diff options
author | darin@google.com <darin@google.com@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-08-16 03:09:05 +0000 |
---|---|---|
committer | darin@google.com <darin@google.com@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-08-16 03:09:05 +0000 |
commit | fc7fb6e30c5c3574dfade2803f1793b9110d1370 (patch) | |
tree | 0ac30f51beace4b794501ad120f437f9149c65fb | |
parent | 3705baeff3bc0c1f63d2376e16c427df18c7564a (diff) | |
download | chromium_src-fc7fb6e30c5c3574dfade2803f1793b9110d1370.zip chromium_src-fc7fb6e30c5c3574dfade2803f1793b9110d1370.tar.gz chromium_src-fc7fb6e30c5c3574dfade2803f1793b9110d1370.tar.bz2 |
Take 2 at the new MessageLoop implementation.
R=jar
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@973 0039d316-1c4b-4281-b951-d872f2087c98
-rw-r--r-- | base/message_loop.cc | 691 | ||||
-rw-r--r-- | base/message_loop.h | 422 | ||||
-rw-r--r-- | base/message_pump.h | 7 | ||||
-rw-r--r-- | base/message_pump_win.cc | 16 |
4 files changed, 258 insertions, 878 deletions
diff --git a/base/message_loop.cc b/base/message_loop.cc index 18f4448..4d61b6a 100644 --- a/base/message_loop.cc +++ b/base/message_loop.cc @@ -27,14 +27,13 @@ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -#include <algorithm> - #include "base/message_loop.h" +#include <algorithm> + #include "base/logging.h" #include "base/string_util.h" #include "base/thread_local_storage.h" -#include "base/win_util.h" // a TLS index to the message loop for the current thread // Note that if we start doing complex stuff in other static initializers @@ -43,25 +42,10 @@ //------------------------------------------------------------------------------ -static const wchar_t kWndClass[] = L"Chrome_MessageLoopWindow"; - -// Windows Message numbers handled by WindowMessageProc. - -// Message sent to get an additional time slice for pumping (processing) another -// task (a series of such messages creates a continuous task pump). -static const int kMsgPumpATask = WM_USER + 1; - -// Message sent by Quit() to cause our main message pump to terminate as soon as -// all pending task and message queues have been emptied. -static const int kMsgQuit = WM_USER + 2; - // Logical events for Histogram profiling. Run with -message-loop-histogrammer // to get an accounting of messages and actions taken on each thread. -static const int kTaskRunEvent = WM_USER + 16; // 0x411 -static const int kSleepingApcEvent = WM_USER + 17; // 0x411 -static const int kPollingSignalEvent = WM_USER + 18; // 0x412 -static const int kSleepingSignalEvent = WM_USER + 19; // 0x413 -static const int kTimerEvent = WM_USER + 20; // 0x414 +static const int kTaskRunEvent = 0x1; +static const int kTimerEvent = 0x2; // Provide range of message IDs for use in histogramming and debug display. static const int kLeastNonZeroMessageId = 1; @@ -70,26 +54,8 @@ static const int kNumberOfDistinctMessagesDisplayed = 1100; //------------------------------------------------------------------------------ -#ifndef NDEBUG -// Force exercise of polling model. -#define CHROME_MAXIMUM_WAIT_OBJECTS 8 -#else -#define CHROME_MAXIMUM_WAIT_OBJECTS MAXIMUM_WAIT_OBJECTS -#endif - -//------------------------------------------------------------------------------ -// A strategy of -1 uses the default case. All strategies are selected as -// positive integers. -// static -int MessageLoop::strategy_selector_ = -1; - -// static -void MessageLoop::SetStrategy(int strategy) { - DCHECK(-1 == strategy_selector_); - strategy_selector_ = strategy; -} +#if defined(OS_WIN) -//------------------------------------------------------------------------------ // Upon a SEH exception in this thread, it restores the original unhandled // exception filter. static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) { @@ -106,23 +72,22 @@ static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() { return top_filter; } +#endif // defined(OS_WIN) + //------------------------------------------------------------------------------ MessageLoop::MessageLoop() #pragma warning(suppress: 4355) // OK, to use |this| in the initializer list. : timer_manager_(this), - message_hwnd_(NULL), exception_restoration_(false), nestable_tasks_allowed_(true), - dispatcher_(NULL), - quit_received_(false), - quit_now_(false), - task_pump_message_pending_(false), - run_depth_(0) { + state_(NULL) { DCHECK(tls_index_) << "static initializer failed"; DCHECK(!current()) << "should only have one message loop per thread"; ThreadLocalStorage::Set(tls_index_, this); - InitMessageWnd(); +#if defined(OS_WIN) + pump_ = new base::MessagePumpWin(); +#endif } MessageLoop::~MessageLoop() { @@ -135,8 +100,7 @@ MessageLoop::~MessageLoop() { // OK, now make it so that no one can find us. ThreadLocalStorage::Set(tls_index_, NULL); - DCHECK(!dispatcher_); - DCHECK(!quit_received_ && !quit_now_); + DCHECK(!state_); // Most tasks that have not been Run() are deleted in the |timer_manager_| // destructor after we remove our tls index. We delete the tasks in our @@ -147,12 +111,6 @@ MessageLoop::~MessageLoop() { DeletePendingTasks(); } -void MessageLoop::SetThreadName(const std::string& thread_name) { - DCHECK(thread_name_.empty()); - thread_name_ = thread_name; - StartHistogrammer(); -} - void MessageLoop::AddDestructionObserver(DestructionObserver *obs) { DCHECK(this == current()); destruction_observers_.AddObserver(obs); @@ -163,26 +121,23 @@ void MessageLoop::RemoveDestructionObserver(DestructionObserver *obs) { destruction_observers_.RemoveObserver(obs); } -void MessageLoop::AddObserver(Observer *obs) { - DCHECK(this == current()); - observers_.AddObserver(obs); -} - -void MessageLoop::RemoveObserver(Observer *obs) { - DCHECK(this == current()); - observers_.RemoveObserver(obs); -} - void MessageLoop::Run() { - RunHandler(NULL, false); + AutoRunState save_state(this); + RunHandler(); } -void MessageLoop::Run(Dispatcher* dispatcher) { - RunHandler(dispatcher, false); +#if defined(OS_WIN) +void MessageLoop::Run(base::MessagePumpWin::Dispatcher* dispatcher) { + AutoRunState save_state(this); + state_->dispatcher = dispatcher; + RunHandler(); } +#endif void MessageLoop::RunAllPending() { - RunHandler(NULL, true); + AutoRunState save_state(this); + state_->quit_received = true; // Means run until we would otherwise block. + RunHandler(); } // Runs the loop in two different SEH modes: @@ -190,94 +145,43 @@ void MessageLoop::RunAllPending() { // one that calls SetUnhandledExceptionFilter(). // enable_SEH_restoration_ = true : any unhandled exception goes to the filter // that was existed before the loop was run. -void MessageLoop::RunHandler(Dispatcher* dispatcher, bool non_blocking) { +void MessageLoop::RunHandler() { +#if defined(OS_WIN) if (exception_restoration_) { LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter(); __try { - RunInternal(dispatcher, non_blocking); + RunInternal(); } __except(SEHFilter(current_filter)) { } - } else { - RunInternal(dispatcher, non_blocking); + return; } +#endif + + RunInternal(); } //------------------------------------------------------------------------------ -// IF this was just a simple PeekMessage() loop (servicing all passible work -// queues), then Windows would try to achieve the following order according to -// MSDN documentation about PeekMessage with no filter): -// * Sent messages -// * Posted messages -// * Sent messages (again) -// * WM_PAINT messages -// * WM_TIMER messages -// -// Summary: none of the above classes is starved, and sent messages has twice -// the chance of being processed (i.e., reduced service time). - -void MessageLoop::RunInternal(Dispatcher* dispatcher, bool non_blocking) { - // Preserve ability to be called recursively. - ScopedStateSave save(this); // State is restored on exit. - dispatcher_ = dispatcher; - StartHistogrammer(); +void MessageLoop::RunInternal() { DCHECK(this == current()); - // - // Process pending messages and signaled objects. - // - // Flush these queues before exiting due to a kMsgQuit or else we risk not - // shutting down properly as some operations may depend on further event - // processing. (Note: some tests may use quit_now_ to exit more swiftly, - // and leave messages pending, so don't assert the above fact). - RunTraditional(non_blocking); - DCHECK(non_blocking || quit_received_ || quit_now_); -} -void MessageLoop::RunTraditional(bool non_blocking) { - for (;;) { - // If we do any work, we may create more messages etc., and more work - // may possibly be waiting in another task group. When we (for example) - // ProcessNextWindowsMessage(), there is a good chance there are still more - // messages waiting (same thing for ProcessNextObject(), which responds to - // only one signaled object; etc.). On the other hand, when any of these - // methods return having done no work, then it is pretty unlikely that - // calling them again quickly will find any work to do. - // Finally, if they all say they had no work, then it is a good time to - // consider sleeping (waiting) for more work. - bool more_work_is_plausible = ProcessNextWindowsMessage(); - if (quit_now_) - return; - - more_work_is_plausible |= ProcessNextDeferredTask(); - more_work_is_plausible |= ProcessNextObject(); - if (more_work_is_plausible) - continue; - - if (quit_received_) - return; - - // Run any timer that is ready to run. It may create messages etc. - if (ProcessSomeTimers()) - continue; - - // We run delayed non nestable tasks only after all nestable tasks have - // run, to preserve FIFO ordering. - if (ProcessNextDelayedNonNestableTask()) - continue; - - if (non_blocking) - return; + StartHistogrammer(); - // We service APCs in WaitForWork, without returning. - WaitForWork(); // Wait (sleep) until we have work to do again. +#if defined(OS_WIN) + if (state_->dispatcher) { + pump_win()->RunWithDispatcher(this, state_->dispatcher); + return; } +#endif + + pump_->Run(this); } //------------------------------------------------------------------------------ // Wrapper functions for use in above message loop framework. bool MessageLoop::ProcessNextDelayedNonNestableTask() { - if (run_depth_ != 1) + if (state_->run_depth != 1) return false; if (delayed_non_nestable_queue_.Empty()) @@ -287,53 +191,15 @@ bool MessageLoop::ProcessNextDelayedNonNestableTask() { return true; } -bool MessageLoop::ProcessNextDeferredTask() { - ReloadWorkQueue(); - return QueueOrRunTask(NULL); -} - -bool MessageLoop::ProcessSomeTimers() { - return timer_manager_.RunSomePendingTimers(); -} - //------------------------------------------------------------------------------ void MessageLoop::Quit() { - EnsureMessageGetsPosted(kMsgQuit); -} - -bool MessageLoop::WatchObject(HANDLE object, Watcher* watcher) { - DCHECK(this == current()); - DCHECK(object); - DCHECK_NE(object, INVALID_HANDLE_VALUE); - - std::vector<HANDLE>::iterator it = find(objects_.begin(), objects_.end(), - object); - if (watcher) { - if (it == objects_.end()) { - static size_t warning_multiple = 1; - if (objects_.size() >= warning_multiple * MAXIMUM_WAIT_OBJECTS / 2) { - LOG(INFO) << "More than " << warning_multiple * MAXIMUM_WAIT_OBJECTS / 2 - << " objects being watched"; - // This DCHECK() is an artificial limitation, meant to warn us if we - // start creating too many objects. It can safely be raised to a higher - // level, and the program is designed to handle much larger values. - // Before raising this limit, make sure that there is a very good reason - // (in your debug testing) to be watching this many objects. - DCHECK(2 <= warning_multiple); - ++warning_multiple; - } - objects_.push_back(object); - watchers_.push_back(watcher); - } else { - watchers_[it - objects_.begin()] = watcher; - } - } else if (it != objects_.end()) { - std::vector<HANDLE>::difference_type index = it - objects_.begin(); - objects_.erase(it); - watchers_.erase(watchers_.begin() + index); + DCHECK(current() == this); + if (state_) { + state_->quit_received = true; + } else { + NOTREACHED() << "Must be inside Run to call Quit"; } - return true; } // Possibly called on a background thread! @@ -352,88 +218,23 @@ void MessageLoop::PostTaskInternal(Task* task) { // directly, as it could starve handling of foreign threads. Put every task // into this queue. - // Local stack variables to use IF we need to process after releasing locks. - HWND message_hwnd; + scoped_refptr<base::MessagePump> pump; { - AutoLock lock1(incoming_queue_lock_); + AutoLock locked(incoming_queue_lock_); + bool was_empty = incoming_queue_.Empty(); incoming_queue_.Push(task); if (!was_empty) return; // Someone else should have started the sub-pump. - // We may have to start the sub-pump. - AutoLock lock2(task_pump_message_lock_); - if (task_pump_message_pending_) - return; // Someone else continued the pumping. - task_pump_message_pending_ = true; // We'll send one. - message_hwnd = message_hwnd_; - } // Release both locks. - // We may have just posted a kMsgQuit, and so this instance may now destroyed! - // Do not invoke non-static methods, or members in any way! - - // PostMessage may fail, as the hwnd may have vanished due to kMsgQuit. - PostMessage(message_hwnd, kMsgPumpATask, 0, 0); -} - -void MessageLoop::InitMessageWnd() { - HINSTANCE hinst = GetModuleHandle(NULL); - - WNDCLASSEX wc = {0}; - wc.cbSize = sizeof(wc); - wc.lpfnWndProc = WndProcThunk; - wc.hInstance = hinst; - wc.lpszClassName = kWndClass; - RegisterClassEx(&wc); - - message_hwnd_ = CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, - hinst, 0); - DCHECK(message_hwnd_); -} - -// static -LRESULT CALLBACK MessageLoop::WndProcThunk( - HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { - DCHECK(MessageLoop::current()); - return MessageLoop::current()->WndProc(hwnd, message, wparam, lparam); -} - -LRESULT MessageLoop::WndProc( - HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { - if (hwnd == message_hwnd_) { - switch (message) { - case kMsgPumpATask: { - ProcessPumpReplacementMessage(); // Avoid starving paint and timer. - if (!nestable_tasks_allowed_) - return 0; - PumpATaskDuringWndProc(); - return 0; - } - - case WM_TIMER: - ProcessSomeTimers(); // Give the TimerManager a tickle. - DidChangeNextTimerExpiry(); // Maybe generate another WM_TIMER. - return 0; - - case kMsgQuit: { - // TODO(jar): bug 1300541 The following assert should be used, but - // currently too much code actually triggers the assert, especially in - // tests :-(. - // Discarding a second quit will cause a hang. - //CHECK(!quit_received_); - quit_received_ = true; - return 0; - } - } + pump = pump_; } - return ::DefWindowProc(hwnd, message, wparam, lparam); -} + // Since the incoming_queue_ may contain a task that destroys this message + // loop, we cannot exit incoming_queue_lock_ until we are done with |this|. + // We use a stack-based reference to the message pump so that we can call + // ScheduleWork outside of incoming_queue_lock_. -void MessageLoop::WillProcessMessage(const MSG& msg) { - FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg)); -} - -void MessageLoop::DidProcessMessage(const MSG& msg) { - FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg)); + pump->ScheduleWork(); } void MessageLoop::SetNestableTasksAllowed(bool allowed) { @@ -442,7 +243,7 @@ void MessageLoop::SetNestableTasksAllowed(bool allowed) { if (!nestable_tasks_allowed_) return; // Start the native pump if we are not already pumping. - EnsurePumpATaskWasPosted(); + pump_->ScheduleWork(); } } @@ -450,215 +251,7 @@ bool MessageLoop::NestableTasksAllowed() const { return nestable_tasks_allowed_; } -bool MessageLoop::ProcessNextWindowsMessage() { - MSG msg; - if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { - return ProcessMessageHelper(msg); - } - return false; -} - -bool MessageLoop::ProcessMessageHelper(const MSG& msg) { - HistogramEvent(msg.message); - - if (WM_QUIT == msg.message) { - // Repost the QUIT message so that it will be retrieved by the primary - // GetMessage() loop. - quit_now_ = true; - PostQuitMessage(static_cast<int>(msg.wParam)); - return false; - } - - // While running our main message pump, we discard kMsgPumpATask messages. - if (msg.message == kMsgPumpATask && msg.hwnd == message_hwnd_) - return ProcessPumpReplacementMessage(); - - WillProcessMessage(msg); - - if (dispatcher_) { - if (!dispatcher_->Dispatch(msg)) - quit_now_ = true; - } else { - TranslateMessage(&msg); - DispatchMessage(&msg); - } - - DidProcessMessage(msg); - return true; -} - -bool MessageLoop::ProcessPumpReplacementMessage() { - MSG msg; - bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)); - DCHECK(!have_message || kMsgPumpATask != msg.message - || msg.hwnd != message_hwnd_); - { - // Since we discarded a kMsgPumpATask message, we must update the flag. - AutoLock lock(task_pump_message_lock_); - DCHECK(task_pump_message_pending_); - task_pump_message_pending_ = false; - } - return have_message && ProcessMessageHelper(msg); -} - -// Create a mini-message-pump to force immediate processing of only Windows -// WM_PAINT messages. -void MessageLoop::PumpOutPendingPaintMessages() { - // Don't provide an infinite loop, but do enough peeking to get the job done. - // Actual common max is 4 peeks, but we'll be a little safe here. - const int kMaxPeekCount = 20; - int peek_count; - bool win2k(true); - if (win_util::GetWinVersion() > win_util::WINVERSION_2000) - win2k = false; - for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) { - MSG msg; - if (win2k) { - if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE)) - break; - } else { - if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) - break; - } - ProcessMessageHelper(msg); - if (quit_now_ ) // Handle WM_QUIT. - break; - } - // Histogram what was really being used, to help to adjust kMaxPeekCount. - DHISTOGRAM_COUNTS(L"Loop.PumpOutPendingPaintMessages Peeks", peek_count); -} - //------------------------------------------------------------------------------ -// If we handle more than the OS limit on the number of objects that can be -// waited for, we'll need to poll (sequencing through subsets of the objects -// that can be passed in a single OS wait call). The following is the polling -// interval used in that (unusual) case. (I don't have a lot of justifcation -// for the specific value, but it needed to be short enough that it would not -// add a lot of latency, and long enough that we wouldn't thrash the CPU for no -// reason... especially considering the silly user probably has a million tabs -// open, etc.) -static const int kMultipleWaitPollingInterval = 20; - -void MessageLoop::WaitForWork() { - bool original_can_run = nestable_tasks_allowed_; - int wait_flags = original_can_run ? MWMO_ALERTABLE | MWMO_INPUTAVAILABLE - : MWMO_INPUTAVAILABLE; - - bool use_polling = false; // Poll if too many objects for one OS Wait call. - for (;;) { - // Do initialization here, in case APC modifies object list. - size_t total_objs = original_can_run ? objects_.size() : 0; - - int delay; - size_t polling_index = 0; // The first unprocessed object index. - do { - size_t objs_len = - (polling_index < total_objs) ? total_objs - polling_index : 0; - if (objs_len >= CHROME_MAXIMUM_WAIT_OBJECTS) { - objs_len = CHROME_MAXIMUM_WAIT_OBJECTS - 1; - use_polling = true; - } - HANDLE* objs = objs_len ? polling_index + &objects_.front() : NULL; - - // Only wait up to the time needed by the timer manager to fire the next - // set of timers. - delay = timer_manager_.GetCurrentDelay(); - if (use_polling && delay > kMultipleWaitPollingInterval) - delay = kMultipleWaitPollingInterval; - if (delay < 0) // Negative value means no timers waiting. - delay = INFINITE; - - DWORD result; - result = MsgWaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs, - delay, QS_ALLINPUT, wait_flags); - - if (WAIT_IO_COMPLETION == result) { - HistogramEvent(kSleepingApcEvent); - // We'll loop here when we service an APC. At it currently stands, - // *ONLY* the IO thread uses *any* APCs, so this should have no impact - // on the UI thread. - break; // Break to outer loop, and waitforwork() again. - } - - // Use unsigned type to simplify range detection; - size_t signaled_index = result - WAIT_OBJECT_0; - if (signaled_index < objs_len) { - SignalWatcher(polling_index + signaled_index); - HistogramEvent(kSleepingSignalEvent); - return; // We serviced a signaled object. - } - - if (objs_len == signaled_index) - return; // A WM_* message is available. - - DCHECK_NE(WAIT_FAILED, result) << GetLastError(); - - DCHECK(!objs || result == WAIT_TIMEOUT); - if (!use_polling) - return; - polling_index += objs_len; - } while (polling_index < total_objs); - // For compatibility, we didn't return sooner. This made us do *some* wait - // call(s) before returning. This will probably change in next rev. - if (!delay || !timer_manager_.GetCurrentDelay()) - return; // No work done, but timer is ready to fire. - } -} - -// Note: MsgWaitMultipleObjects() can't take a nil list, and that is why I had -// to use SleepEx() to handle APCs when there were no objects. -bool MessageLoop::ProcessNextObject() { - if (!nestable_tasks_allowed_) - return false; - - size_t total_objs = objects_.size(); - if (!total_objs) { - return false; - } - - size_t polling_index = 0; // The first unprocessed object index. - do { - DCHECK(polling_index < total_objs); - size_t objs_len = total_objs - polling_index; - if (objs_len >= CHROME_MAXIMUM_WAIT_OBJECTS) - objs_len = CHROME_MAXIMUM_WAIT_OBJECTS - 1; - HANDLE* objs = polling_index + &objects_.front(); - - // Identify 1 pending object, or allow an IO APC to be completed. - DWORD result = WaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs, - FALSE, // 1 signal is sufficient. - 0, // Wait 0ms. - false); // Not alertable (no APC). - - // Use unsigned type to simplify range detection; - size_t signaled_index = result - WAIT_OBJECT_0; - if (signaled_index < objs_len) { - SignalWatcher(polling_index + signaled_index); - HistogramEvent(kPollingSignalEvent); - return true; // We serviced a signaled object. - } - - // If an handle is invalid, it will be WAIT_FAILED. - DCHECK_EQ(WAIT_TIMEOUT, result) << GetLastError(); - polling_index += objs_len; - } while (polling_index < total_objs); - return false; // We serviced nothing. -} - -bool MessageLoop::SignalWatcher(size_t object_index) { - BeforeTaskRunSetup(); - DCHECK(objects_.size() > object_index); - // On reception of OnObjectSignaled() to a Watcher object, it may call - // WatchObject(). watchers_ and objects_ will be modified. This is - // expected, so don't be afraid if, while tracing a OnObjectSignaled() - // function, the corresponding watchers_[result] is inexistant. - watchers_[object_index]->OnObjectSignaled(objects_[object_index]); - // Signaled objects tend to be removed from the watch list, and then added - // back (appended). As a result, they move to the end of the objects_ array, - // and this should make their service "fair" (no HANDLEs should be starved). - AfterTaskRunRestore(); - return true; -} bool MessageLoop::RunTimerTask(Timer* timer) { HistogramEvent(kTimerEvent); @@ -705,16 +298,15 @@ bool MessageLoop::QueueOrRunTask(Task* new_task) { // Execute oldest task. while (!work_queue_.Empty()) { Task* task = work_queue_.Pop(); - if (task->nestable() || run_depth_ == 1) { + if (task->nestable() || state_->run_depth == 1) { RunTask(task); // Show that we ran a task (Note: a new one might arrive as a // consequence!). return true; - } else { - // We couldn't run the task now because we're in a nested message loop - // and the task isn't nestable. - delayed_non_nestable_queue_.Push(task); } + // We couldn't run the task now because we're in a nested message loop + // and the task isn't nestable. + delayed_non_nestable_queue_.Push(task); } // Nothing happened. @@ -743,54 +335,12 @@ void MessageLoop::AfterTaskRunRestore() { nestable_tasks_allowed_ = true; } -void MessageLoop::PumpATaskDuringWndProc() { - // TODO(jar): Perchance we should check on signaled objects here?? - // Signals are generally starved during a native message loop. Even if we - // try to service a signaled object now, we wouldn't automatically get here - // (i.e., the native pump would not re-start) when the next object was - // signaled. If we really want to avoid starving signaled objects, we need - // to translate them into Tasks that can be passed in via PostTask. - // If these native message loops (and sub-pumping activities) are short - // lived, then the starvation won't be that long :-/. - - if (!ProcessNextDeferredTask()) - return; // Nothing to do, so lets stop the sub-pump. - - // We ran a task, so make sure we come back and try to run more tasks. - EnsurePumpATaskWasPosted(); -} - -void MessageLoop::EnsurePumpATaskWasPosted() { - { - AutoLock lock(task_pump_message_lock_); - if (task_pump_message_pending_) - return; // Someone else continued the pumping. - task_pump_message_pending_ = true; // We'll send one. - } - EnsureMessageGetsPosted(kMsgPumpATask); -} - -void MessageLoop::EnsureMessageGetsPosted(int message) const { - const int kRetryCount = 30; - const int kSleepDurationWhenFailing = 100; - for (int i = 0; i < kRetryCount; ++i) { - // Posting to our own windows should always succeed. If it doesn't we're in - // big trouble. - if (PostMessage(message_hwnd_, message, 0, 0)) - return; - Sleep(kSleepDurationWhenFailing); - } - LOG(FATAL) << "Crash with last error " << GetLastError(); - int* p = NULL; - *p = 0; // Crash. -} - void MessageLoop::ReloadWorkQueue() { // We can improve performance of our loading tasks from incoming_queue_ to - // work_queue_ by wating until the last minute (work_queue_ is empty) to load. - // That reduces the number of locks-per-task significantly when our queues get - // large. The optimization is disabled on threads that make use of the - // priority queue (prioritization requires all our tasks to be in the + // work_queue_ by waiting until the last minute (work_queue_ is empty) to + // load. That reduces the number of locks-per-task significantly when our + // queues get large. The optimization is disabled on threads that make use + // of the priority queue (prioritization requires all our tasks to be in the // work_queue_ ASAP). if (!work_queue_.Empty() && !work_queue_.use_priority_queue()) return; // Wait till we *really* need to lock and load. @@ -833,42 +383,65 @@ void MessageLoop::DeletePendingTasks() { } void MessageLoop::DidChangeNextTimerExpiry() { -#if defined(OS_WIN) - // - // We would *like* to provide high resolution timers. Windows timers using - // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup - // mechanism because the application can enter modal windows loops where it - // is not running our MessageLoop; the only way to have our timers fire in - // these cases is to post messages there. - // - // To provide sub-10ms timers, we process timers directly from our run loop. - // For the common case, timers will be processed there as the run loop does - // its normal work. However, we *also* set the system timer so that WM_TIMER - // events fire. This mops up the case of timers not being able to work in - // modal message loops. It is possible for the SetTimer to pop and have no - // pending timers, because they could have already been processed by the - // run loop itself. - // - // We use a single SetTimer corresponding to the timer that will expire - // soonest. As new timers are created and destroyed, we update SetTimer. - // Getting a spurrious SetTimer event firing is benign, as we'll just be - // processing an empty timer queue. - // int delay = timer_manager_.GetCurrentDelay(); - if (delay == -1) { - KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); + if (delay == -1) + return; + + // Simulates malfunctioning, early firing timers. Pending tasks should only + // be invoked when the delay they specify has elapsed. + if (timer_manager_.use_broken_delay()) + delay = 10; + + pump_->ScheduleDelayedWork(TimeDelta::FromMilliseconds(delay)); +} + +bool MessageLoop::DoWork() { + ReloadWorkQueue(); + return QueueOrRunTask(NULL); +} + +bool MessageLoop::DoDelayedWork(TimeDelta* next_delay) { + bool did_work = timer_manager_.RunSomePendingTimers(); + + // We may not have run any timers, but we may still have future timers to + // run, so we need to inform the pump again of pending timers. + *next_delay = TimeDelta::FromMilliseconds(timer_manager_.GetCurrentDelay()); + + return did_work; +} + +bool MessageLoop::DoIdleWork() { + if (ProcessNextDelayedNonNestableTask()) + return true; + + if (state_->quit_received) + pump_->Quit(); + + return false; +} + +//------------------------------------------------------------------------------ +// MessageLoop::AutoRunState + +MessageLoop::AutoRunState::AutoRunState(MessageLoop* loop) : loop_(loop) { + // Make the loop reference us. + previous_state_ = loop_->state_; + if (previous_state_) { + run_depth = previous_state_->run_depth + 1; } else { - if (delay < USER_TIMER_MINIMUM) - delay = USER_TIMER_MINIMUM; - // Simulates malfunctioning, early firing timers. Pending tasks should only - // be invoked when the delay they specify has elapsed. - if (timer_manager_.use_broken_delay()) - delay = 10; - // Create a WM_TIMER event that will wake us up to check for any pending - // timers (in case we are running within a nested, external sub-pump). - SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay, NULL); + run_depth = 1; } -#endif // defined(OS_WIN) + loop_->state_ = this; + + // Initialize the other fields: + quit_received = false; +#if defined(OS_WIN) + dispatcher = NULL; +#endif +} + +MessageLoop::AutoRunState::~AutoRunState() { + loop_->state_ = previous_state_; } //------------------------------------------------------------------------------ @@ -963,6 +536,7 @@ void MessageLoop::EnableHistogrammer(bool enable) { void MessageLoop::StartHistogrammer() { if (enable_histogrammer_ && !message_histogram_.get() && StatisticsRecorder::WasStarted()) { + DCHECK(!thread_name_.empty()); message_histogram_.reset(new LinearHistogram( ASCIIToWide("MsgLoop:" + thread_name_).c_str(), kLeastNonZeroMessageId, @@ -978,11 +552,6 @@ void MessageLoop::HistogramEvent(int event) { message_histogram_->Add(event); } -// Add one undocumented windows message to clean up our display. -#ifndef WM_SYSTIMER -#define WM_SYSTIMER 0x118 -#endif - // Provide a macro that takes an expression (such as a constant, or macro // constant) and creates a pair to initalize an array of pairs. In this case, // our pair consists of the expressions value, and the "stringized" version @@ -999,33 +568,13 @@ void MessageLoop::HistogramEvent(int event) { // in the pair (i.e., the quoted string) when printing out a histogram. #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name}, - // static const LinearHistogram::DescriptionPair MessageLoop::event_descriptions_[] = { - // Only provide an extensive list in debug mode. In release mode, we have to - // read the octal values.... but we save about 450 strings, each of length - // 10 from our binary image. -#ifndef NDEBUG - // Prepare to include a list of names provided in a special header file4. -#define A_NAMED_MESSAGE_FROM_WINUSER_H VALUE_TO_NUMBER_AND_NAME -#include "base/windows_message_list.h" -#undef A_NAMED_MESSAGE_FROM_WINUSER_H - // Add an undocumented message that appeared in our list :-/. - VALUE_TO_NUMBER_AND_NAME(WM_SYSTIMER) -#endif // NDEBUG - // Provide some pretty print capability in our histogram for our internal // messages. - // Values we use for WM_USER+n - VALUE_TO_NUMBER_AND_NAME(kMsgPumpATask) - VALUE_TO_NUMBER_AND_NAME(kMsgQuit) - // A few events we handle (kindred to messages), and used to profile actions. VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent) - VALUE_TO_NUMBER_AND_NAME(kSleepingApcEvent) - VALUE_TO_NUMBER_AND_NAME(kSleepingSignalEvent) - VALUE_TO_NUMBER_AND_NAME(kPollingSignalEvent) VALUE_TO_NUMBER_AND_NAME(kTimerEvent) {-1, NULL} // The list must be null terminated, per API to histogram. diff --git a/base/message_loop.h b/base/message_loop.h index 8ff2c62..afcab64 100644 --- a/base/message_loop.h +++ b/base/message_loop.h @@ -27,8 +27,8 @@ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -#ifndef BASE_MESSAGE_LOOP_H__ -#define BASE_MESSAGE_LOOP_H__ +#ifndef BASE_MESSAGE_LOOP_H_ +#define BASE_MESSAGE_LOOP_H_ #include <deque> #include <queue> @@ -36,33 +36,39 @@ #include <vector> #include "base/histogram.h" +#include "base/message_pump.h" #include "base/observer_list.h" -#include "base/id_map.h" +#include "base/ref_counted.h" #include "base/task.h" #include "base/timer.h" #include "base/thread_local_storage.h" -// -// A MessageLoop is used to process events for a particular thread. -// There is at most one MessageLoop instance per thread. -// Events include Windows Message Queue messages, Tasks submitted to PostTask -// or managed by TimerManager, APC calls (as time permits), and signals sent to -// a registered set of HANDLES. -// Processing events corresponds (respectively) to dispatching Windows messages, -// running Tasks, yielding time to APCs, and calling Watchers when the -// corresponding HANDLE is signaled. +#if defined(OS_WIN) +// We need this to declare base::MessagePumpWin::Dispatcher, which we should +// really just eliminate. +#include "base/message_pump_win.h" +#endif +// A MessageLoop is used to process events for a particular thread. There is +// at most one MessageLoop instance per thread. +// +// Events include at a minimum Task instances submitted to PostTask or those +// managed by TimerManager. Depending on the type of message pump used by the +// MessageLoop other events such as UI messages may be processed. On Windows +// APC calls (as time permits) and signals sent to a registered set of HANDLEs +// may also be processed. // // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called // on the thread where the MessageLoop's Run method executes. // -// WARNING: MessageLoop has task reentrancy protection. This means that if a +// NOTE: MessageLoop has task reentrancy protection. This means that if a // task is being processed, a second task cannot start until the first task is -// finished. Reentrancy can happen when processing a task, and an inner message -// pump is created. That inner pump then processes windows messages which could -// implicitly start an inner task. Inner messages pumps are created with dialogs -// (DialogBox), common dialogs (GetOpenFileName), OLE functions (DoDragDrop), -// printer functions (StartDoc) and *many* others. +// finished. Reentrancy can happen when processing a task, and an inner +// message pump is created. That inner pump then processes native messages +// which could implicitly start an inner task. Inner message pumps are created +// with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions +// (DoDragDrop), printer functions (StartDoc) and *many* others. +// // Sample workaround when inner task processing is needed: // bool old_state = MessageLoop::current()->NestableTasksAllowed(); // MessageLoop::current()->SetNestableTasksAllowed(true); @@ -70,142 +76,13 @@ // MessageLoop::current()->SetNestableTasksAllowed(old_state); // // Process hr (the result returned by DoDragDrop(). // -// Please be **SURE** your task is reentrant and all global variables are stable -// and accessible before calling SetNestableTasksAllowed(true). -// - -// Message loop has several distinct functions. It provides message pumps, -// responds to windows message dispatches, manipulates queues of Tasks. -// The most central operation is the implementation of message pumps, along with -// several subtleties. - -// MessageLoop currently implements several different message pumps. A message -// pump is (traditionally) something that reads from an incoming queue, and then -// dispatches the work. -// -// The first message pump, RunTraditional(), is among other things a -// traditional Windows Message pump. It contains a nearly infinite loop that -// peeks out messages, and then dispatches them. -// Intermixed with those peeks are checks on a queue of Tasks, checks for -// signaled objects, and checks to see if TimerManager has tasks to run. -// When there are no events to be serviced, this pump goes into a wait state. -// For 99.99% of all events, this first message pump handles all processing. -// -// When a task, or windows event, invokes on the stack a native dialog box or -// such, that window typically provides a bare bones (native?) message pump. -// That bare-bones message pump generally supports little more than a peek of -// the Windows message queue, followed by a dispatch of the peeked message. -// MessageLoop extends that bare-bones message pump to also service Tasks, at -// the cost of some complexity. -// The basic structure of the extension (refered to as a sub-pump) is that a -// special message,kMsgPumpATask, is repeatedly injected into the Windows -// Message queue. Each time the kMsgPumpATask message is peeked, checks are made -// for an extended set of events, including the availability of Tasks to run. -// -// After running a task, the special message kMsgPumpATask is again posted to -// the Windows Message queue, ensuring a future time slice for processing a -// future event. -// -// To prevent flooding the Windows Message queue, care is taken to be sure that -// at most one kMsgPumpATask message is EVER pending in the Winow's Message -// queue. +// Please be SURE your task is reentrant (nestable) and all global variables +// are stable and accessible before calling SetNestableTasksAllowed(true). // -// There are a few additional complexities in this system where, when there are -// no Tasks to run, this otherwise infinite stream of messages which drives the -// sub-pump is halted. The pump is automatically re-started when Tasks are -// queued. -// -// A second complexity is that the presence of this stream of posted tasks may -// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. -// Such paint and timer events always give priority to a posted message, such as -// kMsgPumpATask messages. As a result, care is taken to do some peeking in -// between the posting of each kMsgPumpATask message (i.e., after kMsgPumpATask -// is peeked, and before a replacement kMsgPumpATask is posted). -// -// -// NOTE: Although it may seem odd that messages are used to start and stop this -// flow (as opposed to signaling objects, etc.), it should be understood that -// the native message pump will *only* respond to messages. As a result, it is -// an excellent choice. It is also helpful that the starter messages that are -// placed in the queue when new task arrive also awakens the RunTraditional() -// loop. - -//------------------------------------------------------------------------------ -class MessageLoop { +class MessageLoop : public base::MessagePump::Delegate { public: - - // Select a non-default strategy for serving pending requests, that is to be - // used by all MessageLoop instances. This is called only once before - // constructing any instances. - static void SetStrategy(int strategy); static void EnableHistogrammer(bool enable_histogrammer); -#ifdef OS_WIN - // Used with WatchObject to asynchronously monitor the signaled state of a - // HANDLE object. - class Watcher { - public: - virtual ~Watcher() {} - // Called from MessageLoop::Run when a signalled object is detected. - virtual void OnObjectSignaled(HANDLE object) = 0; - }; - - // Have the current thread's message loop watch for a signaled object. - // Pass a null watcher to stop watching the object. - bool WatchObject(HANDLE, Watcher*); - - // An Observer is an object that receives global notifications from the - // MessageLoop. - // - // NOTE: An Observer implementation should be extremely fast! - // - class Observer { - public: - virtual ~Observer() {} - - // This method is called before processing a message. - // The message may be undefined in which case msg.message is 0 - virtual void WillProcessMessage(const MSG& msg) = 0; - - // This method is called when control returns from processing a UI message. - // The message may be undefined in which case msg.message is 0 - virtual void DidProcessMessage(const MSG& msg) = 0; - }; - - // Add an Observer, which will start receiving notifications immediately. - void AddObserver(Observer* observer); - - // Remove an Observer. It is safe to call this method while an Observer is - // receiving a notification callback. - void RemoveObserver(Observer* observer); - - // Give a chance to code processing additional messages to notify the - // message loop observers that another message has been processed. - void WillProcessMessage(const MSG& msg); - void DidProcessMessage(const MSG& msg); - - // Dispatcher is used during a nested invocation of Run to dispatch events. - // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not - // dispatch events (or invoke TranslateMessage), rather every message is - // passed to Dispatcher's Dispatch method for dispatch. It is up to the - // Dispatcher to dispatch, or not, the event. - // - // The nested loop is exited by either posting a quit, or returning false - // from Dispatch. - class Dispatcher { - public: - virtual ~Dispatcher() {} - // Dispatches the event. If true is returned processing continues as - // normal. If false is returned, the nested loop exits immediately. - virtual bool Dispatch(const MSG& msg) = 0; - }; -#else // !OS_WIN - // On non-Windows platforms, the Dispatcher does not exist, but we allow the - // typename to exist for convenience. On non-Windows platforms, a Dispatcher - // pointer should always be NULL. - class Dispatcher; -#endif // OS_* - // A DestructionObserver is notified when the current MessageLoop is being // destroyed. These obsevers are notified prior to MessageLoop::current() // being changed to return NULL. This gives interested parties the chance to @@ -283,19 +160,18 @@ class MessageLoop { // Return as soon as all items that can be run are taken care of. void RunAllPending(); - // See description of Dispatcher for how Run uses Dispatcher. - void Run(Dispatcher* dispatcher); - // Signals the Run method to return after it is done processing all pending - // messages. This method may be called from any thread, but no effort is - // made to support concurrent calls to this method from multiple threads. + // messages. This method may only be called on the same thread that called + // Run, and Run must still be on the call stack. + // + // Use QuitTask if you need to Quit another thread's MessageLoop, but note + // that doing so is fairly dangerous if the target thread makes nested calls + // to MessageLoop::Run. The problem being that you won't know which nested + // run loop you are quiting, so be careful! // - // For example, the first call to Quit may lead to the MessageLoop being - // deleted once its Run method returns, so a second call from another thread - // could be problematic. void Quit(); - // Invokes Quit on the current MessageLoop when run. Useful to schedule an + // Invokes Quit on the current MessageLoop when run. Useful to schedule an // arbitrary MessageLoop to Quit. class QuitTask : public Task { public: @@ -310,8 +186,10 @@ class MessageLoop { ~MessageLoop(); // Optional call to connect the thread name with this loop. - void SetThreadName(const std::string& thread_name); - void set_thread_name(const std::string& name) { SetThreadName(name); } + void set_thread_name(const std::string& thread_name) { + DCHECK(thread_name_.empty()) << "Should not rename this thread!"; + thread_name_ = thread_name; + } const std::string& thread_name() const { return thread_name_; } // Returns the MessageLoop object for the current thread, or null if none. @@ -348,51 +226,62 @@ class MessageLoop { exception_restoration_ = restore; } - // Public entry point for TimerManager to request the Run() of a task. If we - // created the task during an PostTask(FROM_HERE, ), then we will also perform - // destructions, and we'll have the option of queueing the task. If we didn't - // create the timer, then we will Run it immediately. - bool RunTimerTask(Timer* timer); + //---------------------------------------------------------------------------- +#if defined(OS_WIN) + // Backwards-compat for the old Windows-specific MessageLoop API. These APIs + // are deprecated. - // Since some Timer's are owned by MessageLoop, the TimerManager (when it is - // being destructed) passses us the timers to discard (without doing a Run()). - void DiscardTimer(Timer* timer); + typedef base::MessagePumpWin::Dispatcher Dispatcher; + typedef base::MessagePumpWin::Observer Observer; + typedef base::MessagePumpWin::Watcher Watcher; - // Applications can call this to encourage us to process all pending WM_PAINT - // messages. - // This method will process all paint messages the Windows Message queue can - // provide, up to some fixed number (to avoid any infinite loops). - void PumpOutPendingPaintMessages(); + void Run(Dispatcher* dispatcher); + + void WatchObject(HANDLE object, Watcher* watcher) { + pump_win()->WatchObject(object, watcher); + } + void AddObserver(Observer* observer) { + pump_win()->AddObserver(observer); + } + void RemoveObserver(Observer* observer) { + pump_win()->RemoveObserver(observer); + } + void WillProcessMessage(const MSG& message) { + pump_win()->WillProcessMessage(message); + } + void DidProcessMessage(const MSG& message) { + pump_win()->DidProcessMessage(message); + } + void PumpOutPendingPaintMessages() { + pump_win()->PumpOutPendingPaintMessages(); + } +#endif // defined(OS_WIN) //---------------------------------------------------------------------------- private: friend class TimerManager; // So it can call DidChangeNextTimerExpiry - struct ScopedStateSave { - explicit ScopedStateSave(MessageLoop* loop) - : loop_(loop), - dispatcher_(loop->dispatcher_), - quit_now_(loop->quit_now_), - quit_received_(loop->quit_received_), - run_depth_(loop->run_depth_) { - loop->quit_now_ = loop->quit_received_ = false; - ++loop->run_depth_; - } + struct RunState { + // Used to count how many Run() invocations are on the stack. + int run_depth; - ~ScopedStateSave() { - loop_->run_depth_ = run_depth_; - loop_->quit_received_ = quit_received_; - loop_->quit_now_ = quit_now_; - loop_->dispatcher_ = dispatcher_; - } + // Used to record that Quit() was called, or that we should quit the pump + // once it becomes idle. + bool quit_received; +#if defined(OS_WIN) + base::MessagePumpWin::Dispatcher* dispatcher; +#endif + }; + + class AutoRunState : RunState { + public: + AutoRunState(MessageLoop* loop); + ~AutoRunState(); private: MessageLoop* loop_; - Dispatcher* dispatcher_; - bool quit_now_; - bool quit_received_; - int run_depth_; - }; // struct ScopedStateSave + RunState* previous_state_; + }; // A prioritized queue with interface that mostly matches std::queue<>. // For debugging/performance testing, you can swap in std::queue<Task*>. @@ -459,86 +348,36 @@ class MessageLoop { DISALLOW_EVIL_CONSTRUCTORS(OptionallyPrioritizedTaskQueue); }; -#ifdef OS_WIN - void InitMessageWnd(); - - // Windows procedure for message_hwnd_. - static LRESULT CALLBACK WndProcThunk( - HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam); - LRESULT WndProc( - HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam); -#endif // OS_WIN +#if defined(OS_WIN) + base::MessagePumpWin* pump_win() { + return static_cast<base::MessagePumpWin*>(pump_.get()); + } +#endif // A function to encapsulate all the exception handling capability in the - // stacks around the running of a main message loop. - // It will run the message loop in a SEH try block or not depending on the - // set_SEH_restoration() flag. - void RunHandler(Dispatcher* dispatcher, bool non_blocking); + // stacks around the running of a main message loop. It will run the message + // loop in a SEH try block or not depending on the set_SEH_restoration() + // flag. + void RunHandler(); // A surrounding stack frame around the running of the message loop that // supports all saving and restoring of state, as is needed for any/all (ugly) // recursive calls. - void RunInternal(Dispatcher* dispatcher, bool non_blocking); + void RunInternal(); - // An extended message loop (message pump) that loops mostly forever, and - // processes task, signals, timers, etc. - // If non-blocking is set, it will return rather than wait for new things to - // arrive for processing. - void RunTraditional(bool non_blocking); - - //---------------------------------------------------------------------------- - // A list of method wrappers with identical calling signatures (no arguments) - // for use in the main message loop. Method pointers to these methods may be - // called round-robin from the main message loop, on any desired schedule. - - bool ProcessNextDeferredTask(); + // Called to process any delayed non-nestable tasks. bool ProcessNextDelayedNonNestableTask(); - bool ProcessNextObject(); - bool ProcessSomeTimers(); //---------------------------------------------------------------------------- - // Process some pending messages. Returns true if a message was processed. - bool ProcessNextWindowsMessage(); - - // Wait until either an object is signaled, a message is available, a timer - // needs attention, or our incoming_queue_ has gotten a task. - // Handle (without returning) any APCs (only IO thread currently has APCs.) - void WaitForWork(); - -#ifdef OS_WIN - // Helper function for processing window messages. This includes handling - // WM_QUIT, message translation and dispatch, etc. - // - // If dispatcher_ is non-NULL this method does NOT dispatch the event, instead - // it invokes Dispatch on the dispatcher_. - bool ProcessMessageHelper(const MSG& msg); -#endif // OS_WIN - - // When we encounter a kMsgPumpATask, the following helper can be called to - // peek and process a replacement message, such as a WM_PAINT or WM_TIMER. - // The goal is to make the kMsgPumpATask as non-intrusive as possible, even - // though a continuous stream of such messages are posted. This method - // carefully peeks a message while there is no chance for a kMsgPumpATask to - // be pending, then releases the lock (allowing a replacement kMsgPumpATask to - // possibly be posted), and finally dispatches that peeked replacement. - // Note that the re-post of kMsgPumpATask may be asynchronous to this thread!! - bool ProcessPumpReplacementMessage(); - - // Signals a watcher if a wait falls within the range of objects we're - // waiting on. object_index is the offset in objects_ that was signaled. - // Returns true if an object was signaled. - bool SignalWatcher(size_t object_index); - // Run a work_queue_ task or new_task, and delete it (if it was processed by // PostTask). If there are queued tasks, the oldest one is executed and // new_task is queued. new_task is optional and can be NULL. In this NULL // case, the method will run one pending task (if any exist). Returns true if - // it executes a task. - // Queued tasks accumulate only when there is a nonreentrant task currently - // processing, in which case the new_task is appended to the list - // work_queue_. Such re-entrancy generally happens when an unrequested - // message pump (typical of a native dialog) is executing in the context of a - // task. + // it executes a task. Queued tasks accumulate only when there is a + // non-nestable task currently processing, in which case the new_task is + // appended to the list work_queue_. Such re-entrancy generally happens when + // an unrequested message pump (typical of a native dialog) is executing in + // the context of a task. bool QueueOrRunTask(Task* new_task); // Runs the specified task and deletes it. @@ -549,14 +388,6 @@ class MessageLoop { void BeforeTaskRunSetup(); void AfterTaskRunRestore(); - // When processing messages in our MessageWndProc(), we are sometimes called - // by a native message pump (i.e., We are not called out of our Run() pump). - // In those cases, we need to process tasks during the Windows Message - // callback. This method processes a task, and also posts a new kMsgPumpATask - // messages to the Windows Msg Queue so that we are called back later (to - // process additional tasks). - void PumpATaskDuringWndProc(); - // Load tasks from the incoming_queue_ into work_queue_ if the latter is // empty. The former requires a lock to access, while the latter is directly // accessible on this thread. @@ -566,19 +397,27 @@ class MessageLoop { // destructor to make sure all the task's destructors get called. void DeletePendingTasks(); - // Make sure a kPumpATask message is in flight, which starts/continues the - // sub-pump. - void EnsurePumpATaskWasPosted(); - - // Do a PostMessage(), and crash if we can't eventually do the post. - void EnsureMessageGetsPosted(int message) const; - // Post a task to our incomming queue. void PostTaskInternal(Task* task); // Called by the TimerManager when its next timer changes. void DidChangeNextTimerExpiry(); + // Entry point for TimerManager to request the Run() of a task. If we + // created the task during an PostTask(FROM_HERE, ), then we will also + // perform destructions, and we'll have the option of queueing the task. If + // we didn't create the timer, then we will Run it immediately. + bool RunTimerTask(Timer* timer); + + // Since some Timer's are owned by MessageLoop, the TimerManager (when it is + // being destructed) passses us the timers to discard (without doing a Run()). + void DiscardTimer(Timer* timer); + + // base::MessagePump::Delegate methods: + virtual bool DoWork(); + virtual bool DoDelayedWork(TimeDelta* next_delay); + virtual bool DoIdleWork(); + // Start recording histogram info about events and action IF it was enabled // and IF the statistics recorder can accept a registration of our histogram. void StartHistogrammer(); @@ -589,7 +428,6 @@ class MessageLoop { void HistogramEvent(int event); static TLSSlot tls_index_; - static int strategy_selector_; static const LinearHistogram::DescriptionPair event_descriptions_[]; static bool enable_histogrammer_; @@ -604,29 +442,15 @@ class MessageLoop { // there was no real prioritization. OptionallyPrioritizedTaskQueue work_queue_; -#ifdef OS_WIN - HWND message_hwnd_; - - // A vector of objects (and corresponding watchers) that are routinely - // serviced by this message loop's pump. - std::vector<HANDLE> objects_; - std::vector<Watcher*> watchers_; - - ObserverList<Observer> observers_; -#endif // OS_WIN + scoped_refptr<base::MessagePump> pump_; ObserverList<DestructionObserver> destruction_observers_; - IDMap<Task> timed_tasks_; // A recursion block that prevents accidentally running additonal tasks when // insider a (accidentally induced?) nested message pump. bool nestable_tasks_allowed_; bool exception_restoration_; - Dispatcher* dispatcher_; - bool quit_received_; - bool quit_now_; - std::string thread_name_; // A profiling histogram showing the counts of various messages and events. scoped_ptr<LinearHistogram> message_histogram_; @@ -644,17 +468,9 @@ class MessageLoop { // will execute once we're out of nested message loops. TaskQueue delayed_non_nestable_queue_; - // Indicate if there is a kMsgPumpATask message pending in the Windows Message - // queue. There is at most one such message, and it can drive execution of - // tasks when a native message pump is running. - bool task_pump_message_pending_; - // Protect access to task_pump_message_pending_. - Lock task_pump_message_lock_; - - // Used to count how many Run() invocations are on the stack. - int run_depth_; + RunState* state_; - DISALLOW_EVIL_CONSTRUCTORS(MessageLoop); + DISALLOW_COPY_AND_ASSIGN(MessageLoop); }; -#endif // BASE_MESSAGE_LOOP_H__ +#endif // BASE_MESSAGE_LOOP_H_ diff --git a/base/message_pump.h b/base/message_pump.h index 8e80fc8..90336df 100644 --- a/base/message_pump.h +++ b/base/message_pump.h @@ -50,8 +50,11 @@ class MessagePump : public RefCountedThreadSafe<MessagePump> { // Called from within Run in response to ScheduleDelayedWork or when the // message pump would otherwise sleep waiting for more work. Returns true // to indicate that delayed work was done. DoIdleWork will not be called - // if DoDelayedWork returns true. - virtual bool DoDelayedWork() = 0; + // if DoDelayedWork returns true. Upon return |next_delay| indicates the + // next delayed work interval. If |next_delay| is negative, then the queue + // of future delayed work (timer events) is currently empty, and no + // additional calls to this function need to be scheduled. + virtual bool DoDelayedWork(TimeDelta* next_delay) = 0; // Called from within Run just before the message pump goes to sleep. // Returns true to indicate that idle work was done. diff --git a/base/message_pump_win.cc b/base/message_pump_win.cc index d07b4f7..f290e44 100644 --- a/base/message_pump_win.cc +++ b/base/message_pump_win.cc @@ -182,6 +182,7 @@ void MessagePumpWin::ScheduleDelayedWork(const TimeDelta& delay) { // processing an empty timer queue. // int delay_msec = static_cast<int>(delay.InMilliseconds()); + DCHECK(delay_msec >= 0); if (delay_msec < USER_TIMER_MINIMUM) delay_msec = USER_TIMER_MINIMUM; @@ -249,7 +250,10 @@ void MessagePumpWin::HandleTimerMessage() { if (!state_) return; - state_->delegate->DoDelayedWork(); + TimeDelta next_delay; + state_->delegate->DoDelayedWork(&next_delay); + if (next_delay >= TimeDelta::FromMilliseconds(0)) + ScheduleDelayedWork(next_delay); } void MessagePumpWin::DoRunLoop() { @@ -291,7 +295,15 @@ void MessagePumpWin::DoRunLoop() { if (more_work_is_plausible) continue; - more_work_is_plausible = state_->delegate->DoDelayedWork(); + TimeDelta next_delay; + more_work_is_plausible = state_->delegate->DoDelayedWork(&next_delay); + // If we did not process any delayed work, then we can assume that our + // existing WM_TIMER if any will fire when delayed work should run. We + // don't want to disturb that timer if it is already in flight. However, + // if we did do all remaining delayed work, then lets kill the WM_TIMER. + if (more_work_is_plausible && + next_delay < TimeDelta::FromMilliseconds(0)) + KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); if (state_->should_quit) break; |