summaryrefslogtreecommitdiffstats
path: root/minzip/Hash.c
blob: 8f8ed68e5d4d61ad88712d7a649cb069ad05fb88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Hash table.  The dominant calls are add and lookup, with removals
 * happening very infrequently.  We use probing, and don't worry much
 * about tombstone removal.
 */
#include <stdlib.h>
#include <assert.h>

#define LOG_TAG "minzip"
#include "Log.h"
#include "Hash.h"

/* table load factor, i.e. how full can it get before we resize */
//#define LOAD_NUMER  3       // 75%
//#define LOAD_DENOM  4
#define LOAD_NUMER  5       // 62.5%
#define LOAD_DENOM  8
//#define LOAD_NUMER  1       // 50%
//#define LOAD_DENOM  2

/*
 * Compute the capacity needed for a table to hold "size" elements.
 */
size_t mzHashSize(size_t size) {
    return (size * LOAD_DENOM) / LOAD_NUMER +1;
}

/*
 * Round up to the next highest power of 2.
 *
 * Found on http://graphics.stanford.edu/~seander/bithacks.html.
 */
unsigned int roundUpPower2(unsigned int val)
{
    val--;
    val |= val >> 1;
    val |= val >> 2;
    val |= val >> 4;
    val |= val >> 8;
    val |= val >> 16;
    val++;

    return val;
}

/*
 * Create and initialize a hash table.
 */
HashTable* mzHashTableCreate(size_t initialSize, HashFreeFunc freeFunc)
{
    HashTable* pHashTable;

    assert(initialSize > 0);

    pHashTable = (HashTable*) malloc(sizeof(*pHashTable));
    if (pHashTable == NULL)
        return NULL;

    pHashTable->tableSize = roundUpPower2(initialSize);
    pHashTable->numEntries = pHashTable->numDeadEntries = 0;
    pHashTable->freeFunc = freeFunc;
    pHashTable->pEntries =
        (HashEntry*) calloc((size_t)pHashTable->tableSize, sizeof(HashTable));
    if (pHashTable->pEntries == NULL) {
        free(pHashTable);
        return NULL;
    }

    return pHashTable;
}

/*
 * Clear out all entries.
 */
void mzHashTableClear(HashTable* pHashTable)
{
    HashEntry* pEnt;
    int i;

    pEnt = pHashTable->pEntries;
    for (i = 0; i < pHashTable->tableSize; i++, pEnt++) {
        if (pEnt->data == HASH_TOMBSTONE) {
            // nuke entry
            pEnt->data = NULL;
        } else if (pEnt->data != NULL) {
            // call free func then nuke entry
            if (pHashTable->freeFunc != NULL)
                (*pHashTable->freeFunc)(pEnt->data);
            pEnt->data = NULL;
        }
    }

    pHashTable->numEntries = 0;
    pHashTable->numDeadEntries = 0;
}

/*
 * Free the table.
 */
void mzHashTableFree(HashTable* pHashTable)
{
    if (pHashTable == NULL)
        return;
    mzHashTableClear(pHashTable);
    free(pHashTable->pEntries);
    free(pHashTable);
}

#ifndef NDEBUG
/*
 * Count up the number of tombstone entries in the hash table.
 */
static int countTombStones(HashTable* pHashTable)
{
    int i, count;

    for (count = i = 0; i < pHashTable->tableSize; i++) {
        if (pHashTable->pEntries[i].data == HASH_TOMBSTONE)
            count++;
    }
    return count;
}
#endif

/*
 * Resize a hash table.  We do this when adding an entry increased the
 * size of the table beyond its comfy limit.
 *
 * This essentially requires re-inserting all elements into the new storage.
 *
 * If multiple threads can access the hash table, the table's lock should
 * have been grabbed before issuing the "lookup+add" call that led to the
 * resize, so we don't have a synchronization problem here.
 */
static bool resizeHash(HashTable* pHashTable, int newSize)
{
    HashEntry* pNewEntries;
    int i;

    assert(countTombStones(pHashTable) == pHashTable->numDeadEntries);

    pNewEntries = (HashEntry*) calloc(newSize, sizeof(HashTable));
    if (pNewEntries == NULL)
        return false;

    for (i = 0; i < pHashTable->tableSize; i++) {
        void* data = pHashTable->pEntries[i].data;
        if (data != NULL && data != HASH_TOMBSTONE) {
            int hashValue = pHashTable->pEntries[i].hashValue;
            int newIdx;

            /* probe for new spot, wrapping around */
            newIdx = hashValue & (newSize-1);
            while (pNewEntries[newIdx].data != NULL)
                newIdx = (newIdx + 1) & (newSize-1);

            pNewEntries[newIdx].hashValue = hashValue;
            pNewEntries[newIdx].data = data;
        }
    }

    free(pHashTable->pEntries);
    pHashTable->pEntries = pNewEntries;
    pHashTable->tableSize = newSize;
    pHashTable->numDeadEntries = 0;

    assert(countTombStones(pHashTable) == 0);
    return true;
}

/*
 * Look up an entry.
 *
 * We probe on collisions, wrapping around the table.
 */
void* mzHashTableLookup(HashTable* pHashTable, unsigned int itemHash, void* item,
    HashCompareFunc cmpFunc, bool doAdd)
{
    HashEntry* pEntry;
    HashEntry* pEnd;
    void* result = NULL;

    assert(pHashTable->tableSize > 0);
    assert(item != HASH_TOMBSTONE);
    assert(item != NULL);

    /* jump to the first entry and probe for a match */
    pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
    pEnd = &pHashTable->pEntries[pHashTable->tableSize];
    while (pEntry->data != NULL) {
        if (pEntry->data != HASH_TOMBSTONE &&
            pEntry->hashValue == itemHash &&
            (*cmpFunc)(pEntry->data, item) == 0)
        {
            /* match */
            break;
        }

        pEntry++;
        if (pEntry == pEnd) {     /* wrap around to start */
            if (pHashTable->tableSize == 1)
                break;      /* edge case - single-entry table */
            pEntry = pHashTable->pEntries;
        }
    }

    if (pEntry->data == NULL) {
        if (doAdd) {
            pEntry->hashValue = itemHash;
            pEntry->data = item;
            pHashTable->numEntries++;

            /*
             * We've added an entry.  See if this brings us too close to full.
             */
            if ((pHashTable->numEntries+pHashTable->numDeadEntries) * LOAD_DENOM
                > pHashTable->tableSize * LOAD_NUMER)
            {
                if (!resizeHash(pHashTable, pHashTable->tableSize * 2)) {
                    /* don't really have a way to indicate failure */
                    LOGE("Dalvik hash resize failure\n");
                    abort();
                }
                /* note "pEntry" is now invalid */
            }

            /* full table is bad -- search for nonexistent never halts */
            assert(pHashTable->numEntries < pHashTable->tableSize);
            result = item;
        } else {
            assert(result == NULL);
        }
    } else {
        result = pEntry->data;
    }

    return result;
}

/*
 * Remove an entry from the table.
 *
 * Does NOT invoke the "free" function on the item.
 */
bool mzHashTableRemove(HashTable* pHashTable, unsigned int itemHash, void* item)
{
    HashEntry* pEntry;
    HashEntry* pEnd;

    assert(pHashTable->tableSize > 0);

    /* jump to the first entry and probe for a match */
    pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
    pEnd = &pHashTable->pEntries[pHashTable->tableSize];
    while (pEntry->data != NULL) {
        if (pEntry->data == item) {
            pEntry->data = HASH_TOMBSTONE;
            pHashTable->numEntries--;
            pHashTable->numDeadEntries++;
            return true;
        }

        pEntry++;
        if (pEntry == pEnd) {     /* wrap around to start */
            if (pHashTable->tableSize == 1)
                break;      /* edge case - single-entry table */
            pEntry = pHashTable->pEntries;
        }
    }

    return false;
}

/*
 * Execute a function on every entry in the hash table.
 *
 * If "func" returns a nonzero value, terminate early and return the value.
 */
int mzHashForeach(HashTable* pHashTable, HashForeachFunc func, void* arg)
{
    int i, val;

    for (i = 0; i < pHashTable->tableSize; i++) {
        HashEntry* pEnt = &pHashTable->pEntries[i];

        if (pEnt->data != NULL && pEnt->data != HASH_TOMBSTONE) {
            val = (*func)(pEnt->data, arg);
            if (val != 0)
                return val;
        }
    }

    return 0;
}


/*
 * Look up an entry, counting the number of times we have to probe.
 *
 * Returns -1 if the entry wasn't found.
 */
int countProbes(HashTable* pHashTable, unsigned int itemHash, const void* item,
    HashCompareFunc cmpFunc)
{
    HashEntry* pEntry;
    HashEntry* pEnd;
    int count = 0;

    assert(pHashTable->tableSize > 0);
    assert(item != HASH_TOMBSTONE);
    assert(item != NULL);

    /* jump to the first entry and probe for a match */
    pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
    pEnd = &pHashTable->pEntries[pHashTable->tableSize];
    while (pEntry->data != NULL) {
        if (pEntry->data != HASH_TOMBSTONE &&
            pEntry->hashValue == itemHash &&
            (*cmpFunc)(pEntry->data, item) == 0)
        {
            /* match */
            break;
        }

        pEntry++;
        if (pEntry == pEnd) {     /* wrap around to start */
            if (pHashTable->tableSize == 1)
                break;      /* edge case - single-entry table */
            pEntry = pHashTable->pEntries;
        }

        count++;
    }
    if (pEntry->data == NULL)
        return -1;

    return count;
}

/*
 * Evaluate the amount of probing required for the specified hash table.
 *
 * We do this by running through all entries in the hash table, computing
 * the hash value and then doing a lookup.
 *
 * The caller should lock the table before calling here.
 */
void mzHashTableProbeCount(HashTable* pHashTable, HashCalcFunc calcFunc,
    HashCompareFunc cmpFunc)
{
    int numEntries, minProbe, maxProbe, totalProbe;
    HashIter iter;

    numEntries = maxProbe = totalProbe = 0;
    minProbe = 65536*32767;

    for (mzHashIterBegin(pHashTable, &iter); !mzHashIterDone(&iter);
        mzHashIterNext(&iter))
    {
        const void* data = (const void*)mzHashIterData(&iter);
        int count;
            
        count = countProbes(pHashTable, (*calcFunc)(data), data, cmpFunc);

        numEntries++;

        if (count < minProbe)
            minProbe = count;
        if (count > maxProbe)
            maxProbe = count;
        totalProbe += count;
    }

    LOGI("Probe: min=%d max=%d, total=%d in %d (%d), avg=%.3f\n",
        minProbe, maxProbe, totalProbe, numEntries, pHashTable->tableSize,
        (float) totalProbe / (float) numEntries);
}