler?
    ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
  }
}

TEST(pthread, pthread_kill__in_signal_handler) {
  ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
  ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
}

TEST(pthread, pthread_detach__no_such_thread) {
  pthread_t dead_thread;
  MakeDeadThread(dead_thread);

  ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
}

TEST(pthread, pthread_getcpuclockid__clock_gettime) {
  SpinFunctionHelper spinhelper;

  pthread_t t;
  ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));

  clockid_t c;
  ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
  timespec ts;
  ASSERT_EQ(0, clock_gettime(c, &ts));
}

TEST(pthread, pthread_getcpuclockid__no_such_thread) {
  pthread_t dead_thread;
  MakeDeadThread(dead_thread);

  clockid_t c;
  ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
}

TEST(pthread, pthread_getschedparam__no_such_thread) {
  pthread_t dead_thread;
  MakeDeadThread(dead_thread);

  int policy;
  sched_param param;
  ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, &param));
}

TEST(pthread, pthread_setschedparam__no_such_thread) {
  pthread_t dead_thread;
  MakeDeadThread(dead_thread);

  int policy = 0;
  sched_param param;
  ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, &param));
}

TEST(pthread, pthread_join__no_such_thread) {
  pthread_t dead_thread;
  MakeDeadThread(dead_thread);

  ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
}

TEST(pthread, pthread_kill__no_such_thread) {
  pthread_t dead_thread;
  MakeDeadThread(dead_thread);

  ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
}

TEST(pthread, pthread_join__multijoin) {
  SpinFunctionHelper spinhelper;

  pthread_t t1;
  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));

  pthread_t t2;
  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));

  sleep(1); // (Give t2 a chance to call pthread_join.)

  // Multiple joins to the same thread should fail.
  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));

  spinhelper.UnSpin();

  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
  void* join_result;
  ASSERT_EQ(0, pthread_join(t2, &join_result));
  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
}

TEST(pthread, pthread_join__race) {
  // http://b/11693195 --- pthread_join could return before the thread had actually exited.
  // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
  for (size_t i = 0; i < 1024; ++i) {
    size_t stack_size = 64*1024;
    void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);

    pthread_attr_t a;
    pthread_attr_init(&a);
    pthread_attr_setstack(&a, stack, stack_size);

    pthread_t t;
    ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
    ASSERT_EQ(0, pthread_join(t, NULL));
    ASSERT_EQ(0, munmap(stack, stack_size));
  }
}

static void* GetActualGuardSizeFn(void* arg) {
  pthread_attr_t attributes;
  pthread_getattr_np(pthread_self(), &attributes);
  pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
  return NULL;
}

static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
  size_t result;
  pthread_t t;
  pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
  pthread_join(t, NULL);
  return result;
}

static void* GetActualStackSizeFn(void* arg) {
  pthread_attr_t attributes;
  pthread_getattr_np(pthread_self(), &attributes);
  pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
  return NULL;
}

static size_t GetActualStackSize(const pthread_attr_t& attributes) {
  size_t result;
  pthread_t t;
  pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
  pthread_join(t, NULL);
  return result;
}

TEST(pthread, pthread_attr_setguardsize) {
  pthread_attr_t attributes;
  ASSERT_EQ(0, pthread_attr_init(&attributes));

  // Get the default guard size.
  size_t default_guard_size;
  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));

  // No such thing as too small: will be rounded up to one page by pthread_create.
  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
  size_t guard_size;
  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
  ASSERT_EQ(128U, guard_size);
  ASSERT_EQ(4096U, GetActualGuardSize(attributes));

  // Large enough and a multiple of the page size.
  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
  ASSERT_EQ(32*1024U, guard_size);

  // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
  ASSERT_EQ(32*1024U + 1, guard_size);
}

TEST(pthread, pthread_attr_setstacksize) {
  pthread_attr_t attributes;
  ASSERT_EQ(0, pthread_attr_init(&attributes));

  // Get the default stack size.
  size_t default_stack_size;
  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));

  // Too small.
  ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
  size_t stack_size;
  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
  ASSERT_EQ(default_stack_size, stack_size);
  ASSERT_GE(GetActualStackSize(attributes), default_stack_size);

  // Large enough and a multiple of the page size; may be rounded up by pthread_create.
  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
  ASSERT_EQ(32*1024U, stack_size);
  ASSERT_GE(GetActualStackSize(attributes), 32*1024U);

  // Large enough but not aligned; will be rounded up by pthread_create.
  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
  ASSERT_EQ(32*1024U + 1, stack_size);
#if defined(__BIONIC__)
  ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
#else // __BIONIC__
  // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
  ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
#endif // __BIONIC__
}

TEST(pthread, pthread_rwlockattr_smoke) {
  pthread_rwlockattr_t attr;
  ASSERT_EQ(0, pthread_rwlockattr_init(&attr));

  int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
  for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
    ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
    int pshared;
    ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
    ASSERT_EQ(pshared_value_array[i], pshared);
  }

  int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
                      PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
  for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
    ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
    int kind;
    ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
    ASSERT_EQ(kind_array[i], kind);
  }

  ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
}

TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
  pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
  pthread_rwlock_t lock2;
  ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
  ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
}

TEST(pthread, pthread_rwlock_smoke) {
  pthread_rwlock_t l;
  ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));

  // Single read lock
  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
  ASSERT_EQ(0, pthread_rwlock_unlock(&l));

  // Multiple read lock
  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
  ASSERT_EQ(0, pthread_rwlock_unlock(&l));

  // Write lock
  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
  ASSERT_EQ(0, pthread_rwlock_unlock(&l));

  // Try writer lock
  ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
  ASSERT_EQ(0, pthread_rwlock_unlock(&l));

  // Try reader lock
  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
  ASSERT_EQ(0, pthread_rwlock_unlock(&l));

  // Try writer lock after unlock
  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
  ASSERT_EQ(0, pthread_rwlock_unlock(&l));

  // EDEADLK in "read after write"
  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
  ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
  ASSERT_EQ(0, pthread_rwlock_unlock(&l));

  // EDEADLK in "write after write"
  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
  ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
  ASSERT_EQ(0, pthread_rwlock_unlock(&l));

  ASSERT_EQ(0, pthread_rwlock_destroy(&l));
}

static void WaitUntilThreadSleep(std::atomic<pid_t>& pid) {
  while (pid == 0) {
    usleep(1000);
  }
  std::string filename = android::base::StringPrintf("/proc/%d/stat", pid.load());
  std::regex regex {R"(\s+S\s+)"};

  while (true) {
    std::string content;
    ASSERT_TRUE(android::base::ReadFileToString(filename, &content));
    if (std::regex_search(content, regex)) {
      break;
    }
    usleep(1000);
  }
}

struct RwlockWakeupHelperArg {
  pthread_rwlock_t lock;
  enum Progress {
    LOCK_INITIALIZED,
    LOCK_WAITING,
    LOCK_RELEASED,
    LOCK_ACCESSED
  };
  std::atomic<Progress> progress;
  std::atomic<pid_t> tid;
};

static void pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg* arg) {
  arg->tid = gettid();
  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
  arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;

  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&arg->lock));
  ASSERT_EQ(0, pthread_rwlock_wrlock(&arg->lock));
  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
  ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));

  arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
}

TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
  RwlockWakeupHelperArg wakeup_arg;
  ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
  ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
  wakeup_arg.tid = 0;

  pthread_t thread;
  ASSERT_EQ(0, pthread_create(&thread, NULL,
    reinterpret_cast<void* (*)(void*)>(pthread_rwlock_reader_wakeup_writer_helper), &wakeup_arg));
  WaitUntilThreadSleep(wakeup_arg.tid);
  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);

  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
  ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));

  ASSERT_EQ(0, pthread_join(thread, NULL));
  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
  ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
}

static void pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg* arg) {
  arg->tid = gettid();
  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
  arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;

  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&arg->lock));
  ASSERT_EQ(0, pthread_rwlock_rdlock(&arg->lock));
  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
  ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));

  arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
}

TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
  RwlockWakeupHelperArg wakeup_arg;
  ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
  ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
  wakeup_arg.tid = 0;

  pthread_t thread;
  ASSERT_EQ(0, pthread_create(&thread, NULL,
    reinterpret_cast<void* (*)(void*)>(pthread_rwlock_writer_wakeup_reader_helper), &wakeup_arg));
  WaitUntilThreadSleep(wakeup_arg.tid);
  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);

  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
  ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));

  ASSERT_EQ(0, pthread_join(thread, NULL));
  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
  ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
}

class RwlockKindTestHelper {
 private:
  struct ThreadArg {
    RwlockKindTestHelper* helper;
    std::atomic<pid_t>& tid;

    ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
      : helper(helper), tid(tid) { }
  };

 public:
  pthread_rwlock_t lock;

 public:
  RwlockKindTestHelper(int kind_type) {
    InitRwlock(kind_type);
  }

  ~RwlockKindTestHelper() {
    DestroyRwlock();
  }

  void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
    tid = 0;
    ThreadArg* arg = new ThreadArg(this, tid);
    ASSERT_EQ(0, pthread_create(&thread, NULL,
                                reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
  }

  void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
    tid = 0;
    ThreadArg* arg = new ThreadArg(this, tid);
    ASSERT_EQ(0, pthread_create(&thread, NULL,
                                reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
  }

 private:
  void InitRwlock(int kind_type) {
    pthread_rwlockattr_t attr;
    ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
    ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
    ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
    ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
  }

  void DestroyRwlock() {
    ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
  }

  static void WriterThreadFn(ThreadArg* arg) {
    arg->tid = gettid();

    RwlockKindTestHelper* helper = arg->helper;
    ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
    ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
    delete arg;
  }

  static void ReaderThreadFn(ThreadArg* arg) {
    arg->tid = gettid();

    RwlockKindTestHelper* helper = arg->helper;
    ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
    ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
    delete arg;
  }
};

TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
  RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
  ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));

  pthread_t writer_thread;
  std::atomic<pid_t> writer_tid;
  helper.CreateWriterThread(writer_thread, writer_tid);
  WaitUntilThreadSleep(writer_tid);

  pthread_t reader_thread;
  std::atomic<pid_t> reader_tid;
  helper.CreateReaderThread(reader_thread, reader_tid);
  ASSERT_EQ(0, pthread_join(reader_thread, NULL));

  ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
  ASSERT_EQ(0, pthread_join(writer_thread, NULL));
}

TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
  RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
  ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));

  pthread_t writer_thread;
  std::atomic<pid_t> writer_tid;
  helper.CreateWriterThread(writer_thread, writer_tid);
  WaitUntilThreadSleep(writer_tid);

  pthread_t reader_thread;
  std::atomic<pid_t> reader_tid;
  helper.CreateReaderThread(reader_thread, reader_tid);
  WaitUntilThreadSleep(reader_tid);

  ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
  ASSERT_EQ(0, pthread_join(writer_thread, NULL));
  ASSERT_EQ(0, pthread_join(reader_thread, NULL));
}

static int g_once_fn_call_count = 0;
static void OnceFn() {
  ++g_once_fn_call_count;
}

TEST(pthread, pthread_once_smoke) {
  pthread_once_t once_control = PTHREAD_ONCE_INIT;
  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
  ASSERT_EQ(1, g_once_fn_call_count);
}

static std::string pthread_once_1934122_result = "";

static void Routine2() {
  pthread_once_1934122_result += "2";
}

static void Routine1() {
  pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
  pthread_once_1934122_result += "1";
  pthread_once(&once_control_2, &Routine2);
}

TEST(pthread, pthread_once_1934122) {
  // Very old versions of Android couldn't call pthread_once from a
  // pthread_once init routine. http://b/1934122.
  pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
  ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
  ASSERT_EQ("12", pthread_once_1934122_result);
}

static int g_atfork_prepare_calls = 0;
static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
static int g_atfork_parent_calls = 0;
static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
static int g_atfork_child_calls = 0;
static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }

TEST(pthread, pthread_atfork_smoke) {
  ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
  ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));

  int pid = fork();
  ASSERT_NE(-1, pid) << strerror(errno);

  // Child and parent calls are made in the order they were registered.
  if (pid == 0) {
    ASSERT_EQ(12, g_atfork_child_calls);
    _exit(0);
  }
  ASSERT_EQ(12, g_atfork_parent_calls);

  // Prepare calls are made in the reverse order.
  ASSERT_EQ(21, g_atfork_prepare_calls);
  int status;
  ASSERT_EQ(pid, waitpid(pid, &status, 0));
}

TEST(pthread, pthread_attr_getscope) {
  pthread_attr_t attr;
  ASSERT_EQ(0, pthread_attr_init(&attr));

  int scope;
  ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
  ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
}

TEST(pthread, pthread_condattr_init) {
  pthread_condattr_t attr;
  pthread_condattr_init(&attr);

  clockid_t clock;
  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
  ASSERT_EQ(CLOCK_REALTIME, clock);

  int pshared;
  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
  ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
}

TEST(pthread, pthread_condattr_setclock) {
  pthread_condattr_t attr;
  pthread_condattr_init(&attr);

  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
  clockid_t clock;
  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
  ASSERT_EQ(CLOCK_REALTIME, clock);

  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
  ASSERT_EQ(CLOCK_MONOTONIC, clock);

  ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
}

TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
#if defined(__BIONIC__)
  pthread_condattr_t attr;
  pthread_condattr_init(&attr);

  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
  ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));

  pthread_cond_t cond_var;
  ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));

  ASSERT_EQ(0, pthread_cond_signal(&cond_var));
  ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));

  attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
  clockid_t clock;
  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
  ASSERT_EQ(CLOCK_MONOTONIC, clock);
  int pshared;
  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
  ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
#else  // !defined(__BIONIC__)
  GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
#endif  // !defined(__BIONIC__)
}

class pthread_CondWakeupTest : public ::testing::Test {
 protected:
  pthread_mutex_t mutex;
  pthread_cond_t cond;

  enum Progress {
    INITIALIZED,
    WAITING,
    SIGNALED,
    FINISHED,
  };
  std::atomic<Progress> progress;
  pthread_t thread;

 protected:
  virtual void SetUp() {
    ASSERT_EQ(0, pthread_mutex_init(&mutex, NULL));
    ASSERT_EQ(0, pthread_cond_init(&cond, NULL));
    progress = INITIALIZED;
    ASSERT_EQ(0,
      pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
  }

  virtual void TearDown() {
    ASSERT_EQ(0, pthread_join(thread, NULL));
    ASSERT_EQ(FINISHED, progress);
    ASSERT_EQ(0, pthread_cond_destroy(&cond));
    ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
  }

  void SleepUntilProgress(Progress expected_progress) {
    while (progress != expected_progress) {
      usleep(5000);
    }
    usleep(5000);
  }

 private:
  static void WaitThreadFn(pthread_CondWakeupTest* test) {
    ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
    test->progress = WAITING;
    while (test->progress == WAITING) {
      ASSERT_EQ(0, pthread_cond_wait(&test->cond, &test->mutex));
    }
    ASSERT_EQ(SIGNALED, test->progress);
    test->progress = FINISHED;
    ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
  }
};

TEST_F(pthread_CondWakeupTest, signal) {
  SleepUntilProgress(WAITING);
  progress = SIGNALED;
  pthread_cond_signal(&cond);
}

TEST_F(pthread_CondWakeupTest, broadcast) {
  SleepUntilProgress(WAITING);
  progress = SIGNALED;
  pthread_cond_broadcast(&cond);
}

TEST(pthread, pthread_mutex_timedlock) {
  pthread_mutex_t m;
  ASSERT_EQ(0, pthread_mutex_init(&m, NULL));

  // If the mutex is already locked, pthread_mutex_timedlock should time out.
  ASSERT_EQ(0, pthread_mutex_lock(&m));

  timespec ts;
  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
  ts.tv_nsec += 1;
  ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));

  // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
  ASSERT_EQ(0, pthread_mutex_unlock(&m));

  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
  ts.tv_nsec += 1;
  ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));

  ASSERT_EQ(0, pthread_mutex_unlock(&m));
  ASSERT_EQ(0, pthread_mutex_destroy(&m));
}

TEST(pthread, pthread_attr_getstack__main_thread) {
  // This test is only meaningful for the main thread, so make sure we're running on it!
  ASSERT_EQ(getpid(), syscall(__NR_gettid));

  // Get the main thread's attributes.
  pthread_attr_t attributes;
  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));

  // Check that we correctly report that the main thread has no guard page.
  size_t guard_size;
  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
  ASSERT_EQ(0U, guard_size); // The main thread has no guard page.

  // Get the stack base and the stack size (both ways).
  void* stack_base;
  size_t stack_size;
  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
  size_t stack_size2;
  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));

  // The two methods of asking for the stack size should agree.
  EXPECT_EQ(stack_size, stack_size2);

  // What does /proc/self/maps' [stack] line say?
  void* maps_stack_hi = NULL;
  FILE* fp = fopen("/proc/self/maps", "r");
  ASSERT_TRUE(fp != NULL);
  char line[BUFSIZ];
  while (fgets(line, sizeof(line), fp) != NULL) {
    uintptr_t lo, hi;
    char name[10];
    sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name);
    if (strcmp(name, "[stack]") == 0) {
      maps_stack_hi = reinterpret_cast<void*>(hi);
      break;
    }
  }
  fclose(fp);

  // The stack size should correspond to RLIMIT_STACK.
  rlimit rl;
  ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
  uint64_t original_rlim_cur = rl.rlim_cur;
#if defined(__BIONIC__)
  if (rl.rlim_cur == RLIM_INFINITY) {
    rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
  }
#endif
  EXPECT_EQ(rl.rlim_cur, stack_size);

  auto guard = make_scope_guard([&rl, original_rlim_cur]() {
    rl.rlim_cur = original_rlim_cur;
    ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
  });

  // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
  // Remember that the stack grows down (and is mapped in on demand), so the low address of the
  // region isn't very interesting.
  EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);

  //
  // What if RLIMIT_STACK is smaller than the stack's current extent?
  //
  rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
  rl.rlim_max = RLIM_INFINITY;
  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));

  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));

  EXPECT_EQ(stack_size, stack_size2);
  ASSERT_EQ(1024U, stack_size);

  //
  // What if RLIMIT_STACK isn't a whole number of pages?
  //
  rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
  rl.rlim_max = RLIM_INFINITY;
  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));

  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));

  EXPECT_EQ(stack_size, stack_size2);
  ASSERT_EQ(6666U, stack_size);
}

static void pthread_attr_getstack_18908062_helper(void*) {
  char local_variable;
  pthread_attr_t attributes;
  pthread_getattr_np(pthread_self(), &attributes);
  void* stack_base;
  size_t stack_size;
  pthread_attr_getstack(&attributes, &stack_base, &stack_size);

  // Test whether &local_variable is in [stack_base, stack_base + stack_size).
  ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
  ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
}

// Check whether something on stack is in the range of
// [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread, pthread_attr_getstack_18908062) {
  pthread_t t;
  ASSERT_EQ(0, pthread_create(&t, NULL,
            reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
            NULL));
  pthread_join(t, NULL);
}

#if defined(__BIONIC__)
static pthread_mutex_t gettid_mutex;
static void* pthread_gettid_np_helper(void* arg) {
  pthread_mutex_lock(&gettid_mutex);
  *reinterpret_cast<pid_t*>(arg) = gettid();
  pthread_mutex_unlock(&gettid_mutex);
  return NULL;
}
#endif

TEST(pthread, pthread_gettid_np) {
#if defined(__BIONIC__)
  ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));

  pid_t t_gettid_result;
  pthread_t t;
  pthread_mutex_init(&gettid_mutex, NULL);
  pthread_mutex_lock(&gettid_mutex);
  pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);

  pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
  pthread_mutex_unlock(&gettid_mutex);

  pthread_join(t, NULL);
  pthread_mutex_destroy(&gettid_mutex);

  ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
#else
  GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}

static size_t cleanup_counter = 0;

static void AbortCleanupRoutine(void*) {
  abort();
}

static void CountCleanupRoutine(void*) {
  ++cleanup_counter;
}

static void PthreadCleanupTester() {
  pthread_cleanup_push(CountCleanupRoutine, NULL);
  pthread_cleanup_push(CountCleanupRoutine, NULL);
  pthread_cleanup_push(AbortCleanupRoutine, NULL);

  pthread_cleanup_pop(0); // Pop the abort without executing it.
  pthread_cleanup_pop(1); // Pop one count while executing it.
  ASSERT_EQ(1U, cleanup_counter);
  // Exit while the other count is still on the cleanup stack.
  pthread_exit(NULL);

  // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
  pthread_cleanup_pop(0);
}

static void* PthreadCleanupStartRoutine(void*) {
  PthreadCleanupTester();
  return NULL;
}

TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
  pthread_t t;
  ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
  pthread_join(t, NULL);
  ASSERT_EQ(2U, cleanup_counter);
}

TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
}

TEST(pthread, pthread_mutexattr_gettype) {
  pthread_mutexattr_t attr;
  ASSERT_EQ(0, pthread_mutexattr_init(&attr));

  int attr_type;

  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);

  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
  ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);

  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
  ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);

  ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
}

struct PthreadMutex {
  pthread_mutex_t lock;

  PthreadMutex(int mutex_type) {
    init(mutex_type);
  }

  ~PthreadMutex() {
    destroy();
  }

 private:
  void init(int mutex_type) {
    pthread_mutexattr_t attr;
    ASSERT_EQ(0, pthread_mutexattr_init(&attr));
    ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
    ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
    ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
  }

  void destroy() {
    ASSERT_EQ(0, pthread_mutex_destroy(&lock));
  }

  DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
};

TEST(pthread, pthread_mutex_lock_NORMAL) {
  PthreadMutex m(PTHREAD_MUTEX_NORMAL);

  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
}

TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
  PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);

  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
  ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
  ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
  ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
  ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
}

TEST(pthread, pthread_mutex_lock_RECURSIVE) {
  PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);

  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
  ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
  ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
}

TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
  pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
  PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
  ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
  pthread_mutex_destroy(&lock_normal);

  pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
  PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
  ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
  pthread_mutex_destroy(&lock_errorcheck);

  pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
  PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
  ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
  ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
}
class MutexWakeupHelper {
 private:
  PthreadMutex m;
  enum Progress {
    LOCK_INITIALIZED,
    LOCK_WAITING,
    LOCK_RELEASED,
    LOCK_ACCESSED
  };
  std::atomic<Progress> progress;
  std::atomic<pid_t> tid;

  static void thread_fn(MutexWakeupHelper* helper) {
    helper->tid = gettid();
    ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
    helper->progress = LOCK_WAITING;

    ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
    ASSERT_EQ(LOCK_RELEASED, helper->progress);
    ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));

    helper->progress = LOCK_ACCESSED;
  }

 public:
  MutexWakeupHelper(int mutex_type) : m(mutex_type) {
  }

  void test() {
    ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
    progress = LOCK_INITIALIZED;
    tid = 0;

    pthread_t thread;
    ASSERT_EQ(0, pthread_create(&thread, NULL,
      reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));

    WaitUntilThreadSleep(tid);
    ASSERT_EQ(LOCK_WAITING, progress);

    progress = LOCK_RELEASED;
    ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));

    ASSERT_EQ(0, pthread_join(thread, NULL));
    ASSERT_EQ(LOCK_ACCESSED, progress);
  }
};

TEST(pthread, pthread_mutex_NORMAL_wakeup) {
  MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
  helper.test();
}

TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
  MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
  helper.test();
}

TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
  MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
  helper.test();
}

TEST(pthread, pthread_mutex_owner_tid_limit) {
#if defined(__BIONIC__) && !defined(__LP64__)
  FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
  ASSERT_TRUE(fp != NULL);
  long pid_max;
  ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
  fclose(fp);
  // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
  ASSERT_LE(pid_max, 65536);
#else
  GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
#endif
}

class StrictAlignmentAllocator {
 public:
  void* allocate(size_t size, size_t alignment) {
    char* p = new char[size + alignment * 2];
    allocated_array.push_back(p);
    while (!is_strict_aligned(p, alignment)) {
      ++p;
    }
    return p;
  }

  ~StrictAlignmentAllocator() {
    for (auto& p : allocated_array) {
      delete [] p;
    }
  }

 private:
  bool is_strict_aligned(char* p, size_t alignment) {
    return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
  }

  std::vector<char*> allocated_array;
};

TEST(pthread, pthread_types_allow_four_bytes_alignment) {
#if defined(__BIONIC__)
  // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
  StrictAlignmentAllocator allocator;
  pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
                             allocator.allocate(sizeof(pthread_mutex_t), 4));
  ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
  ASSERT_EQ(0, pthread_mutex_lock(mutex));
  ASSERT_EQ(0, pthread_mutex_unlock(mutex));
  ASSERT_EQ(0, pthread_mutex_destroy(mutex));

  pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
                           allocator.allocate(sizeof(pthread_cond_t), 4));
  ASSERT_EQ(0, pthread_cond_init(cond, NULL));
  ASSERT_EQ(0, pthread_cond_signal(cond));
  ASSERT_EQ(0, pthread_cond_broadcast(cond));
  ASSERT_EQ(0, pthread_cond_destroy(cond));

  pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
                               allocator.allocate(sizeof(pthread_rwlock_t), 4));
  ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
  ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
  ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
  ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
  ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
  ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));

#else
  GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
#endif
}

TEST(pthread, pthread_mutex_lock_null_32) {
#if defined(__BIONIC__) && !defined(__LP64__)
  ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL));
#else
  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
#endif
}

TEST(pthread, pthread_mutex_unlock_null_32) {
#if defined(__BIONIC__) && !defined(__LP64__)
  ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL));
#else
  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
#endif
}

TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
#if defined(__BIONIC__) && defined(__LP64__)
  pthread_mutex_t* null_value = nullptr;
  ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
#else
  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
#endif
}

TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
#if defined(__BIONIC__) && defined(__LP64__)
  pthread_mutex_t* null_value = nullptr;
  ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
#else
  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
#endif
}

extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);

static volatile bool signal_handler_on_altstack_done;

static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
  ASSERT_EQ(SIGUSR1, signo);
  // Check if we have enough stack space for unwinding.
  int count = 0;
  _Unwind_Backtrace(FrameCounter, &count);
  ASSERT_GT(count, 0);
  // Check if we have enough stack space for logging.
  std::string s(2048, '*');
  GTEST_LOG_(INFO) << s;
  signal_handler_on_altstack_done = true;
}

TEST(pthread, big_enough_signal_stack_for_64bit_arch) {
  signal_handler_on_altstack_done = false;
  ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
  kill(getpid(), SIGUSR1);
  ASSERT_TRUE(signal_handler_on_altstack_done);
}