summaryrefslogtreecommitdiffstats
path: root/base/waitable_event_posix.cc
diff options
context:
space:
mode:
authoragl@chromium.org <agl@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2009-01-15 22:25:11 +0000
committeragl@chromium.org <agl@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2009-01-15 22:25:11 +0000
commit1c4947ffee0b7f5672737b542eb6adf466fcb223 (patch)
treeca2b1631479523a3a397fac842fe0870f422193f /base/waitable_event_posix.cc
parentc0ce93d64e2374f29acf2130c5324dc54762f0fa (diff)
downloadchromium_src-1c4947ffee0b7f5672737b542eb6adf466fcb223.zip
chromium_src-1c4947ffee0b7f5672737b542eb6adf466fcb223.tar.gz
chromium_src-1c4947ffee0b7f5672737b542eb6adf466fcb223.tar.bz2
WaitableEvent is the replacement for Windows events. Previously in the code, a HANDLE from CreateEvent was used for signaling, both within a process and across processes.
WaitableEvent is the cross platform replacement for this. To convert: * HANDLE -> base::WaitableEvent* * ScopedHandle -> scoped_ptr<base::WaitableEvent> * CreateEvent -> new base::WaitableEvent * SetEvent -> base::WaitableEvent::Signal * ResetEvent -> base::WaitableEvent::Reset * ObjectWatcher -> base::WaitableEventWatcher * WaitForMultipleObjects -> static base::WaitableEvent::WaitMany ObjectWatcher remains for Windows specific code. WaitableEventWatcher has an identical interface save, * It uses WaitableEvents, not HANDLEs * It returns void from StartWatching and StopWatcher, rather than errors. System internal errors are fatal to the address space IMPORTANT: There are semantic differences between the different platforms. WaitableEvents on Windows are implemented on top of events. Windows events work across process and this is used mostly for modal dialog support. Windows events can be duplicated with DuplicateHandle. On other platforms, WaitableEvent works only within a single process. In the future we shall have to replace the current uses of cross-process events with IPCs. BEWARE: HANDLE, on Windows, is a void *. Since any pointer type coerces to void *, you can pass a WaitableEvent * where a HANDLE is expected without any build-time errors. Review URL: http://codereview.chromium.org/16554 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@8126 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'base/waitable_event_posix.cc')
-rw-r--r--base/waitable_event_posix.cc392
1 files changed, 392 insertions, 0 deletions
diff --git a/base/waitable_event_posix.cc b/base/waitable_event_posix.cc
new file mode 100644
index 0000000..be5af6e
--- /dev/null
+++ b/base/waitable_event_posix.cc
@@ -0,0 +1,392 @@
+// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "base/waitable_event.h"
+
+#include "base/condition_variable.h"
+#include "base/lock.h"
+#include "base/message_loop.h"
+
+// -----------------------------------------------------------------------------
+// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
+// support cross-process events (where one process can signal an event which
+// others are waiting on). Because of this, we can avoid having one thread per
+// listener in several cases.
+//
+// The WaitableEvent maintains a list of waiters, protected by a lock. Each
+// waiter is either an async wait, in which case we have a Task and the
+// MessageLoop to run it on, or a blocking wait, in which case we have the
+// condition variable to signal.
+//
+// Waiting involves grabbing the lock and adding oneself to the wait list. Async
+// waits can be canceled, which means grabbing the lock and removing oneself
+// from the list.
+//
+// Waiting on multiple events is handled by adding a single, synchronous wait to
+// the wait-list of many events. An event passes a pointer to itself when
+// firing a waiter and so we can store that pointer to find out which event
+// triggered.
+// -----------------------------------------------------------------------------
+
+namespace base {
+
+// -----------------------------------------------------------------------------
+// This is just an abstract base class for waking the two types of waiters
+// -----------------------------------------------------------------------------
+WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
+ : signaled_(false),
+ manual_reset_(manual_reset) {
+ DCHECK(!initially_signaled) << "Not implemented";
+}
+
+WaitableEvent::~WaitableEvent() {
+ DCHECK(waiters_.empty()) << "Deleting WaitableEvent with listeners!";
+}
+
+void WaitableEvent::Reset() {
+ AutoLock locked(lock_);
+ signaled_ = false;
+}
+
+void WaitableEvent::Signal() {
+ AutoLock locked(lock_);
+
+ if (signaled_)
+ return;
+
+ if (manual_reset_) {
+ SignalAll();
+ signaled_ = true;
+ } else {
+ // In the case of auto reset, if no waiters were woken, we remain
+ // signaled.
+ if (!SignalOne())
+ signaled_ = true;
+ }
+}
+
+bool WaitableEvent::IsSignaled() {
+ AutoLock locked(lock_);
+
+ const bool result = signaled_;
+ if (result && !manual_reset_)
+ signaled_ = false;
+ return result;
+}
+
+// -----------------------------------------------------------------------------
+// Synchronous waits
+
+// -----------------------------------------------------------------------------
+// This is an synchronous waiter. The thread is waiting on the given condition
+// variable and the fired flag in this object.
+// -----------------------------------------------------------------------------
+class SyncWaiter : public WaitableEvent::Waiter {
+ public:
+ SyncWaiter(ConditionVariable* cv, Lock* lock)
+ : fired_(false),
+ cv_(cv),
+ lock_(lock),
+ signaling_event_(NULL) { }
+
+ bool Fire(WaitableEvent *signaling_event) {
+ lock_->Acquire();
+ const bool previous_value = fired_;
+ fired_ = true;
+ if (!previous_value)
+ signaling_event_ = signaling_event;
+ lock_->Release();
+
+ if (previous_value)
+ return false;
+
+ cv_->Broadcast();
+
+ // SyncWaiters are stack allocated on the stack of the blocking thread.
+ return true;
+ }
+
+ WaitableEvent* signaled_event() const {
+ return signaling_event_;
+ }
+
+ // ---------------------------------------------------------------------------
+ // These waiters are always stack allocated and don't delete themselves. Thus
+ // there's no problem and the ABA tag is the same as the object pointer.
+ // ---------------------------------------------------------------------------
+ bool Compare(void* tag) {
+ return this == tag;
+ }
+
+ // ---------------------------------------------------------------------------
+ // Called with lock held.
+ // ---------------------------------------------------------------------------
+ bool fired() const {
+ return fired_;
+ }
+
+ // ---------------------------------------------------------------------------
+ // During a TimedWait, we need a way to make sure that an auto-reset
+ // WaitableEvent doesn't think that this event has been signaled between
+ // unlocking it and removing it from the wait-list. Called with lock held.
+ // ---------------------------------------------------------------------------
+ void Disable() {
+ fired_ = true;
+ }
+
+ private:
+ bool fired_;
+ ConditionVariable *const cv_;
+ Lock *const lock_;
+ WaitableEvent* signaling_event_; // The WaitableEvent which woke us
+};
+
+bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
+ const Time end_time(Time::Now() + max_time);
+
+ lock_.Acquire();
+ if (signaled_) {
+ if (!manual_reset_) {
+ // In this case we were signaled when we had no waiters. Now that
+ // someone has waited upon us, we can automatically reset.
+ signaled_ = false;
+ }
+
+ lock_.Release();
+ return true;
+ }
+
+ Lock lock;
+ lock.Acquire();
+ ConditionVariable cv(&lock);
+ SyncWaiter sw(&cv, &lock);
+
+ Enqueue(&sw);
+ lock_.Release();
+ // We are violating locking order here by holding the SyncWaiter lock but not
+ // the WaitableEvent lock. However, this is safe because we don't lock @lock_
+ // again before unlocking it.
+
+ for (;;) {
+ if (sw.fired()) {
+ lock.Release();
+ return true;
+ }
+
+ if (max_time.ToInternalValue() < 0) {
+ cv.Wait();
+ } else {
+ const Time current_time(Time::Now());
+ if (current_time >= end_time) {
+ // We can't acquire @lock_ before releasing @lock (because of locking
+ // order), however, inbetween the two a signal could be fired and @sw
+ // would accept it, however we will still return false, so the signal
+ // would be lost on an auto-reset WaitableEvent. Thus we call Disable
+ // which makes sw::Fire return false.
+ sw.Disable();
+ lock.Release();
+
+ lock_.Acquire();
+ Dequeue(&sw, &sw);
+ lock_.Release();
+ return false;
+ }
+ const TimeDelta max_wait(end_time - current_time);
+
+ cv.TimedWait(max_wait);
+ }
+ }
+}
+
+bool WaitableEvent::Wait() {
+ return TimedWait(TimeDelta::FromSeconds(-1));
+}
+
+// -----------------------------------------------------------------------------
+
+
+// -----------------------------------------------------------------------------
+// Synchronous waiting on multiple objects.
+
+static bool // StrictWeakOrdering
+cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
+ const std::pair<WaitableEvent*, unsigned> &b) {
+ return a.first < b.first;
+}
+
+// static
+size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
+ size_t count) {
+ DCHECK(count) << "Cannot wait on no events";
+
+ // We need to acquire the locks in a globally consistent order. Thus we sort
+ // the array of waitables by address. We actually sort a pairs so that we can
+ // map back to the original index values later.
+ std::vector<std::pair<WaitableEvent*, size_t> > waitables;
+ waitables.reserve(count);
+ for (size_t i = 0; i < count; ++i)
+ waitables.push_back(std::make_pair(raw_waitables[i], i));
+
+ DCHECK_EQ(count, waitables.size());
+
+ sort(waitables.begin(), waitables.end(), cmp_fst_addr);
+
+ // The set of waitables must be distinct. Since we have just sorted by
+ // address, we can check this cheaply by comparing pairs of consecutive
+ // elements.
+ for (size_t i = 0; i < waitables.size() - 1; ++i) {
+ DCHECK(waitables[i].first != waitables[i+1].first);
+ }
+
+ Lock lock;
+ ConditionVariable cv(&lock);
+ SyncWaiter sw(&cv, &lock);
+
+ const size_t r = EnqueueMany(&waitables[0], count, &sw);
+ if (r) {
+ // One of the events is already signaled. The SyncWaiter has not been
+ // enqueued anywhere. EnqueueMany returns the count of remaining waitables
+ // when the signaled one was seen, so the index of the signaled event is
+ // @count - @r.
+ return waitables[count - r].second;
+ }
+
+ // At this point, we hold the locks on all the WaitableEvents and we have
+ // enqueued our waiter in them all.
+ lock.Acquire();
+ // Release the WaitableEvent locks in the reverse order
+ for (size_t i = 0; i < count; ++i) {
+ waitables[count - (1 + i)].first->lock_.Release();
+ }
+
+ for (;;) {
+ if (sw.fired())
+ break;
+
+ cv.Wait();
+ }
+ lock.Release();
+
+ // The address of the WaitableEvent which fired is stored in the SyncWaiter.
+ WaitableEvent *const signaled_event = sw.signaled_event();
+ // This will store the index of the raw_waitables which fired.
+ size_t signaled_index;
+
+ // Take the locks of each WaitableEvent in turn (except the signaled one) and
+ // remove our SyncWaiter from the wait-list
+ for (size_t i = 0; i < count; ++i) {
+ if (raw_waitables[i] != signaled_event) {
+ raw_waitables[i]->lock_.Acquire();
+ // There's no possible ABA issue with the address of the SyncWaiter here
+ // because it lives on the stack. Thus the tag value is just the pointer
+ // value again.
+ raw_waitables[i]->Dequeue(&sw, &sw);
+ raw_waitables[i]->lock_.Release();
+ } else {
+ signaled_index = i;
+ }
+ }
+
+ return signaled_index;
+}
+
+// -----------------------------------------------------------------------------
+// If return value == 0:
+// The locks of the WaitableEvents have been taken in order and the Waiter has
+// been enqueued in the wait-list of each. None of the WaitableEvents are
+// currently signaled
+// else:
+// None of the WaitableEvent locks are held. The Waiter has not been enqueued
+// in any of them and the return value is the index of the first WaitableEvent
+// which was signaled, from the end of the array.
+// -----------------------------------------------------------------------------
+// static
+unsigned WaitableEvent::EnqueueMany
+ (std::pair<WaitableEvent*, unsigned>* waitables,
+ unsigned count, Waiter* waiter) {
+ if (!count)
+ return 0;
+
+ waitables[0].first->lock_.Acquire();
+ if (waitables[0].first->signaled_) {
+ if (!waitables[0].first->manual_reset_)
+ waitables[0].first->signaled_ = false;
+ waitables[0].first->lock_.Release();
+ return count;
+ }
+
+ const unsigned r = EnqueueMany(waitables + 1, count - 1, waiter);
+ if (r) {
+ waitables[0].first->lock_.Release();
+ } else {
+ waitables[0].first->Enqueue(waiter);
+ }
+
+ return r;
+}
+
+// -----------------------------------------------------------------------------
+
+
+// -----------------------------------------------------------------------------
+// Private functions...
+
+// -----------------------------------------------------------------------------
+// Wake all waiting waiters. Called with lock held.
+// -----------------------------------------------------------------------------
+bool WaitableEvent::SignalAll() {
+ bool signaled_at_least_one = false;
+
+ for (std::list<Waiter*>::iterator
+ i = waiters_.begin(); i != waiters_.end(); ++i) {
+ if ((*i)->Fire(this))
+ signaled_at_least_one = true;
+ }
+
+ waiters_.clear();
+ return signaled_at_least_one;
+}
+
+// ---------------------------------------------------------------------------
+// Try to wake a single waiter. Return true if one was woken. Called with lock
+// held.
+// ---------------------------------------------------------------------------
+bool WaitableEvent::SignalOne() {
+ for (;;) {
+ if (waiters_.empty())
+ return false;
+
+ const bool r = (*waiters_.begin())->Fire(this);
+ waiters_.pop_front();
+ if (r)
+ return true;
+ }
+}
+
+// -----------------------------------------------------------------------------
+// Add a waiter to the list of those waiting. Called with lock held.
+// -----------------------------------------------------------------------------
+void WaitableEvent::Enqueue(Waiter* waiter) {
+ waiters_.push_back(waiter);
+}
+
+// -----------------------------------------------------------------------------
+// Remove a waiter from the list of those waiting. Return true if the waiter was
+// actually removed. Called with lock held.
+// -----------------------------------------------------------------------------
+bool WaitableEvent::Dequeue(Waiter* waiter, void* tag) {
+ for (std::list<Waiter*>::iterator
+ i = waiters_.begin(); i != waiters_.end(); ++i) {
+ if (*i == waiter && (*i)->Compare(tag)) {
+ waiters_.erase(i);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// -----------------------------------------------------------------------------
+
+} // namespace base