/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // This module creates a special filesystem containing two files. // // "/sideload/package.zip" appears to be a normal file, but reading // from it causes data to be fetched from the adb host. We can use // this to sideload packages over an adb connection without having to // store the entire package in RAM on the device. // // Because we may not trust the adb host, this filesystem maintains // the following invariant: each read of a given position returns the // same data as the first read at that position. That is, once a // section of the file is read, future reads of that section return // the same data. (Otherwise, a malicious adb host process could // return one set of bits when the package is read for signature // verification, and then different bits for when the package is // accessed by the installer.) If the adb host returns something // different than it did on the first read, the reader of the file // will see their read fail with EINVAL. // // The other file, "/sideload/exit", is used to control the subprocess // that creates this filesystem. Calling stat() on the exit file // causes the filesystem to be unmounted and the adb process on the // device shut down. // // Note that only the minimal set of file operations needed for these // two files is implemented. In particular, you can't opendir() or // readdir() on the "/sideload" directory; ls on it won't work. #include <ctype.h> #include <dirent.h> #include <errno.h> #include <fcntl.h> #include <limits.h> #include <linux/fuse.h> #include <pthread.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/inotify.h> #include <sys/mount.h> #include <sys/param.h> #include <sys/resource.h> #include <sys/stat.h> #include <sys/statfs.h> #include <sys/time.h> #include <sys/uio.h> #include <unistd.h> #include "mincrypt/sha256.h" #include "fuse_sideload.h" #define PACKAGE_FILE_ID (FUSE_ROOT_ID+1) #define EXIT_FLAG_ID (FUSE_ROOT_ID+2) #define NO_STATUS 1 #define NO_STATUS_EXIT 2 struct fuse_data { int ffd; // file descriptor for the fuse socket struct provider_vtab* vtab; void* cookie; uint64_t file_size; // bytes uint32_t block_size; // block size that the adb host is using to send the file to us uint32_t file_blocks; // file size in block_size blocks uid_t uid; gid_t gid; uint32_t curr_block; // cache the block most recently read from the host uint8_t* block_data; uint8_t* extra_block; // another block of storage for reads that // span two blocks uint8_t* hashes; // SHA-256 hash of each block (all zeros // if block hasn't been read yet) }; static void fuse_reply(struct fuse_data* fd, __u64 unique, const void *data, size_t len) { struct fuse_out_header hdr; struct iovec vec[2]; int res; hdr.len = len + sizeof(hdr); hdr.error = 0; hdr.unique = unique; vec[0].iov_base = &hdr; vec[0].iov_len = sizeof(hdr); vec[1].iov_base = /* const_cast */(void*)(data); vec[1].iov_len = len; res = writev(fd->ffd, vec, 2); if (res < 0) { printf("*** REPLY FAILED *** %s\n", strerror(errno)); } } static int handle_init(void* data, struct fuse_data* fd, const struct fuse_in_header* hdr) { const struct fuse_init_in* req = reinterpret_cast<const struct fuse_init_in*>(data); struct fuse_init_out out; size_t fuse_struct_size; /* Kernel 2.6.16 is the first stable kernel with struct fuse_init_out * defined (fuse version 7.6). The structure is the same from 7.6 through * 7.22. Beginning with 7.23, the structure increased in size and added * new parameters. */ if (req->major != FUSE_KERNEL_VERSION || req->minor < 6) { printf("Fuse kernel version mismatch: Kernel version %d.%d, Expected at least %d.6", req->major, req->minor, FUSE_KERNEL_VERSION); return -1; } out.minor = MIN(req->minor, FUSE_KERNEL_MINOR_VERSION); fuse_struct_size = sizeof(out); #if defined(FUSE_COMPAT_22_INIT_OUT_SIZE) /* FUSE_KERNEL_VERSION >= 23. */ /* If the kernel only works on minor revs older than or equal to 22, * then use the older structure size since this code only uses the 7.22 * version of the structure. */ if (req->minor <= 22) { fuse_struct_size = FUSE_COMPAT_22_INIT_OUT_SIZE; } #endif out.major = FUSE_KERNEL_VERSION; out.max_readahead = req->max_readahead; out.flags = 0; out.max_background = 32; out.congestion_threshold = 32; out.max_write = 4096; fuse_reply(fd, hdr->unique, &out, fuse_struct_size); return NO_STATUS; } static void fill_attr(struct fuse_attr* attr, struct fuse_data* fd, uint64_t nodeid, uint64_t size, uint32_t mode) { memset(attr, 0, sizeof(*attr)); attr->nlink = 1; attr->uid = fd->uid; attr->gid = fd->gid; attr->blksize = 4096; attr->ino = nodeid; attr->size = size; attr->blocks = (size == 0) ? 0 : (((size-1) / attr->blksize) + 1); attr->mode = mode; } static int handle_getattr(void* /* data */, struct fuse_data* fd, const struct fuse_in_header* hdr) { struct fuse_attr_out out; memset(&out, 0, sizeof(out)); out.attr_valid = 10; if (hdr->nodeid == FUSE_ROOT_ID) { fill_attr(&(out.attr), fd, hdr->nodeid, 4096, S_IFDIR | 0555); } else if (hdr->nodeid == PACKAGE_FILE_ID) { fill_attr(&(out.attr), fd, PACKAGE_FILE_ID, fd->file_size, S_IFREG | 0444); } else if (hdr->nodeid == EXIT_FLAG_ID) { fill_attr(&(out.attr), fd, EXIT_FLAG_ID, 0, S_IFREG | 0); } else { return -ENOENT; } fuse_reply(fd, hdr->unique, &out, sizeof(out)); return (hdr->nodeid == EXIT_FLAG_ID) ? NO_STATUS_EXIT : NO_STATUS; } static int handle_lookup(void* data, struct fuse_data* fd, const struct fuse_in_header* hdr) { struct fuse_entry_out out; memset(&out, 0, sizeof(out)); out.entry_valid = 10; out.attr_valid = 10; if (strncmp(FUSE_SIDELOAD_HOST_FILENAME, reinterpret_cast<const char*>(data), sizeof(FUSE_SIDELOAD_HOST_FILENAME)) == 0) { out.nodeid = PACKAGE_FILE_ID; out.generation = PACKAGE_FILE_ID; fill_attr(&(out.attr), fd, PACKAGE_FILE_ID, fd->file_size, S_IFREG | 0444); } else if (strncmp(FUSE_SIDELOAD_HOST_EXIT_FLAG, reinterpret_cast<const char*>(data), sizeof(FUSE_SIDELOAD_HOST_EXIT_FLAG)) == 0) { out.nodeid = EXIT_FLAG_ID; out.generation = EXIT_FLAG_ID; fill_attr(&(out.attr), fd, EXIT_FLAG_ID, 0, S_IFREG | 0); } else { return -ENOENT; } fuse_reply(fd, hdr->unique, &out, sizeof(out)); return (out.nodeid == EXIT_FLAG_ID) ? NO_STATUS_EXIT : NO_STATUS; } static int handle_open(void* /* data */, struct fuse_data* fd, const struct fuse_in_header* hdr) { if (hdr->nodeid == EXIT_FLAG_ID) return -EPERM; if (hdr->nodeid != PACKAGE_FILE_ID) return -ENOENT; struct fuse_open_out out; memset(&out, 0, sizeof(out)); out.fh = 10; // an arbitrary number; we always use the same handle fuse_reply(fd, hdr->unique, &out, sizeof(out)); return NO_STATUS; } static int handle_flush(void* data, struct fuse_data* fd, const struct fuse_in_header* hdr) { return 0; } static int handle_release(void* data, struct fuse_data* fd, const struct fuse_in_header* hdr) { return 0; } // Fetch a block from the host into fd->curr_block and fd->block_data. // Returns 0 on successful fetch, negative otherwise. static int fetch_block(struct fuse_data* fd, uint32_t block) { if (block == fd->curr_block) { return 0; } if (block >= fd->file_blocks) { memset(fd->block_data, 0, fd->block_size); fd->curr_block = block; return 0; } size_t fetch_size = fd->block_size; if (block * fd->block_size + fetch_size > fd->file_size) { // If we're reading the last (partial) block of the file, // expect a shorter response from the host, and pad the rest // of the block with zeroes. fetch_size = fd->file_size - (block * fd->block_size); memset(fd->block_data + fetch_size, 0, fd->block_size - fetch_size); } int result = fd->vtab->read_block(fd->cookie, block, fd->block_data, fetch_size); if (result < 0) return result; fd->curr_block = block; // Verify the hash of the block we just got from the host. // // - If the hash of the just-received data matches the stored hash // for the block, accept it. // - If the stored hash is all zeroes, store the new hash and // accept the block (this is the first time we've read this // block). // - Otherwise, return -EINVAL for the read. uint8_t hash[SHA256_DIGEST_SIZE]; SHA256_hash(fd->block_data, fd->block_size, hash); uint8_t* blockhash = fd->hashes + block * SHA256_DIGEST_SIZE; if (memcmp(hash, blockhash, SHA256_DIGEST_SIZE) == 0) { return 0; } int i; for (i = 0; i < SHA256_DIGEST_SIZE; ++i) { if (blockhash[i] != 0) { fd->curr_block = -1; return -EIO; } } memcpy(blockhash, hash, SHA256_DIGEST_SIZE); return 0; } static int handle_read(void* data, struct fuse_data* fd, const struct fuse_in_header* hdr) { const struct fuse_read_in* req = reinterpret_cast<const struct fuse_read_in*>(data); struct fuse_out_header outhdr; struct iovec vec[3]; int vec_used; int result; if (hdr->nodeid != PACKAGE_FILE_ID) return -ENOENT; uint64_t offset = req->offset; uint32_t size = req->size; // The docs on the fuse kernel interface are vague about what to // do when a read request extends past the end of the file. We // can return a short read -- the return structure does include a // length field -- but in testing that caused the program using // the file to segfault. (I speculate that this is due to the // reading program accessing it via mmap; maybe mmap dislikes when // you return something short of a whole page?) To fix this we // zero-pad reads that extend past the end of the file so we're // always returning exactly as many bytes as were requested. // (Users of the mapped file have to know its real length anyway.) outhdr.len = sizeof(outhdr) + size; outhdr.error = 0; outhdr.unique = hdr->unique; vec[0].iov_base = &outhdr; vec[0].iov_len = sizeof(outhdr); uint32_t block = offset / fd->block_size; result = fetch_block(fd, block); if (result != 0) return result; // Two cases: // // - the read request is entirely within this block. In this // case we can reply immediately. // // - the read request goes over into the next block. Note that // since we mount the filesystem with max_read=block_size, a // read can never span more than two blocks. In this case we // copy the block to extra_block and issue a fetch for the // following block. uint32_t block_offset = offset - (block * fd->block_size); if (size + block_offset <= fd->block_size) { // First case: the read fits entirely in the first block. vec[1].iov_base = fd->block_data + block_offset; vec[1].iov_len = size; vec_used = 2; } else { // Second case: the read spills over into the next block. memcpy(fd->extra_block, fd->block_data + block_offset, fd->block_size - block_offset); vec[1].iov_base = fd->extra_block; vec[1].iov_len = fd->block_size - block_offset; result = fetch_block(fd, block+1); if (result != 0) return result; vec[2].iov_base = fd->block_data; vec[2].iov_len = size - vec[1].iov_len; vec_used = 3; } if (writev(fd->ffd, vec, vec_used) < 0) { printf("*** READ REPLY FAILED: %s ***\n", strerror(errno)); } return NO_STATUS; } int run_fuse_sideload(struct provider_vtab* vtab, void* cookie, uint64_t file_size, uint32_t block_size) { int result; // If something's already mounted on our mountpoint, try to remove // it. (Mostly in case of a previous abnormal exit.) umount2(FUSE_SIDELOAD_HOST_MOUNTPOINT, MNT_FORCE); if (block_size < 1024) { fprintf(stderr, "block size (%u) is too small\n", block_size); return -1; } if (block_size > (1<<22)) { // 4 MiB fprintf(stderr, "block size (%u) is too large\n", block_size); return -1; } struct fuse_data fd; memset(&fd, 0, sizeof(fd)); fd.vtab = vtab; fd.cookie = cookie; fd.file_size = file_size; fd.block_size = block_size; fd.file_blocks = (file_size == 0) ? 0 : (((file_size-1) / block_size) + 1); if (fd.file_blocks > (1<<18)) { fprintf(stderr, "file has too many blocks (%u)\n", fd.file_blocks); result = -1; goto done; } fd.hashes = (uint8_t*)calloc(fd.file_blocks, SHA256_DIGEST_SIZE); if (fd.hashes == NULL) { fprintf(stderr, "failed to allocate %d bites for hashes\n", fd.file_blocks * SHA256_DIGEST_SIZE); result = -1; goto done; } fd.uid = getuid(); fd.gid = getgid(); fd.curr_block = -1; fd.block_data = (uint8_t*)malloc(block_size); if (fd.block_data == NULL) { fprintf(stderr, "failed to allocate %d bites for block_data\n", block_size); result = -1; goto done; } fd.extra_block = (uint8_t*)malloc(block_size); if (fd.extra_block == NULL) { fprintf(stderr, "failed to allocate %d bites for extra_block\n", block_size); result = -1; goto done; } fd.ffd = open("/dev/fuse", O_RDWR); if (fd.ffd < 0) { perror("open /dev/fuse"); result = -1; goto done; } char opts[256]; snprintf(opts, sizeof(opts), ("fd=%d,user_id=%d,group_id=%d,max_read=%u," "allow_other,rootmode=040000"), fd.ffd, fd.uid, fd.gid, block_size); result = mount("/dev/fuse", FUSE_SIDELOAD_HOST_MOUNTPOINT, "fuse", MS_NOSUID | MS_NODEV | MS_RDONLY | MS_NOEXEC, opts); if (result < 0) { perror("mount"); goto done; } uint8_t request_buffer[sizeof(struct fuse_in_header) + PATH_MAX*8]; for (;;) { ssize_t len = TEMP_FAILURE_RETRY(read(fd.ffd, request_buffer, sizeof(request_buffer))); if (len == -1) { perror("read request"); if (errno == ENODEV) { result = -1; break; } continue; } if ((size_t)len < sizeof(struct fuse_in_header)) { fprintf(stderr, "request too short: len=%zu\n", (size_t)len); continue; } struct fuse_in_header* hdr = (struct fuse_in_header*) request_buffer; void* data = request_buffer + sizeof(struct fuse_in_header); result = -ENOSYS; switch (hdr->opcode) { case FUSE_INIT: result = handle_init(data, &fd, hdr); break; case FUSE_LOOKUP: result = handle_lookup(data, &fd, hdr); break; case FUSE_GETATTR: result = handle_getattr(data, &fd, hdr); break; case FUSE_OPEN: result = handle_open(data, &fd, hdr); break; case FUSE_READ: result = handle_read(data, &fd, hdr); break; case FUSE_FLUSH: result = handle_flush(data, &fd, hdr); break; case FUSE_RELEASE: result = handle_release(data, &fd, hdr); break; default: fprintf(stderr, "unknown fuse request opcode %d\n", hdr->opcode); break; } if (result == NO_STATUS_EXIT) { result = 0; break; } if (result != NO_STATUS) { struct fuse_out_header outhdr; outhdr.len = sizeof(outhdr); outhdr.error = result; outhdr.unique = hdr->unique; TEMP_FAILURE_RETRY(write(fd.ffd, &outhdr, sizeof(outhdr))); } } done: fd.vtab->close(fd.cookie); result = umount2(FUSE_SIDELOAD_HOST_MOUNTPOINT, MNT_DETACH); if (result < 0) { printf("fuse_sideload umount failed: %s\n", strerror(errno)); } if (fd.ffd) close(fd.ffd); free(fd.hashes); free(fd.block_data); free(fd.extra_block); return result; }