summaryrefslogtreecommitdiffstats
path: root/base/atomicops_internals_arm_gcc.h
diff options
context:
space:
mode:
authordigit@chromium.org <digit@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2013-06-10 14:00:06 +0000
committerdigit@chromium.org <digit@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2013-06-10 14:00:06 +0000
commit2054dc1f8712c4dc4d369281503ed4b7f3fedb8e (patch)
tree264504c3c2c0eb4134b0aa00d8fbf94a6c7f5cb6 /base/atomicops_internals_arm_gcc.h
parent9dad791e0ad45e09311bf4a9d89b21c57a6ecb10 (diff)
downloadchromium_src-2054dc1f8712c4dc4d369281503ed4b7f3fedb8e.zip
chromium_src-2054dc1f8712c4dc4d369281503ed4b7f3fedb8e.tar.gz
chromium_src-2054dc1f8712c4dc4d369281503ed4b7f3fedb8e.tar.bz2
Improve the implementation of atomic operations on Linux/ARM (including Android/ARM).
The previous patch at: https://chromiumcodereview.appspot.com/10831358 actually regressed the performance of atomic operations on Linux/ARM systems, because the GCC intrinsics (e.g. __sync_fetch_and_add) are very poorly implemented at the moment (and also always provide a full barrier, even when the caller doesn't need it). This replaces the implementation with a better version which: - Uses inline assembly and LDRES/STREX instructions on ARMv6+, or the old kernel helper cmpxchg implementation on ARMv5. - Still uses the kernel helper memory barrier to optimize for single core devices on ARMv6 and ARMv7, or ARMv5 binaries running on devices with a higher architecture number. - Provide truly barrier free compare-and-swap, swap and atomic-inc operations. On tested Android/ARM devices, this speeds up atomic increments by x2 to x3. This indirectly speeds up other operations relying on it (e.g. scoped_refptr<> or base::Bind()). For details, see: https://docs.google.com/a/chromium.org/spreadsheet/ccc?key=0Arp73PHrzcIQdGNUd1NGYWlfY0dKWS1EZ2V6RThhZXc&usp=sharing BUG=234215 Review URL: https://chromiumcodereview.appspot.com/16335007 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@205205 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'base/atomicops_internals_arm_gcc.h')
-rw-r--r--base/atomicops_internals_arm_gcc.h278
1 files changed, 278 insertions, 0 deletions
diff --git a/base/atomicops_internals_arm_gcc.h b/base/atomicops_internals_arm_gcc.h
new file mode 100644
index 0000000..9a6606e
--- /dev/null
+++ b/base/atomicops_internals_arm_gcc.h
@@ -0,0 +1,278 @@
+// Copyright 2013 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// This file is an internal atomic implementation, use base/atomicops.h instead.
+//
+// LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears.
+
+#ifndef BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_
+#define BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_
+
+namespace base {
+namespace subtle {
+
+// Memory barriers on ARM are funky, but the kernel is here to help:
+//
+// * ARMv5 didn't support SMP, there is no memory barrier instruction at
+// all on this architecture, or when targeting its machine code.
+//
+// * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
+// writing a random value to a very specific coprocessor register.
+//
+// * On ARMv7, the "dmb" instruction is used to perform a full memory
+// barrier (though writing to the co-processor will still work).
+// However, on single core devices (e.g. Nexus One, or Nexus S),
+// this instruction will take up to 200 ns, which is huge, even though
+// it's completely un-needed on these devices.
+//
+// * There is no easy way to determine at runtime if the device is
+// single or multi-core. However, the kernel provides a useful helper
+// function at a fixed memory address (0xffff0fa0), which will always
+// perform a memory barrier in the most efficient way. I.e. on single
+// core devices, this is an empty function that exits immediately.
+// On multi-core devices, it implements a full memory barrier.
+//
+// * This source could be compiled to ARMv5 machine code that runs on a
+// multi-core ARMv6 or ARMv7 device. In this case, memory barriers
+// are needed for correct execution. Always call the kernel helper, even
+// when targeting ARMv5TE.
+//
+
+inline void MemoryBarrier() {
+ // Note: This is a function call, which is also an implicit compiler
+ // barrier.
+ typedef void (*KernelMemoryBarrierFunc)();
+ ((KernelMemoryBarrierFunc)0xffff0fa0)();
+}
+
+// An ARM toolchain would only define one of these depending on which
+// variant of the target architecture is being used. This tests against
+// any known ARMv6 or ARMv7 variant, where it is possible to directly
+// use ldrex/strex instructions to implement fast atomic operations.
+#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
+ defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
+ defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
+ defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
+ defined(__ARM_ARCH_6KZ__) || defined(__ARM_ARCH_6T2__)
+
+inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ Atomic32 prev_value;
+ int reloop;
+ do {
+ // The following is equivalent to:
+ //
+ // prev_value = LDREX(ptr)
+ // reloop = 0
+ // if (prev_value != old_value)
+ // reloop = STREX(ptr, new_value)
+ __asm__ __volatile__(" ldrex %0, [%3]\n"
+ " mov %1, #0\n"
+ " teq %0, %4\n"
+#ifdef __thumb2__
+ " it eq\n"
+#endif
+ " strexeq %1, %5, [%3]\n"
+ : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
+ : "r"(ptr), "r"(old_value), "r"(new_value)
+ : "cc", "memory");
+ } while (reloop != 0);
+ return prev_value;
+}
+
+inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
+ MemoryBarrier();
+ return result;
+}
+
+inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ MemoryBarrier();
+ return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
+}
+
+inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
+ Atomic32 increment) {
+ Atomic32 value;
+ int reloop;
+ do {
+ // Equivalent to:
+ //
+ // value = LDREX(ptr)
+ // value += increment
+ // reloop = STREX(ptr, value)
+ //
+ __asm__ __volatile__(" ldrex %0, [%3]\n"
+ " add %0, %0, %4\n"
+ " strex %1, %0, [%3]\n"
+ : "=&r"(value), "=&r"(reloop), "+m"(*ptr)
+ : "r"(ptr), "r"(increment)
+ : "cc", "memory");
+ } while (reloop);
+ return value;
+}
+
+inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
+ Atomic32 increment) {
+ // TODO(digit): Investigate if it's possible to implement this with
+ // a single MemoryBarrier() operation between the LDREX and STREX.
+ // See http://crbug.com/246514
+ MemoryBarrier();
+ Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
+ MemoryBarrier();
+ return result;
+}
+
+inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
+ Atomic32 new_value) {
+ Atomic32 old_value;
+ int reloop;
+ do {
+ // old_value = LDREX(ptr)
+ // fail = STREX(ptr, new_value)
+ __asm__ __volatile__(" ldrex %0, [%3]\n"
+ " strex %1, %4, [%3]\n"
+ : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
+ : "r"(ptr), "r"(new_value)
+ : "cc", "memory");
+ } while (reloop != 0);
+ return old_value;
+}
+
+// This tests against any known ARMv5 variant.
+#elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
+ defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)
+
+// The kernel also provides a helper function to perform an atomic
+// compare-and-swap operation at the hard-wired address 0xffff0fc0.
+// On ARMv5, this is implemented by a special code path that the kernel
+// detects and treats specially when thread pre-emption happens.
+// On ARMv6 and higher, it uses LDREX/STREX instructions instead.
+//
+// Note that this always perform a full memory barrier, there is no
+// need to add calls MemoryBarrier() before or after it. It also
+// returns 0 on success, and 1 on exit.
+//
+// Available and reliable since Linux 2.6.24. Both Android and ChromeOS
+// use newer kernel revisions, so this should not be a concern.
+namespace {
+
+inline int LinuxKernelCmpxchg(Atomic32 old_value,
+ Atomic32 new_value,
+ volatile Atomic32* ptr) {
+ typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
+ return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
+}
+
+} // namespace
+
+inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ Atomic32 prev_value;
+ for (;;) {
+ prev_value = *ptr;
+ if (prev_value != old_value)
+ return prev_value;
+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
+ return old_value;
+ }
+}
+
+inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
+ Atomic32 new_value) {
+ Atomic32 old_value;
+ do {
+ old_value = *ptr;
+ } while (LinuxKernelCmpxchg(old_value, new_value, ptr));
+ return old_value;
+}
+
+inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
+ Atomic32 increment) {
+ return Barrier_AtomicIncrement(ptr, increment);
+}
+
+inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
+ Atomic32 increment) {
+ for (;;) {
+ // Atomic exchange the old value with an incremented one.
+ Atomic32 old_value = *ptr;
+ Atomic32 new_value = old_value + increment;
+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
+ // The exchange took place as expected.
+ return new_value;
+ }
+ // Otherwise, *ptr changed mid-loop and we need to retry.
+ }
+}
+
+inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ Atomic32 prev_value;
+ for (;;) {
+ prev_value = *ptr;
+ if (prev_value != old_value) {
+ // Always ensure acquire semantics.
+ MemoryBarrier();
+ return prev_value;
+ }
+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
+ return old_value;
+ }
+}
+
+inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ // Use NoBarrier_CompareAndSwap(), because its implementation
+ // ensures that all stores happen through the kernel helper
+ // which always implement a full barrier.
+ return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
+}
+
+#else
+# error "Your CPU's ARM architecture is not supported yet"
+#endif
+
+// NOTE: Atomicity of the following load and store operations is only
+// guaranteed in case of 32-bit alignement of |ptr| values.
+
+inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
+ *ptr = value;
+}
+
+inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
+ *ptr = value;
+ MemoryBarrier();
+}
+
+inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
+ MemoryBarrier();
+ *ptr = value;
+}
+
+inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; }
+
+inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
+ Atomic32 value = *ptr;
+ MemoryBarrier();
+ return value;
+}
+
+inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
+ MemoryBarrier();
+ return *ptr;
+}
+
+} // namespace base::subtle
+} // namespace base
+
+#endif // BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_