diff options
author | ben@chromium.org <ben@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2009-05-05 03:31:44 +0000 |
---|---|---|
committer | ben@chromium.org <ben@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2009-05-05 03:31:44 +0000 |
commit | 80720414325af11e0dccedaf8c8f65998f91ec76 (patch) | |
tree | b834366724189756614a45ada157e8021c33f8a3 /base/stl_util-inl.h | |
parent | e515f5de833d9298682570fd2f70abb16d032912 (diff) | |
download | chromium_src-80720414325af11e0dccedaf8c8f65998f91ec76.zip chromium_src-80720414325af11e0dccedaf8c8f65998f91ec76.tar.gz chromium_src-80720414325af11e0dccedaf8c8f65998f91ec76.tar.bz2 |
Move scoped_vector.h and stl_util-inl.h to base/
http://crbug.com/11387
Review URL: http://codereview.chromium.org/107001
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@15272 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'base/stl_util-inl.h')
-rw-r--r-- | base/stl_util-inl.h | 450 |
1 files changed, 450 insertions, 0 deletions
diff --git a/base/stl_util-inl.h b/base/stl_util-inl.h new file mode 100644 index 0000000..54b7b29 --- /dev/null +++ b/base/stl_util-inl.h @@ -0,0 +1,450 @@ +// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +// STL utility functions. Usually, these replace built-in, but slow(!), +// STL functions with more efficient versions. + +#ifndef BASE_STL_UTIL_INL_H_ +#define BASE_STL_UTIL_INL_H_ + +#include <string.h> // for memcpy +#include <functional> +#include <set> +#include <string> +#include <vector> +#include <cassert> + +// Clear internal memory of an STL object. +// STL clear()/reserve(0) does not always free internal memory allocated +// This function uses swap/destructor to ensure the internal memory is freed. +template<class T> void STLClearObject(T* obj) { + T tmp; + tmp.swap(*obj); + obj->reserve(0); // this is because sometimes "T tmp" allocates objects with + // memory (arena implementation?). use reserve() + // to clear() even if it doesn't always work +} + +// Reduce memory usage on behalf of object if it is using more than +// "bytes" bytes of space. By default, we clear objects over 1MB. +template <class T> inline void STLClearIfBig(T* obj, size_t limit = 1<<20) { + if (obj->capacity() >= limit) { + STLClearObject(obj); + } else { + obj->clear(); + } +} + +// Reserve space for STL object. +// STL's reserve() will always copy. +// This function avoid the copy if we already have capacity +template<class T> void STLReserveIfNeeded(T* obj, int new_size) { + if (obj->capacity() < new_size) // increase capacity + obj->reserve(new_size); + else if (obj->size() > new_size) // reduce size + obj->resize(new_size); +} + +// STLDeleteContainerPointers() +// For a range within a container of pointers, calls delete +// (non-array version) on these pointers. +// NOTE: for these three functions, we could just implement a DeleteObject +// functor and then call for_each() on the range and functor, but this +// requires us to pull in all of algorithm.h, which seems expensive. +// For hash_[multi]set, it is important that this deletes behind the iterator +// because the hash_set may call the hash function on the iterator when it is +// advanced, which could result in the hash function trying to deference a +// stale pointer. +template <class ForwardIterator> +void STLDeleteContainerPointers(ForwardIterator begin, + ForwardIterator end) { + while (begin != end) { + ForwardIterator temp = begin; + ++begin; + delete *temp; + } +} + +// STLDeleteContainerPairPointers() +// For a range within a container of pairs, calls delete +// (non-array version) on BOTH items in the pairs. +// NOTE: Like STLDeleteContainerPointers, it is important that this deletes +// behind the iterator because if both the key and value are deleted, the +// container may call the hash function on the iterator when it is advanced, +// which could result in the hash function trying to dereference a stale +// pointer. +template <class ForwardIterator> +void STLDeleteContainerPairPointers(ForwardIterator begin, + ForwardIterator end) { + while (begin != end) { + ForwardIterator temp = begin; + ++begin; + delete temp->first; + delete temp->second; + } +} + +// STLDeleteContainerPairFirstPointers() +// For a range within a container of pairs, calls delete (non-array version) +// on the FIRST item in the pairs. +// NOTE: Like STLDeleteContainerPointers, deleting behind the iterator. +template <class ForwardIterator> +void STLDeleteContainerPairFirstPointers(ForwardIterator begin, + ForwardIterator end) { + while (begin != end) { + ForwardIterator temp = begin; + ++begin; + delete temp->first; + } +} + +// STLDeleteContainerPairSecondPointers() +// For a range within a container of pairs, calls delete +// (non-array version) on the SECOND item in the pairs. +template <class ForwardIterator> +void STLDeleteContainerPairSecondPointers(ForwardIterator begin, + ForwardIterator end) { + while (begin != end) { + delete begin->second; + ++begin; + } +} + +template<typename T> +inline void STLAssignToVector(std::vector<T>* vec, + const T* ptr, + size_t n) { + vec->resize(n); + memcpy(&vec->front(), ptr, n*sizeof(T)); +} + +/***** Hack to allow faster assignment to a vector *****/ + +// This routine speeds up an assignment of 32 bytes to a vector from +// about 250 cycles per assignment to about 140 cycles. +// +// Usage: +// STLAssignToVectorChar(&vec, ptr, size); +// STLAssignToString(&str, ptr, size); + +inline void STLAssignToVectorChar(std::vector<char>* vec, + const char* ptr, + size_t n) { + STLAssignToVector(vec, ptr, n); +} + +inline void STLAssignToString(std::string* str, const char* ptr, size_t n) { + str->resize(n); + memcpy(&*str->begin(), ptr, n); +} + +// To treat a possibly-empty vector as an array, use these functions. +// If you know the array will never be empty, you can use &*v.begin() +// directly, but that is allowed to dump core if v is empty. This +// function is the most efficient code that will work, taking into +// account how our STL is actually implemented. THIS IS NON-PORTABLE +// CODE, so call us instead of repeating the nonportable code +// everywhere. If our STL implementation changes, we will need to +// change this as well. + +template<typename T> +inline T* vector_as_array(std::vector<T>* v) { +# ifdef NDEBUG + return &*v->begin(); +# else + return v->empty() ? NULL : &*v->begin(); +# endif +} + +template<typename T> +inline const T* vector_as_array(const std::vector<T>* v) { +# ifdef NDEBUG + return &*v->begin(); +# else + return v->empty() ? NULL : &*v->begin(); +# endif +} + +// Return a mutable char* pointing to a string's internal buffer, +// which may not be null-terminated. Writing through this pointer will +// modify the string. +// +// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the +// next call to a string method that invalidates iterators. +// +// As of 2006-04, there is no standard-blessed way of getting a +// mutable reference to a string's internal buffer. However, issue 530 +// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530) +// proposes this as the method. According to Matt Austern, this should +// already work on all current implementations. +inline char* string_as_array(std::string* str) { + // DO NOT USE const_cast<char*>(str->data())! See the unittest for why. + return str->empty() ? NULL : &*str->begin(); +} + +// These are methods that test two hash maps/sets for equality. These exist +// because the == operator in the STL can return false when the maps/sets +// contain identical elements. This is because it compares the internal hash +// tables which may be different if the order of insertions and deletions +// differed. + +template <class HashSet> +inline bool +HashSetEquality(const HashSet& set_a, + const HashSet& set_b) { + if (set_a.size() != set_b.size()) return false; + for (typename HashSet::const_iterator i = set_a.begin(); + i != set_a.end(); + ++i) { + if (set_b.find(*i) == set_b.end()) + return false; + } + return true; +} + +template <class HashMap> +inline bool +HashMapEquality(const HashMap& map_a, + const HashMap& map_b) { + if (map_a.size() != map_b.size()) return false; + for (typename HashMap::const_iterator i = map_a.begin(); + i != map_a.end(); ++i) { + typename HashMap::const_iterator j = map_b.find(i->first); + if (j == map_b.end()) return false; + if (i->second != j->second) return false; + } + return true; +} + +// The following functions are useful for cleaning up STL containers +// whose elements point to allocated memory. + +// STLDeleteElements() deletes all the elements in an STL container and clears +// the container. This function is suitable for use with a vector, set, +// hash_set, or any other STL container which defines sensible begin(), end(), +// and clear() methods. +// +// If container is NULL, this function is a no-op. +// +// As an alternative to calling STLDeleteElements() directly, consider +// STLElementDeleter (defined below), which ensures that your container's +// elements are deleted when the STLElementDeleter goes out of scope. +template <class T> +void STLDeleteElements(T *container) { + if (!container) return; + STLDeleteContainerPointers(container->begin(), container->end()); + container->clear(); +} + +// Given an STL container consisting of (key, value) pairs, STLDeleteValues +// deletes all the "value" components and clears the container. Does nothing +// in the case it's given a NULL pointer. + +template <class T> +void STLDeleteValues(T *v) { + if (!v) return; + for (typename T::iterator i = v->begin(); i != v->end(); ++i) { + delete i->second; + } + v->clear(); +} + + +// The following classes provide a convenient way to delete all elements or +// values from STL containers when they goes out of scope. This greatly +// simplifies code that creates temporary objects and has multiple return +// statements. Example: +// +// vector<MyProto *> tmp_proto; +// STLElementDeleter<vector<MyProto *> > d(&tmp_proto); +// if (...) return false; +// ... +// return success; + +// Given a pointer to an STL container this class will delete all the element +// pointers when it goes out of scope. + +template<class STLContainer> class STLElementDeleter { + public: + STLElementDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {} + ~STLElementDeleter<STLContainer>() { STLDeleteElements(container_ptr_); } + private: + STLContainer *container_ptr_; +}; + +// Given a pointer to an STL container this class will delete all the value +// pointers when it goes out of scope. + +template<class STLContainer> class STLValueDeleter { + public: + STLValueDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {} + ~STLValueDeleter<STLContainer>() { STLDeleteValues(container_ptr_); } + private: + STLContainer *container_ptr_; +}; + + +// Forward declare some callback classes in callback.h for STLBinaryFunction +template <class R, class T1, class T2> +class ResultCallback2; + +// STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h +// It provides an operator () method instead of a Run method, so it may be +// passed to STL functions in <algorithm>. +// +// The client should create callback with NewPermanentCallback, and should +// delete callback after it is done using the STLBinaryFunction. + +template <class Result, class Arg1, class Arg2> +class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> { + public: + typedef ResultCallback2<Result, Arg1, Arg2> Callback; + + STLBinaryFunction(Callback* callback) + : callback_(callback) { + assert(callback_); + } + + Result operator() (Arg1 arg1, Arg2 arg2) { + return callback_->Run(arg1, arg2); + } + + private: + Callback* callback_; +}; + +// STLBinaryPredicate is a specialized version of STLBinaryFunction, where the +// return type is bool and both arguments have type Arg. It can be used +// wherever STL requires a StrictWeakOrdering, such as in sort() or +// lower_bound(). +// +// templated typedefs are not supported, so instead we use inheritance. + +template <class Arg> +class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> { + public: + typedef typename STLBinaryPredicate<Arg>::Callback Callback; + STLBinaryPredicate(Callback* callback) + : STLBinaryFunction<bool, Arg, Arg>(callback) { + } +}; + +// Functors that compose arbitrary unary and binary functions with a +// function that "projects" one of the members of a pair. +// Specifically, if p1 and p2, respectively, are the functions that +// map a pair to its first and second, respectively, members, the +// table below summarizes the functions that can be constructed: +// +// * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x)) +// * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x)) +// * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y)) +// * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y)) +// +// A typical usage for these functions would be when iterating over +// the contents of an STL map. For other sample usage, see the unittest. + +template<typename Pair, typename UnaryOp> +class UnaryOperateOnFirst + : public std::unary_function<Pair, typename UnaryOp::result_type> { + public: + UnaryOperateOnFirst() { + } + + UnaryOperateOnFirst(const UnaryOp& f) : f_(f) { + } + + typename UnaryOp::result_type operator()(const Pair& p) const { + return f_(p.first); + } + + private: + UnaryOp f_; +}; + +template<typename Pair, typename UnaryOp> +UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) { + return UnaryOperateOnFirst<Pair, UnaryOp>(f); +} + +template<typename Pair, typename UnaryOp> +class UnaryOperateOnSecond + : public std::unary_function<Pair, typename UnaryOp::result_type> { + public: + UnaryOperateOnSecond() { + } + + UnaryOperateOnSecond(const UnaryOp& f) : f_(f) { + } + + typename UnaryOp::result_type operator()(const Pair& p) const { + return f_(p.second); + } + + private: + UnaryOp f_; +}; + +template<typename Pair, typename UnaryOp> +UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) { + return UnaryOperateOnSecond<Pair, UnaryOp>(f); +} + +template<typename Pair, typename BinaryOp> +class BinaryOperateOnFirst + : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> { + public: + BinaryOperateOnFirst() { + } + + BinaryOperateOnFirst(const BinaryOp& f) : f_(f) { + } + + typename BinaryOp::result_type operator()(const Pair& p1, + const Pair& p2) const { + return f_(p1.first, p2.first); + } + + private: + BinaryOp f_; +}; + +template<typename Pair, typename BinaryOp> +BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) { + return BinaryOperateOnFirst<Pair, BinaryOp>(f); +} + +template<typename Pair, typename BinaryOp> +class BinaryOperateOnSecond + : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> { + public: + BinaryOperateOnSecond() { + } + + BinaryOperateOnSecond(const BinaryOp& f) : f_(f) { + } + + typename BinaryOp::result_type operator()(const Pair& p1, + const Pair& p2) const { + return f_(p1.second, p2.second); + } + + private: + BinaryOp f_; +}; + +template<typename Pair, typename BinaryOp> +BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) { + return BinaryOperateOnSecond<Pair, BinaryOp>(f); +} + +// Translates a set into a vector. +template<typename T> +std::vector<T> SetToVector(const std::set<T>& values) { + std::vector<T> result; + result.reserve(values.size()); + result.insert(result.begin(), values.begin(), values.end()); + return result; +} + +#endif // BASE_STL_UTIL_INL_H_ |