diff options
author | darin@google.com <darin@google.com@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-08-15 07:31:20 +0000 |
---|---|---|
committer | darin@google.com <darin@google.com@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-08-15 07:31:20 +0000 |
commit | ea15e98a9353494df754a11fb49f0e4b8c0d4789 (patch) | |
tree | 9878dbb01f722a4827d6529d994c38960fa7978a | |
parent | 62d22d763ad4d04d274fb156ee58cf546bab2064 (diff) | |
download | chromium_src-ea15e98a9353494df754a11fb49f0e4b8c0d4789.zip chromium_src-ea15e98a9353494df754a11fb49f0e4b8c0d4789.tar.gz chromium_src-ea15e98a9353494df754a11fb49f0e4b8c0d4789.tar.bz2 |
rollback portions of r928 to test to see if it impacts perf
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@936 0039d316-1c4b-4281-b951-d872f2087c98
-rw-r--r-- | base/message_loop.cc | 695 | ||||
-rw-r--r-- | base/message_loop.h | 414 |
2 files changed, 858 insertions, 251 deletions
diff --git a/base/message_loop.cc b/base/message_loop.cc index b920167..18f4448 100644 --- a/base/message_loop.cc +++ b/base/message_loop.cc @@ -27,13 +27,14 @@ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -#include "base/message_loop.h" - #include <algorithm> +#include "base/message_loop.h" + #include "base/logging.h" #include "base/string_util.h" #include "base/thread_local_storage.h" +#include "base/win_util.h" // a TLS index to the message loop for the current thread // Note that if we start doing complex stuff in other static initializers @@ -42,10 +43,25 @@ //------------------------------------------------------------------------------ +static const wchar_t kWndClass[] = L"Chrome_MessageLoopWindow"; + +// Windows Message numbers handled by WindowMessageProc. + +// Message sent to get an additional time slice for pumping (processing) another +// task (a series of such messages creates a continuous task pump). +static const int kMsgPumpATask = WM_USER + 1; + +// Message sent by Quit() to cause our main message pump to terminate as soon as +// all pending task and message queues have been emptied. +static const int kMsgQuit = WM_USER + 2; + // Logical events for Histogram profiling. Run with -message-loop-histogrammer // to get an accounting of messages and actions taken on each thread. -static const int kTaskRunEvent = 0x1; -static const int kTimerEvent = 0x2; +static const int kTaskRunEvent = WM_USER + 16; // 0x411 +static const int kSleepingApcEvent = WM_USER + 17; // 0x411 +static const int kPollingSignalEvent = WM_USER + 18; // 0x412 +static const int kSleepingSignalEvent = WM_USER + 19; // 0x413 +static const int kTimerEvent = WM_USER + 20; // 0x414 // Provide range of message IDs for use in histogramming and debug display. static const int kLeastNonZeroMessageId = 1; @@ -54,8 +70,26 @@ static const int kNumberOfDistinctMessagesDisplayed = 1100; //------------------------------------------------------------------------------ -#if defined(OS_WIN) +#ifndef NDEBUG +// Force exercise of polling model. +#define CHROME_MAXIMUM_WAIT_OBJECTS 8 +#else +#define CHROME_MAXIMUM_WAIT_OBJECTS MAXIMUM_WAIT_OBJECTS +#endif +//------------------------------------------------------------------------------ +// A strategy of -1 uses the default case. All strategies are selected as +// positive integers. +// static +int MessageLoop::strategy_selector_ = -1; + +// static +void MessageLoop::SetStrategy(int strategy) { + DCHECK(-1 == strategy_selector_); + strategy_selector_ = strategy; +} + +//------------------------------------------------------------------------------ // Upon a SEH exception in this thread, it restores the original unhandled // exception filter. static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) { @@ -72,22 +106,23 @@ static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() { return top_filter; } -#endif // defined(OS_WIN) - //------------------------------------------------------------------------------ MessageLoop::MessageLoop() #pragma warning(suppress: 4355) // OK, to use |this| in the initializer list. : timer_manager_(this), + message_hwnd_(NULL), exception_restoration_(false), nestable_tasks_allowed_(true), - state_(NULL) { + dispatcher_(NULL), + quit_received_(false), + quit_now_(false), + task_pump_message_pending_(false), + run_depth_(0) { DCHECK(tls_index_) << "static initializer failed"; DCHECK(!current()) << "should only have one message loop per thread"; ThreadLocalStorage::Set(tls_index_, this); -#if defined(OS_WIN) - pump_ = new base::MessagePumpWin(); -#endif + InitMessageWnd(); } MessageLoop::~MessageLoop() { @@ -100,7 +135,8 @@ MessageLoop::~MessageLoop() { // OK, now make it so that no one can find us. ThreadLocalStorage::Set(tls_index_, NULL); - DCHECK(!state_); + DCHECK(!dispatcher_); + DCHECK(!quit_received_ && !quit_now_); // Most tasks that have not been Run() are deleted in the |timer_manager_| // destructor after we remove our tls index. We delete the tasks in our @@ -111,6 +147,12 @@ MessageLoop::~MessageLoop() { DeletePendingTasks(); } +void MessageLoop::SetThreadName(const std::string& thread_name) { + DCHECK(thread_name_.empty()); + thread_name_ = thread_name; + StartHistogrammer(); +} + void MessageLoop::AddDestructionObserver(DestructionObserver *obs) { DCHECK(this == current()); destruction_observers_.AddObserver(obs); @@ -121,23 +163,26 @@ void MessageLoop::RemoveDestructionObserver(DestructionObserver *obs) { destruction_observers_.RemoveObserver(obs); } +void MessageLoop::AddObserver(Observer *obs) { + DCHECK(this == current()); + observers_.AddObserver(obs); +} + +void MessageLoop::RemoveObserver(Observer *obs) { + DCHECK(this == current()); + observers_.RemoveObserver(obs); +} + void MessageLoop::Run() { - AutoRunState save_state(this); - RunHandler(); + RunHandler(NULL, false); } -#if defined(OS_WIN) -void MessageLoop::Run(base::MessagePumpWin::Dispatcher* dispatcher) { - AutoRunState save_state(this); - state_->dispatcher = dispatcher; - RunHandler(); +void MessageLoop::Run(Dispatcher* dispatcher) { + RunHandler(dispatcher, false); } -#endif void MessageLoop::RunAllPending() { - AutoRunState save_state(this); - state_->quit_received = true; // Means run until we would otherwise block. - RunHandler(); + RunHandler(NULL, true); } // Runs the loop in two different SEH modes: @@ -145,43 +190,94 @@ void MessageLoop::RunAllPending() { // one that calls SetUnhandledExceptionFilter(). // enable_SEH_restoration_ = true : any unhandled exception goes to the filter // that was existed before the loop was run. -void MessageLoop::RunHandler() { -#if defined(OS_WIN) +void MessageLoop::RunHandler(Dispatcher* dispatcher, bool non_blocking) { if (exception_restoration_) { LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter(); __try { - RunInternal(); + RunInternal(dispatcher, non_blocking); } __except(SEHFilter(current_filter)) { } - return; + } else { + RunInternal(dispatcher, non_blocking); } -#endif - - RunInternal(); } //------------------------------------------------------------------------------ +// IF this was just a simple PeekMessage() loop (servicing all passible work +// queues), then Windows would try to achieve the following order according to +// MSDN documentation about PeekMessage with no filter): +// * Sent messages +// * Posted messages +// * Sent messages (again) +// * WM_PAINT messages +// * WM_TIMER messages +// +// Summary: none of the above classes is starved, and sent messages has twice +// the chance of being processed (i.e., reduced service time). + +void MessageLoop::RunInternal(Dispatcher* dispatcher, bool non_blocking) { + // Preserve ability to be called recursively. + ScopedStateSave save(this); // State is restored on exit. + dispatcher_ = dispatcher; + StartHistogrammer(); -void MessageLoop::RunInternal() { DCHECK(this == current()); + // + // Process pending messages and signaled objects. + // + // Flush these queues before exiting due to a kMsgQuit or else we risk not + // shutting down properly as some operations may depend on further event + // processing. (Note: some tests may use quit_now_ to exit more swiftly, + // and leave messages pending, so don't assert the above fact). + RunTraditional(non_blocking); + DCHECK(non_blocking || quit_received_ || quit_now_); +} - StartHistogrammer(); +void MessageLoop::RunTraditional(bool non_blocking) { + for (;;) { + // If we do any work, we may create more messages etc., and more work + // may possibly be waiting in another task group. When we (for example) + // ProcessNextWindowsMessage(), there is a good chance there are still more + // messages waiting (same thing for ProcessNextObject(), which responds to + // only one signaled object; etc.). On the other hand, when any of these + // methods return having done no work, then it is pretty unlikely that + // calling them again quickly will find any work to do. + // Finally, if they all say they had no work, then it is a good time to + // consider sleeping (waiting) for more work. + bool more_work_is_plausible = ProcessNextWindowsMessage(); + if (quit_now_) + return; -#if defined(OS_WIN) - if (state_->dispatcher) { - pump_win()->RunWithDispatcher(this, state_->dispatcher); - return; + more_work_is_plausible |= ProcessNextDeferredTask(); + more_work_is_plausible |= ProcessNextObject(); + if (more_work_is_plausible) + continue; + + if (quit_received_) + return; + + // Run any timer that is ready to run. It may create messages etc. + if (ProcessSomeTimers()) + continue; + + // We run delayed non nestable tasks only after all nestable tasks have + // run, to preserve FIFO ordering. + if (ProcessNextDelayedNonNestableTask()) + continue; + + if (non_blocking) + return; + + // We service APCs in WaitForWork, without returning. + WaitForWork(); // Wait (sleep) until we have work to do again. } -#endif - - pump_->Run(this); } //------------------------------------------------------------------------------ // Wrapper functions for use in above message loop framework. bool MessageLoop::ProcessNextDelayedNonNestableTask() { - if (state_->run_depth != 1) + if (run_depth_ != 1) return false; if (delayed_non_nestable_queue_.Empty()) @@ -203,12 +299,41 @@ bool MessageLoop::ProcessSomeTimers() { //------------------------------------------------------------------------------ void MessageLoop::Quit() { - DCHECK(current() == this); - if (state_) { - state_->quit_received = true; - } else { - NOTREACHED() << "Must be inside Run to call Quit"; + EnsureMessageGetsPosted(kMsgQuit); +} + +bool MessageLoop::WatchObject(HANDLE object, Watcher* watcher) { + DCHECK(this == current()); + DCHECK(object); + DCHECK_NE(object, INVALID_HANDLE_VALUE); + + std::vector<HANDLE>::iterator it = find(objects_.begin(), objects_.end(), + object); + if (watcher) { + if (it == objects_.end()) { + static size_t warning_multiple = 1; + if (objects_.size() >= warning_multiple * MAXIMUM_WAIT_OBJECTS / 2) { + LOG(INFO) << "More than " << warning_multiple * MAXIMUM_WAIT_OBJECTS / 2 + << " objects being watched"; + // This DCHECK() is an artificial limitation, meant to warn us if we + // start creating too many objects. It can safely be raised to a higher + // level, and the program is designed to handle much larger values. + // Before raising this limit, make sure that there is a very good reason + // (in your debug testing) to be watching this many objects. + DCHECK(2 <= warning_multiple); + ++warning_multiple; + } + objects_.push_back(object); + watchers_.push_back(watcher); + } else { + watchers_[it - objects_.begin()] = watcher; + } + } else if (it != objects_.end()) { + std::vector<HANDLE>::difference_type index = it - objects_.begin(); + objects_.erase(it); + watchers_.erase(watchers_.begin() + index); } + return true; } // Possibly called on a background thread! @@ -227,23 +352,88 @@ void MessageLoop::PostTaskInternal(Task* task) { // directly, as it could starve handling of foreign threads. Put every task // into this queue. - scoped_refptr<base::MessagePump> pump; + // Local stack variables to use IF we need to process after releasing locks. + HWND message_hwnd; { - AutoLock locked(incoming_queue_lock_); - + AutoLock lock1(incoming_queue_lock_); bool was_empty = incoming_queue_.Empty(); incoming_queue_.Push(task); if (!was_empty) return; // Someone else should have started the sub-pump. - pump = pump_; + // We may have to start the sub-pump. + AutoLock lock2(task_pump_message_lock_); + if (task_pump_message_pending_) + return; // Someone else continued the pumping. + task_pump_message_pending_ = true; // We'll send one. + message_hwnd = message_hwnd_; + } // Release both locks. + // We may have just posted a kMsgQuit, and so this instance may now destroyed! + // Do not invoke non-static methods, or members in any way! + + // PostMessage may fail, as the hwnd may have vanished due to kMsgQuit. + PostMessage(message_hwnd, kMsgPumpATask, 0, 0); +} + +void MessageLoop::InitMessageWnd() { + HINSTANCE hinst = GetModuleHandle(NULL); + + WNDCLASSEX wc = {0}; + wc.cbSize = sizeof(wc); + wc.lpfnWndProc = WndProcThunk; + wc.hInstance = hinst; + wc.lpszClassName = kWndClass; + RegisterClassEx(&wc); + + message_hwnd_ = CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, + hinst, 0); + DCHECK(message_hwnd_); +} + +// static +LRESULT CALLBACK MessageLoop::WndProcThunk( + HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { + DCHECK(MessageLoop::current()); + return MessageLoop::current()->WndProc(hwnd, message, wparam, lparam); +} + +LRESULT MessageLoop::WndProc( + HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { + if (hwnd == message_hwnd_) { + switch (message) { + case kMsgPumpATask: { + ProcessPumpReplacementMessage(); // Avoid starving paint and timer. + if (!nestable_tasks_allowed_) + return 0; + PumpATaskDuringWndProc(); + return 0; + } + + case WM_TIMER: + ProcessSomeTimers(); // Give the TimerManager a tickle. + DidChangeNextTimerExpiry(); // Maybe generate another WM_TIMER. + return 0; + + case kMsgQuit: { + // TODO(jar): bug 1300541 The following assert should be used, but + // currently too much code actually triggers the assert, especially in + // tests :-(. + // Discarding a second quit will cause a hang. + //CHECK(!quit_received_); + quit_received_ = true; + return 0; + } + } } - // Since the incoming_queue_ may contain a task that destroys this message - // loop, we cannot exit incoming_queue_lock_ until we are done with |this|. - // We use a stack-based reference to the message pump so that we can call - // ScheduleWork outside of incoming_queue_lock_. + return ::DefWindowProc(hwnd, message, wparam, lparam); +} + +void MessageLoop::WillProcessMessage(const MSG& msg) { + FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg)); +} - pump->ScheduleWork(); +void MessageLoop::DidProcessMessage(const MSG& msg) { + FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg)); } void MessageLoop::SetNestableTasksAllowed(bool allowed) { @@ -252,7 +442,7 @@ void MessageLoop::SetNestableTasksAllowed(bool allowed) { if (!nestable_tasks_allowed_) return; // Start the native pump if we are not already pumping. - pump_->ScheduleWork(); + EnsurePumpATaskWasPosted(); } } @@ -260,7 +450,215 @@ bool MessageLoop::NestableTasksAllowed() const { return nestable_tasks_allowed_; } +bool MessageLoop::ProcessNextWindowsMessage() { + MSG msg; + if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { + return ProcessMessageHelper(msg); + } + return false; +} + +bool MessageLoop::ProcessMessageHelper(const MSG& msg) { + HistogramEvent(msg.message); + + if (WM_QUIT == msg.message) { + // Repost the QUIT message so that it will be retrieved by the primary + // GetMessage() loop. + quit_now_ = true; + PostQuitMessage(static_cast<int>(msg.wParam)); + return false; + } + + // While running our main message pump, we discard kMsgPumpATask messages. + if (msg.message == kMsgPumpATask && msg.hwnd == message_hwnd_) + return ProcessPumpReplacementMessage(); + + WillProcessMessage(msg); + + if (dispatcher_) { + if (!dispatcher_->Dispatch(msg)) + quit_now_ = true; + } else { + TranslateMessage(&msg); + DispatchMessage(&msg); + } + + DidProcessMessage(msg); + return true; +} + +bool MessageLoop::ProcessPumpReplacementMessage() { + MSG msg; + bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)); + DCHECK(!have_message || kMsgPumpATask != msg.message + || msg.hwnd != message_hwnd_); + { + // Since we discarded a kMsgPumpATask message, we must update the flag. + AutoLock lock(task_pump_message_lock_); + DCHECK(task_pump_message_pending_); + task_pump_message_pending_ = false; + } + return have_message && ProcessMessageHelper(msg); +} + +// Create a mini-message-pump to force immediate processing of only Windows +// WM_PAINT messages. +void MessageLoop::PumpOutPendingPaintMessages() { + // Don't provide an infinite loop, but do enough peeking to get the job done. + // Actual common max is 4 peeks, but we'll be a little safe here. + const int kMaxPeekCount = 20; + int peek_count; + bool win2k(true); + if (win_util::GetWinVersion() > win_util::WINVERSION_2000) + win2k = false; + for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) { + MSG msg; + if (win2k) { + if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE)) + break; + } else { + if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) + break; + } + ProcessMessageHelper(msg); + if (quit_now_ ) // Handle WM_QUIT. + break; + } + // Histogram what was really being used, to help to adjust kMaxPeekCount. + DHISTOGRAM_COUNTS(L"Loop.PumpOutPendingPaintMessages Peeks", peek_count); +} + //------------------------------------------------------------------------------ +// If we handle more than the OS limit on the number of objects that can be +// waited for, we'll need to poll (sequencing through subsets of the objects +// that can be passed in a single OS wait call). The following is the polling +// interval used in that (unusual) case. (I don't have a lot of justifcation +// for the specific value, but it needed to be short enough that it would not +// add a lot of latency, and long enough that we wouldn't thrash the CPU for no +// reason... especially considering the silly user probably has a million tabs +// open, etc.) +static const int kMultipleWaitPollingInterval = 20; + +void MessageLoop::WaitForWork() { + bool original_can_run = nestable_tasks_allowed_; + int wait_flags = original_can_run ? MWMO_ALERTABLE | MWMO_INPUTAVAILABLE + : MWMO_INPUTAVAILABLE; + + bool use_polling = false; // Poll if too many objects for one OS Wait call. + for (;;) { + // Do initialization here, in case APC modifies object list. + size_t total_objs = original_can_run ? objects_.size() : 0; + + int delay; + size_t polling_index = 0; // The first unprocessed object index. + do { + size_t objs_len = + (polling_index < total_objs) ? total_objs - polling_index : 0; + if (objs_len >= CHROME_MAXIMUM_WAIT_OBJECTS) { + objs_len = CHROME_MAXIMUM_WAIT_OBJECTS - 1; + use_polling = true; + } + HANDLE* objs = objs_len ? polling_index + &objects_.front() : NULL; + + // Only wait up to the time needed by the timer manager to fire the next + // set of timers. + delay = timer_manager_.GetCurrentDelay(); + if (use_polling && delay > kMultipleWaitPollingInterval) + delay = kMultipleWaitPollingInterval; + if (delay < 0) // Negative value means no timers waiting. + delay = INFINITE; + + DWORD result; + result = MsgWaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs, + delay, QS_ALLINPUT, wait_flags); + + if (WAIT_IO_COMPLETION == result) { + HistogramEvent(kSleepingApcEvent); + // We'll loop here when we service an APC. At it currently stands, + // *ONLY* the IO thread uses *any* APCs, so this should have no impact + // on the UI thread. + break; // Break to outer loop, and waitforwork() again. + } + + // Use unsigned type to simplify range detection; + size_t signaled_index = result - WAIT_OBJECT_0; + if (signaled_index < objs_len) { + SignalWatcher(polling_index + signaled_index); + HistogramEvent(kSleepingSignalEvent); + return; // We serviced a signaled object. + } + + if (objs_len == signaled_index) + return; // A WM_* message is available. + + DCHECK_NE(WAIT_FAILED, result) << GetLastError(); + + DCHECK(!objs || result == WAIT_TIMEOUT); + if (!use_polling) + return; + polling_index += objs_len; + } while (polling_index < total_objs); + // For compatibility, we didn't return sooner. This made us do *some* wait + // call(s) before returning. This will probably change in next rev. + if (!delay || !timer_manager_.GetCurrentDelay()) + return; // No work done, but timer is ready to fire. + } +} + +// Note: MsgWaitMultipleObjects() can't take a nil list, and that is why I had +// to use SleepEx() to handle APCs when there were no objects. +bool MessageLoop::ProcessNextObject() { + if (!nestable_tasks_allowed_) + return false; + + size_t total_objs = objects_.size(); + if (!total_objs) { + return false; + } + + size_t polling_index = 0; // The first unprocessed object index. + do { + DCHECK(polling_index < total_objs); + size_t objs_len = total_objs - polling_index; + if (objs_len >= CHROME_MAXIMUM_WAIT_OBJECTS) + objs_len = CHROME_MAXIMUM_WAIT_OBJECTS - 1; + HANDLE* objs = polling_index + &objects_.front(); + + // Identify 1 pending object, or allow an IO APC to be completed. + DWORD result = WaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs, + FALSE, // 1 signal is sufficient. + 0, // Wait 0ms. + false); // Not alertable (no APC). + + // Use unsigned type to simplify range detection; + size_t signaled_index = result - WAIT_OBJECT_0; + if (signaled_index < objs_len) { + SignalWatcher(polling_index + signaled_index); + HistogramEvent(kPollingSignalEvent); + return true; // We serviced a signaled object. + } + + // If an handle is invalid, it will be WAIT_FAILED. + DCHECK_EQ(WAIT_TIMEOUT, result) << GetLastError(); + polling_index += objs_len; + } while (polling_index < total_objs); + return false; // We serviced nothing. +} + +bool MessageLoop::SignalWatcher(size_t object_index) { + BeforeTaskRunSetup(); + DCHECK(objects_.size() > object_index); + // On reception of OnObjectSignaled() to a Watcher object, it may call + // WatchObject(). watchers_ and objects_ will be modified. This is + // expected, so don't be afraid if, while tracing a OnObjectSignaled() + // function, the corresponding watchers_[result] is inexistant. + watchers_[object_index]->OnObjectSignaled(objects_[object_index]); + // Signaled objects tend to be removed from the watch list, and then added + // back (appended). As a result, they move to the end of the objects_ array, + // and this should make their service "fair" (no HANDLEs should be starved). + AfterTaskRunRestore(); + return true; +} bool MessageLoop::RunTimerTask(Timer* timer) { HistogramEvent(kTimerEvent); @@ -307,15 +705,16 @@ bool MessageLoop::QueueOrRunTask(Task* new_task) { // Execute oldest task. while (!work_queue_.Empty()) { Task* task = work_queue_.Pop(); - if (task->nestable() || state_->run_depth == 1) { + if (task->nestable() || run_depth_ == 1) { RunTask(task); // Show that we ran a task (Note: a new one might arrive as a // consequence!). return true; + } else { + // We couldn't run the task now because we're in a nested message loop + // and the task isn't nestable. + delayed_non_nestable_queue_.Push(task); } - // We couldn't run the task now because we're in a nested message loop - // and the task isn't nestable. - delayed_non_nestable_queue_.Push(task); } // Nothing happened. @@ -344,12 +743,54 @@ void MessageLoop::AfterTaskRunRestore() { nestable_tasks_allowed_ = true; } +void MessageLoop::PumpATaskDuringWndProc() { + // TODO(jar): Perchance we should check on signaled objects here?? + // Signals are generally starved during a native message loop. Even if we + // try to service a signaled object now, we wouldn't automatically get here + // (i.e., the native pump would not re-start) when the next object was + // signaled. If we really want to avoid starving signaled objects, we need + // to translate them into Tasks that can be passed in via PostTask. + // If these native message loops (and sub-pumping activities) are short + // lived, then the starvation won't be that long :-/. + + if (!ProcessNextDeferredTask()) + return; // Nothing to do, so lets stop the sub-pump. + + // We ran a task, so make sure we come back and try to run more tasks. + EnsurePumpATaskWasPosted(); +} + +void MessageLoop::EnsurePumpATaskWasPosted() { + { + AutoLock lock(task_pump_message_lock_); + if (task_pump_message_pending_) + return; // Someone else continued the pumping. + task_pump_message_pending_ = true; // We'll send one. + } + EnsureMessageGetsPosted(kMsgPumpATask); +} + +void MessageLoop::EnsureMessageGetsPosted(int message) const { + const int kRetryCount = 30; + const int kSleepDurationWhenFailing = 100; + for (int i = 0; i < kRetryCount; ++i) { + // Posting to our own windows should always succeed. If it doesn't we're in + // big trouble. + if (PostMessage(message_hwnd_, message, 0, 0)) + return; + Sleep(kSleepDurationWhenFailing); + } + LOG(FATAL) << "Crash with last error " << GetLastError(); + int* p = NULL; + *p = 0; // Crash. +} + void MessageLoop::ReloadWorkQueue() { // We can improve performance of our loading tasks from incoming_queue_ to - // work_queue_ by waiting until the last minute (work_queue_ is empty) to - // load. That reduces the number of locks-per-task significantly when our - // queues get large. The optimization is disabled on threads that make use - // of the priority queue (prioritization requires all our tasks to be in the + // work_queue_ by wating until the last minute (work_queue_ is empty) to load. + // That reduces the number of locks-per-task significantly when our queues get + // large. The optimization is disabled on threads that make use of the + // priority queue (prioritization requires all our tasks to be in the // work_queue_ ASAP). if (!work_queue_.Empty() && !work_queue_.use_priority_queue()) return; // Wait till we *really* need to lock and load. @@ -392,78 +833,42 @@ void MessageLoop::DeletePendingTasks() { } void MessageLoop::DidChangeNextTimerExpiry() { +#if defined(OS_WIN) + // + // We would *like* to provide high resolution timers. Windows timers using + // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup + // mechanism because the application can enter modal windows loops where it + // is not running our MessageLoop; the only way to have our timers fire in + // these cases is to post messages there. + // + // To provide sub-10ms timers, we process timers directly from our run loop. + // For the common case, timers will be processed there as the run loop does + // its normal work. However, we *also* set the system timer so that WM_TIMER + // events fire. This mops up the case of timers not being able to work in + // modal message loops. It is possible for the SetTimer to pop and have no + // pending timers, because they could have already been processed by the + // run loop itself. + // + // We use a single SetTimer corresponding to the timer that will expire + // soonest. As new timers are created and destroyed, we update SetTimer. + // Getting a spurrious SetTimer event firing is benign, as we'll just be + // processing an empty timer queue. + // int delay = timer_manager_.GetCurrentDelay(); - if (delay == -1) - return; - - // Simulates malfunctioning, early firing timers. Pending tasks should only - // be invoked when the delay they specify has elapsed. - if (timer_manager_.use_broken_delay()) - delay = 10; - - pump_->ScheduleDelayedWork(TimeDelta::FromMilliseconds(delay)); -} - -bool MessageLoop::DoWork() { - if (ProcessNextDeferredTask()) { - // TODO(darin): Temporarily moved into MessagePumpWin::HandleWorkMessage. -#if 0 - // Let the MessagePump know that we may have more work to do. It is - // tempting to only call this function if our work queue is not empty, but - // doing so is insufficient. The issue is that ReloadWorkQueue does not - // look at the incoming queue if the work queue is not empty, and we may - // have just processed the last task on the work queue. ScheduleWork is - // very low cost (in the case where it is redundant), so we don't worry - // about optimizing away spurious ScheduleWork calls. - pump_->ScheduleWork(); -#endif - return true; - } - return false; -} - -bool MessageLoop::DoDelayedWork() { - bool did_work = ProcessSomeTimers(); - - // We may not have run any timers, but we may still have future timers to - // run, so we need to inform the pump again of pending timers. - DidChangeNextTimerExpiry(); - - return did_work; -} - -bool MessageLoop::DoIdleWork() { - if (ProcessNextDelayedNonNestableTask()) - return true; - - if (state_->quit_received) - pump_->Quit(); - - return false; -} - -//------------------------------------------------------------------------------ -// MessageLoop::AutoRunState - -MessageLoop::AutoRunState::AutoRunState(MessageLoop* loop) : loop_(loop) { - // Make the loop reference us. - previous_state_ = loop_->state_; - if (previous_state_) { - run_depth = previous_state_->run_depth + 1; + if (delay == -1) { + KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); } else { - run_depth = 1; + if (delay < USER_TIMER_MINIMUM) + delay = USER_TIMER_MINIMUM; + // Simulates malfunctioning, early firing timers. Pending tasks should only + // be invoked when the delay they specify has elapsed. + if (timer_manager_.use_broken_delay()) + delay = 10; + // Create a WM_TIMER event that will wake us up to check for any pending + // timers (in case we are running within a nested, external sub-pump). + SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay, NULL); } - loop_->state_ = this; - - // Initialize the other fields: - quit_received = false; -#if defined(OS_WIN) - dispatcher = NULL; -#endif -} - -MessageLoop::AutoRunState::~AutoRunState() { - loop_->state_ = previous_state_; +#endif // defined(OS_WIN) } //------------------------------------------------------------------------------ @@ -558,7 +963,6 @@ void MessageLoop::EnableHistogrammer(bool enable) { void MessageLoop::StartHistogrammer() { if (enable_histogrammer_ && !message_histogram_.get() && StatisticsRecorder::WasStarted()) { - DCHECK(!thread_name_.empty()); message_histogram_.reset(new LinearHistogram( ASCIIToWide("MsgLoop:" + thread_name_).c_str(), kLeastNonZeroMessageId, @@ -574,6 +978,11 @@ void MessageLoop::HistogramEvent(int event) { message_histogram_->Add(event); } +// Add one undocumented windows message to clean up our display. +#ifndef WM_SYSTIMER +#define WM_SYSTIMER 0x118 +#endif + // Provide a macro that takes an expression (such as a constant, or macro // constant) and creates a pair to initalize an array of pairs. In this case, // our pair consists of the expressions value, and the "stringized" version @@ -590,13 +999,33 @@ void MessageLoop::HistogramEvent(int event) { // in the pair (i.e., the quoted string) when printing out a histogram. #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name}, + // static const LinearHistogram::DescriptionPair MessageLoop::event_descriptions_[] = { + // Only provide an extensive list in debug mode. In release mode, we have to + // read the octal values.... but we save about 450 strings, each of length + // 10 from our binary image. +#ifndef NDEBUG + // Prepare to include a list of names provided in a special header file4. +#define A_NAMED_MESSAGE_FROM_WINUSER_H VALUE_TO_NUMBER_AND_NAME +#include "base/windows_message_list.h" +#undef A_NAMED_MESSAGE_FROM_WINUSER_H + // Add an undocumented message that appeared in our list :-/. + VALUE_TO_NUMBER_AND_NAME(WM_SYSTIMER) +#endif // NDEBUG + // Provide some pretty print capability in our histogram for our internal // messages. + // Values we use for WM_USER+n + VALUE_TO_NUMBER_AND_NAME(kMsgPumpATask) + VALUE_TO_NUMBER_AND_NAME(kMsgQuit) + // A few events we handle (kindred to messages), and used to profile actions. VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent) + VALUE_TO_NUMBER_AND_NAME(kSleepingApcEvent) + VALUE_TO_NUMBER_AND_NAME(kSleepingSignalEvent) + VALUE_TO_NUMBER_AND_NAME(kPollingSignalEvent) VALUE_TO_NUMBER_AND_NAME(kTimerEvent) {-1, NULL} // The list must be null terminated, per API to histogram. diff --git a/base/message_loop.h b/base/message_loop.h index 8ae12c8..8ff2c62 100644 --- a/base/message_loop.h +++ b/base/message_loop.h @@ -27,8 +27,8 @@ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -#ifndef BASE_MESSAGE_LOOP_H_ -#define BASE_MESSAGE_LOOP_H_ +#ifndef BASE_MESSAGE_LOOP_H__ +#define BASE_MESSAGE_LOOP_H__ #include <deque> #include <queue> @@ -36,39 +36,33 @@ #include <vector> #include "base/histogram.h" -#include "base/message_pump.h" #include "base/observer_list.h" -#include "base/ref_counted.h" +#include "base/id_map.h" #include "base/task.h" #include "base/timer.h" #include "base/thread_local_storage.h" -#if defined(OS_WIN) -// We need this to declare base::MessagePumpWin::Dispatcher, which we should -// really just eliminate. -#include "base/message_pump_win.h" -#endif - -// A MessageLoop is used to process events for a particular thread. There is -// at most one MessageLoop instance per thread. // -// Events include at minimum Task instances submitted to PostTask or those -// managed by TimerManager. Depending on the type of message pump used by the -// MessageLoop other events such as UI messages may be processed. On Windows -// APC calls (as time permits) and signals sent to a registered set of HANDLEs -// may also be processed. +// A MessageLoop is used to process events for a particular thread. +// There is at most one MessageLoop instance per thread. +// Events include Windows Message Queue messages, Tasks submitted to PostTask +// or managed by TimerManager, APC calls (as time permits), and signals sent to +// a registered set of HANDLES. +// Processing events corresponds (respectively) to dispatching Windows messages, +// running Tasks, yielding time to APCs, and calling Watchers when the +// corresponding HANDLE is signaled. + // // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called // on the thread where the MessageLoop's Run method executes. // -// NOTE: MessageLoop has task reentrancy protection. This means that if a +// WARNING: MessageLoop has task reentrancy protection. This means that if a // task is being processed, a second task cannot start until the first task is -// finished. Reentrancy can happen when processing a task, and an inner -// message pump is created. That inner pump then processes native messages -// which could implicitly start an inner task. Inner message pumps are created -// with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions -// (DoDragDrop), printer functions (StartDoc) and *many* others. -// +// finished. Reentrancy can happen when processing a task, and an inner message +// pump is created. That inner pump then processes windows messages which could +// implicitly start an inner task. Inner messages pumps are created with dialogs +// (DialogBox), common dialogs (GetOpenFileName), OLE functions (DoDragDrop), +// printer functions (StartDoc) and *many* others. // Sample workaround when inner task processing is needed: // bool old_state = MessageLoop::current()->NestableTasksAllowed(); // MessageLoop::current()->SetNestableTasksAllowed(true); @@ -76,13 +70,142 @@ // MessageLoop::current()->SetNestableTasksAllowed(old_state); // // Process hr (the result returned by DoDragDrop(). // -// Please be SURE your task is reentrant (nestable) and all global variables -// are stable and accessible before calling SetNestableTasksAllowed(true). +// Please be **SURE** your task is reentrant and all global variables are stable +// and accessible before calling SetNestableTasksAllowed(true). +// + +// Message loop has several distinct functions. It provides message pumps, +// responds to windows message dispatches, manipulates queues of Tasks. +// The most central operation is the implementation of message pumps, along with +// several subtleties. + +// MessageLoop currently implements several different message pumps. A message +// pump is (traditionally) something that reads from an incoming queue, and then +// dispatches the work. +// +// The first message pump, RunTraditional(), is among other things a +// traditional Windows Message pump. It contains a nearly infinite loop that +// peeks out messages, and then dispatches them. +// Intermixed with those peeks are checks on a queue of Tasks, checks for +// signaled objects, and checks to see if TimerManager has tasks to run. +// When there are no events to be serviced, this pump goes into a wait state. +// For 99.99% of all events, this first message pump handles all processing. +// +// When a task, or windows event, invokes on the stack a native dialog box or +// such, that window typically provides a bare bones (native?) message pump. +// That bare-bones message pump generally supports little more than a peek of +// the Windows message queue, followed by a dispatch of the peeked message. +// MessageLoop extends that bare-bones message pump to also service Tasks, at +// the cost of some complexity. +// The basic structure of the extension (refered to as a sub-pump) is that a +// special message,kMsgPumpATask, is repeatedly injected into the Windows +// Message queue. Each time the kMsgPumpATask message is peeked, checks are made +// for an extended set of events, including the availability of Tasks to run. +// +// After running a task, the special message kMsgPumpATask is again posted to +// the Windows Message queue, ensuring a future time slice for processing a +// future event. +// +// To prevent flooding the Windows Message queue, care is taken to be sure that +// at most one kMsgPumpATask message is EVER pending in the Winow's Message +// queue. // -class MessageLoop : public base::MessagePump::Delegate { +// There are a few additional complexities in this system where, when there are +// no Tasks to run, this otherwise infinite stream of messages which drives the +// sub-pump is halted. The pump is automatically re-started when Tasks are +// queued. +// +// A second complexity is that the presence of this stream of posted tasks may +// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. +// Such paint and timer events always give priority to a posted message, such as +// kMsgPumpATask messages. As a result, care is taken to do some peeking in +// between the posting of each kMsgPumpATask message (i.e., after kMsgPumpATask +// is peeked, and before a replacement kMsgPumpATask is posted). +// +// +// NOTE: Although it may seem odd that messages are used to start and stop this +// flow (as opposed to signaling objects, etc.), it should be understood that +// the native message pump will *only* respond to messages. As a result, it is +// an excellent choice. It is also helpful that the starter messages that are +// placed in the queue when new task arrive also awakens the RunTraditional() +// loop. + +//------------------------------------------------------------------------------ +class MessageLoop { public: + + // Select a non-default strategy for serving pending requests, that is to be + // used by all MessageLoop instances. This is called only once before + // constructing any instances. + static void SetStrategy(int strategy); static void EnableHistogrammer(bool enable_histogrammer); +#ifdef OS_WIN + // Used with WatchObject to asynchronously monitor the signaled state of a + // HANDLE object. + class Watcher { + public: + virtual ~Watcher() {} + // Called from MessageLoop::Run when a signalled object is detected. + virtual void OnObjectSignaled(HANDLE object) = 0; + }; + + // Have the current thread's message loop watch for a signaled object. + // Pass a null watcher to stop watching the object. + bool WatchObject(HANDLE, Watcher*); + + // An Observer is an object that receives global notifications from the + // MessageLoop. + // + // NOTE: An Observer implementation should be extremely fast! + // + class Observer { + public: + virtual ~Observer() {} + + // This method is called before processing a message. + // The message may be undefined in which case msg.message is 0 + virtual void WillProcessMessage(const MSG& msg) = 0; + + // This method is called when control returns from processing a UI message. + // The message may be undefined in which case msg.message is 0 + virtual void DidProcessMessage(const MSG& msg) = 0; + }; + + // Add an Observer, which will start receiving notifications immediately. + void AddObserver(Observer* observer); + + // Remove an Observer. It is safe to call this method while an Observer is + // receiving a notification callback. + void RemoveObserver(Observer* observer); + + // Give a chance to code processing additional messages to notify the + // message loop observers that another message has been processed. + void WillProcessMessage(const MSG& msg); + void DidProcessMessage(const MSG& msg); + + // Dispatcher is used during a nested invocation of Run to dispatch events. + // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not + // dispatch events (or invoke TranslateMessage), rather every message is + // passed to Dispatcher's Dispatch method for dispatch. It is up to the + // Dispatcher to dispatch, or not, the event. + // + // The nested loop is exited by either posting a quit, or returning false + // from Dispatch. + class Dispatcher { + public: + virtual ~Dispatcher() {} + // Dispatches the event. If true is returned processing continues as + // normal. If false is returned, the nested loop exits immediately. + virtual bool Dispatch(const MSG& msg) = 0; + }; +#else // !OS_WIN + // On non-Windows platforms, the Dispatcher does not exist, but we allow the + // typename to exist for convenience. On non-Windows platforms, a Dispatcher + // pointer should always be NULL. + class Dispatcher; +#endif // OS_* + // A DestructionObserver is notified when the current MessageLoop is being // destroyed. These obsevers are notified prior to MessageLoop::current() // being changed to return NULL. This gives interested parties the chance to @@ -160,18 +283,19 @@ class MessageLoop : public base::MessagePump::Delegate { // Return as soon as all items that can be run are taken care of. void RunAllPending(); + // See description of Dispatcher for how Run uses Dispatcher. + void Run(Dispatcher* dispatcher); + // Signals the Run method to return after it is done processing all pending - // messages. This method may only be called on the same thread that called - // Run, and Run must still be on the call stack. - // - // Use QuitTask if you need to Quit another thread's MessageLoop, but note - // that doing so is fairly dangerous if the target thread makes nested calls - // to MessageLoop::Run. The problem being that you won't know which nested - // run loop you are quiting, so be careful! + // messages. This method may be called from any thread, but no effort is + // made to support concurrent calls to this method from multiple threads. // + // For example, the first call to Quit may lead to the MessageLoop being + // deleted once its Run method returns, so a second call from another thread + // could be problematic. void Quit(); - // Invokes Quit on the current MessageLoop when run. Useful to schedule an + // Invokes Quit on the current MessageLoop when run. Useful to schedule an // arbitrary MessageLoop to Quit. class QuitTask : public Task { public: @@ -186,10 +310,8 @@ class MessageLoop : public base::MessagePump::Delegate { ~MessageLoop(); // Optional call to connect the thread name with this loop. - void set_thread_name(const std::string& thread_name) { - DCHECK(thread_name_.empty()) << "Should not rename this thread!"; - thread_name_ = thread_name; - } + void SetThreadName(const std::string& thread_name); + void set_thread_name(const std::string& name) { SetThreadName(name); } const std::string& thread_name() const { return thread_name_; } // Returns the MessageLoop object for the current thread, or null if none. @@ -226,62 +348,51 @@ class MessageLoop : public base::MessagePump::Delegate { exception_restoration_ = restore; } - //---------------------------------------------------------------------------- -#if defined(OS_WIN) - // Backwards-compat for the old Windows-specific MessageLoop API. These APIs - // are deprecated. - - typedef base::MessagePumpWin::Dispatcher Dispatcher; - typedef base::MessagePumpWin::Observer Observer; - typedef base::MessagePumpWin::Watcher Watcher; + // Public entry point for TimerManager to request the Run() of a task. If we + // created the task during an PostTask(FROM_HERE, ), then we will also perform + // destructions, and we'll have the option of queueing the task. If we didn't + // create the timer, then we will Run it immediately. + bool RunTimerTask(Timer* timer); - void Run(Dispatcher* dispatcher); + // Since some Timer's are owned by MessageLoop, the TimerManager (when it is + // being destructed) passses us the timers to discard (without doing a Run()). + void DiscardTimer(Timer* timer); - void WatchObject(HANDLE object, Watcher* watcher) { - pump_win()->WatchObject(object, watcher); - } - void AddObserver(Observer* observer) { - pump_win()->AddObserver(observer); - } - void RemoveObserver(Observer* observer) { - pump_win()->RemoveObserver(observer); - } - void WillProcessMessage(const MSG& message) { - pump_win()->WillProcessMessage(message); - } - void DidProcessMessage(const MSG& message) { - pump_win()->DidProcessMessage(message); - } - void PumpOutPendingPaintMessages() { - pump_win()->PumpOutPendingPaintMessages(); - } -#endif // defined(OS_WIN) + // Applications can call this to encourage us to process all pending WM_PAINT + // messages. + // This method will process all paint messages the Windows Message queue can + // provide, up to some fixed number (to avoid any infinite loops). + void PumpOutPendingPaintMessages(); //---------------------------------------------------------------------------- private: friend class TimerManager; // So it can call DidChangeNextTimerExpiry - struct RunState { - // Used to count how many Run() invocations are on the stack. - int run_depth; - - // Used to record that Quit() was called, or that we should quit the pump - // once it becomes idle. - bool quit_received; + struct ScopedStateSave { + explicit ScopedStateSave(MessageLoop* loop) + : loop_(loop), + dispatcher_(loop->dispatcher_), + quit_now_(loop->quit_now_), + quit_received_(loop->quit_received_), + run_depth_(loop->run_depth_) { + loop->quit_now_ = loop->quit_received_ = false; + ++loop->run_depth_; + } -#if defined(OS_WIN) - base::MessagePumpWin::Dispatcher* dispatcher; -#endif - }; + ~ScopedStateSave() { + loop_->run_depth_ = run_depth_; + loop_->quit_received_ = quit_received_; + loop_->quit_now_ = quit_now_; + loop_->dispatcher_ = dispatcher_; + } - class AutoRunState : RunState { - public: - AutoRunState(MessageLoop* loop); - ~AutoRunState(); private: MessageLoop* loop_; - RunState* previous_state_; - }; + Dispatcher* dispatcher_; + bool quit_now_; + bool quit_received_; + int run_depth_; + }; // struct ScopedStateSave // A prioritized queue with interface that mostly matches std::queue<>. // For debugging/performance testing, you can swap in std::queue<Task*>. @@ -348,22 +459,32 @@ class MessageLoop : public base::MessagePump::Delegate { DISALLOW_EVIL_CONSTRUCTORS(OptionallyPrioritizedTaskQueue); }; -#if defined(OS_WIN) - base::MessagePumpWin* pump_win() { - return static_cast<base::MessagePumpWin*>(pump_.get()); - } -#endif +#ifdef OS_WIN + void InitMessageWnd(); + + // Windows procedure for message_hwnd_. + static LRESULT CALLBACK WndProcThunk( + HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam); + LRESULT WndProc( + HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam); +#endif // OS_WIN // A function to encapsulate all the exception handling capability in the - // stacks around the running of a main message loop. It will run the message - // loop in a SEH try block or not depending on the set_SEH_restoration() - // flag. - void RunHandler(); + // stacks around the running of a main message loop. + // It will run the message loop in a SEH try block or not depending on the + // set_SEH_restoration() flag. + void RunHandler(Dispatcher* dispatcher, bool non_blocking); // A surrounding stack frame around the running of the message loop that // supports all saving and restoring of state, as is needed for any/all (ugly) // recursive calls. - void RunInternal(); + void RunInternal(Dispatcher* dispatcher, bool non_blocking); + + // An extended message loop (message pump) that loops mostly forever, and + // processes task, signals, timers, etc. + // If non-blocking is set, it will return rather than wait for new things to + // arrive for processing. + void RunTraditional(bool non_blocking); //---------------------------------------------------------------------------- // A list of method wrappers with identical calling signatures (no arguments) @@ -372,18 +493,52 @@ class MessageLoop : public base::MessagePump::Delegate { bool ProcessNextDeferredTask(); bool ProcessNextDelayedNonNestableTask(); + bool ProcessNextObject(); bool ProcessSomeTimers(); //---------------------------------------------------------------------------- + // Process some pending messages. Returns true if a message was processed. + bool ProcessNextWindowsMessage(); + + // Wait until either an object is signaled, a message is available, a timer + // needs attention, or our incoming_queue_ has gotten a task. + // Handle (without returning) any APCs (only IO thread currently has APCs.) + void WaitForWork(); + +#ifdef OS_WIN + // Helper function for processing window messages. This includes handling + // WM_QUIT, message translation and dispatch, etc. + // + // If dispatcher_ is non-NULL this method does NOT dispatch the event, instead + // it invokes Dispatch on the dispatcher_. + bool ProcessMessageHelper(const MSG& msg); +#endif // OS_WIN + + // When we encounter a kMsgPumpATask, the following helper can be called to + // peek and process a replacement message, such as a WM_PAINT or WM_TIMER. + // The goal is to make the kMsgPumpATask as non-intrusive as possible, even + // though a continuous stream of such messages are posted. This method + // carefully peeks a message while there is no chance for a kMsgPumpATask to + // be pending, then releases the lock (allowing a replacement kMsgPumpATask to + // possibly be posted), and finally dispatches that peeked replacement. + // Note that the re-post of kMsgPumpATask may be asynchronous to this thread!! + bool ProcessPumpReplacementMessage(); + + // Signals a watcher if a wait falls within the range of objects we're + // waiting on. object_index is the offset in objects_ that was signaled. + // Returns true if an object was signaled. + bool SignalWatcher(size_t object_index); + // Run a work_queue_ task or new_task, and delete it (if it was processed by // PostTask). If there are queued tasks, the oldest one is executed and // new_task is queued. new_task is optional and can be NULL. In this NULL // case, the method will run one pending task (if any exist). Returns true if - // it executes a task. Queued tasks accumulate only when there is a - // non-nestable task currently processing, in which case the new_task is - // appended to the list work_queue_. Such re-entrancy generally happens when - // an unrequested message pump (typical of a native dialog) is executing in - // the context of a task. + // it executes a task. + // Queued tasks accumulate only when there is a nonreentrant task currently + // processing, in which case the new_task is appended to the list + // work_queue_. Such re-entrancy generally happens when an unrequested + // message pump (typical of a native dialog) is executing in the context of a + // task. bool QueueOrRunTask(Task* new_task); // Runs the specified task and deletes it. @@ -394,6 +549,14 @@ class MessageLoop : public base::MessagePump::Delegate { void BeforeTaskRunSetup(); void AfterTaskRunRestore(); + // When processing messages in our MessageWndProc(), we are sometimes called + // by a native message pump (i.e., We are not called out of our Run() pump). + // In those cases, we need to process tasks during the Windows Message + // callback. This method processes a task, and also posts a new kMsgPumpATask + // messages to the Windows Msg Queue so that we are called back later (to + // process additional tasks). + void PumpATaskDuringWndProc(); + // Load tasks from the incoming_queue_ into work_queue_ if the latter is // empty. The former requires a lock to access, while the latter is directly // accessible on this thread. @@ -403,27 +566,19 @@ class MessageLoop : public base::MessagePump::Delegate { // destructor to make sure all the task's destructors get called. void DeletePendingTasks(); + // Make sure a kPumpATask message is in flight, which starts/continues the + // sub-pump. + void EnsurePumpATaskWasPosted(); + + // Do a PostMessage(), and crash if we can't eventually do the post. + void EnsureMessageGetsPosted(int message) const; + // Post a task to our incomming queue. void PostTaskInternal(Task* task); // Called by the TimerManager when its next timer changes. void DidChangeNextTimerExpiry(); - // Entry point for TimerManager to request the Run() of a task. If we - // created the task during an PostTask(FROM_HERE, ), then we will also - // perform destructions, and we'll have the option of queueing the task. If - // we didn't create the timer, then we will Run it immediately. - bool RunTimerTask(Timer* timer); - - // Since some Timer's are owned by MessageLoop, the TimerManager (when it is - // being destructed) passses us the timers to discard (without doing a Run()). - void DiscardTimer(Timer* timer); - - // base::MessagePump::Delegate methods: - virtual bool DoWork(); - virtual bool DoDelayedWork(); - virtual bool DoIdleWork(); - // Start recording histogram info about events and action IF it was enabled // and IF the statistics recorder can accept a registration of our histogram. void StartHistogrammer(); @@ -434,6 +589,7 @@ class MessageLoop : public base::MessagePump::Delegate { void HistogramEvent(int event); static TLSSlot tls_index_; + static int strategy_selector_; static const LinearHistogram::DescriptionPair event_descriptions_[]; static bool enable_histogrammer_; @@ -448,15 +604,29 @@ class MessageLoop : public base::MessagePump::Delegate { // there was no real prioritization. OptionallyPrioritizedTaskQueue work_queue_; - scoped_refptr<base::MessagePump> pump_; +#ifdef OS_WIN + HWND message_hwnd_; + + // A vector of objects (and corresponding watchers) that are routinely + // serviced by this message loop's pump. + std::vector<HANDLE> objects_; + std::vector<Watcher*> watchers_; + + ObserverList<Observer> observers_; +#endif // OS_WIN ObserverList<DestructionObserver> destruction_observers_; + IDMap<Task> timed_tasks_; // A recursion block that prevents accidentally running additonal tasks when // insider a (accidentally induced?) nested message pump. bool nestable_tasks_allowed_; bool exception_restoration_; + Dispatcher* dispatcher_; + bool quit_received_; + bool quit_now_; + std::string thread_name_; // A profiling histogram showing the counts of various messages and events. scoped_ptr<LinearHistogram> message_histogram_; @@ -474,9 +644,17 @@ class MessageLoop : public base::MessagePump::Delegate { // will execute once we're out of nested message loops. TaskQueue delayed_non_nestable_queue_; - RunState* state_; + // Indicate if there is a kMsgPumpATask message pending in the Windows Message + // queue. There is at most one such message, and it can drive execution of + // tasks when a native message pump is running. + bool task_pump_message_pending_; + // Protect access to task_pump_message_pending_. + Lock task_pump_message_lock_; + + // Used to count how many Run() invocations are on the stack. + int run_depth_; - DISALLOW_COPY_AND_ASSIGN(MessageLoop); + DISALLOW_EVIL_CONSTRUCTORS(MessageLoop); }; -#endif // BASE_MESSAGE_LOOP_H_ +#endif // BASE_MESSAGE_LOOP_H__ |