summaryrefslogtreecommitdiffstats
path: root/base
diff options
context:
space:
mode:
authordarin@google.com <darin@google.com@0039d316-1c4b-4281-b951-d872f2087c98>2008-08-16 03:09:05 +0000
committerdarin@google.com <darin@google.com@0039d316-1c4b-4281-b951-d872f2087c98>2008-08-16 03:09:05 +0000
commitfc7fb6e30c5c3574dfade2803f1793b9110d1370 (patch)
tree0ac30f51beace4b794501ad120f437f9149c65fb /base
parent3705baeff3bc0c1f63d2376e16c427df18c7564a (diff)
downloadchromium_src-fc7fb6e30c5c3574dfade2803f1793b9110d1370.zip
chromium_src-fc7fb6e30c5c3574dfade2803f1793b9110d1370.tar.gz
chromium_src-fc7fb6e30c5c3574dfade2803f1793b9110d1370.tar.bz2
Take 2 at the new MessageLoop implementation.
R=jar git-svn-id: svn://svn.chromium.org/chrome/trunk/src@973 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'base')
-rw-r--r--base/message_loop.cc691
-rw-r--r--base/message_loop.h422
-rw-r--r--base/message_pump.h7
-rw-r--r--base/message_pump_win.cc16
4 files changed, 258 insertions, 878 deletions
diff --git a/base/message_loop.cc b/base/message_loop.cc
index 18f4448..4d61b6a 100644
--- a/base/message_loop.cc
+++ b/base/message_loop.cc
@@ -27,14 +27,13 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include <algorithm>
-
#include "base/message_loop.h"
+#include <algorithm>
+
#include "base/logging.h"
#include "base/string_util.h"
#include "base/thread_local_storage.h"
-#include "base/win_util.h"
// a TLS index to the message loop for the current thread
// Note that if we start doing complex stuff in other static initializers
@@ -43,25 +42,10 @@
//------------------------------------------------------------------------------
-static const wchar_t kWndClass[] = L"Chrome_MessageLoopWindow";
-
-// Windows Message numbers handled by WindowMessageProc.
-
-// Message sent to get an additional time slice for pumping (processing) another
-// task (a series of such messages creates a continuous task pump).
-static const int kMsgPumpATask = WM_USER + 1;
-
-// Message sent by Quit() to cause our main message pump to terminate as soon as
-// all pending task and message queues have been emptied.
-static const int kMsgQuit = WM_USER + 2;
-
// Logical events for Histogram profiling. Run with -message-loop-histogrammer
// to get an accounting of messages and actions taken on each thread.
-static const int kTaskRunEvent = WM_USER + 16; // 0x411
-static const int kSleepingApcEvent = WM_USER + 17; // 0x411
-static const int kPollingSignalEvent = WM_USER + 18; // 0x412
-static const int kSleepingSignalEvent = WM_USER + 19; // 0x413
-static const int kTimerEvent = WM_USER + 20; // 0x414
+static const int kTaskRunEvent = 0x1;
+static const int kTimerEvent = 0x2;
// Provide range of message IDs for use in histogramming and debug display.
static const int kLeastNonZeroMessageId = 1;
@@ -70,26 +54,8 @@ static const int kNumberOfDistinctMessagesDisplayed = 1100;
//------------------------------------------------------------------------------
-#ifndef NDEBUG
-// Force exercise of polling model.
-#define CHROME_MAXIMUM_WAIT_OBJECTS 8
-#else
-#define CHROME_MAXIMUM_WAIT_OBJECTS MAXIMUM_WAIT_OBJECTS
-#endif
-
-//------------------------------------------------------------------------------
-// A strategy of -1 uses the default case. All strategies are selected as
-// positive integers.
-// static
-int MessageLoop::strategy_selector_ = -1;
-
-// static
-void MessageLoop::SetStrategy(int strategy) {
- DCHECK(-1 == strategy_selector_);
- strategy_selector_ = strategy;
-}
+#if defined(OS_WIN)
-//------------------------------------------------------------------------------
// Upon a SEH exception in this thread, it restores the original unhandled
// exception filter.
static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) {
@@ -106,23 +72,22 @@ static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() {
return top_filter;
}
+#endif // defined(OS_WIN)
+
//------------------------------------------------------------------------------
MessageLoop::MessageLoop()
#pragma warning(suppress: 4355) // OK, to use |this| in the initializer list.
: timer_manager_(this),
- message_hwnd_(NULL),
exception_restoration_(false),
nestable_tasks_allowed_(true),
- dispatcher_(NULL),
- quit_received_(false),
- quit_now_(false),
- task_pump_message_pending_(false),
- run_depth_(0) {
+ state_(NULL) {
DCHECK(tls_index_) << "static initializer failed";
DCHECK(!current()) << "should only have one message loop per thread";
ThreadLocalStorage::Set(tls_index_, this);
- InitMessageWnd();
+#if defined(OS_WIN)
+ pump_ = new base::MessagePumpWin();
+#endif
}
MessageLoop::~MessageLoop() {
@@ -135,8 +100,7 @@ MessageLoop::~MessageLoop() {
// OK, now make it so that no one can find us.
ThreadLocalStorage::Set(tls_index_, NULL);
- DCHECK(!dispatcher_);
- DCHECK(!quit_received_ && !quit_now_);
+ DCHECK(!state_);
// Most tasks that have not been Run() are deleted in the |timer_manager_|
// destructor after we remove our tls index. We delete the tasks in our
@@ -147,12 +111,6 @@ MessageLoop::~MessageLoop() {
DeletePendingTasks();
}
-void MessageLoop::SetThreadName(const std::string& thread_name) {
- DCHECK(thread_name_.empty());
- thread_name_ = thread_name;
- StartHistogrammer();
-}
-
void MessageLoop::AddDestructionObserver(DestructionObserver *obs) {
DCHECK(this == current());
destruction_observers_.AddObserver(obs);
@@ -163,26 +121,23 @@ void MessageLoop::RemoveDestructionObserver(DestructionObserver *obs) {
destruction_observers_.RemoveObserver(obs);
}
-void MessageLoop::AddObserver(Observer *obs) {
- DCHECK(this == current());
- observers_.AddObserver(obs);
-}
-
-void MessageLoop::RemoveObserver(Observer *obs) {
- DCHECK(this == current());
- observers_.RemoveObserver(obs);
-}
-
void MessageLoop::Run() {
- RunHandler(NULL, false);
+ AutoRunState save_state(this);
+ RunHandler();
}
-void MessageLoop::Run(Dispatcher* dispatcher) {
- RunHandler(dispatcher, false);
+#if defined(OS_WIN)
+void MessageLoop::Run(base::MessagePumpWin::Dispatcher* dispatcher) {
+ AutoRunState save_state(this);
+ state_->dispatcher = dispatcher;
+ RunHandler();
}
+#endif
void MessageLoop::RunAllPending() {
- RunHandler(NULL, true);
+ AutoRunState save_state(this);
+ state_->quit_received = true; // Means run until we would otherwise block.
+ RunHandler();
}
// Runs the loop in two different SEH modes:
@@ -190,94 +145,43 @@ void MessageLoop::RunAllPending() {
// one that calls SetUnhandledExceptionFilter().
// enable_SEH_restoration_ = true : any unhandled exception goes to the filter
// that was existed before the loop was run.
-void MessageLoop::RunHandler(Dispatcher* dispatcher, bool non_blocking) {
+void MessageLoop::RunHandler() {
+#if defined(OS_WIN)
if (exception_restoration_) {
LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter();
__try {
- RunInternal(dispatcher, non_blocking);
+ RunInternal();
} __except(SEHFilter(current_filter)) {
}
- } else {
- RunInternal(dispatcher, non_blocking);
+ return;
}
+#endif
+
+ RunInternal();
}
//------------------------------------------------------------------------------
-// IF this was just a simple PeekMessage() loop (servicing all passible work
-// queues), then Windows would try to achieve the following order according to
-// MSDN documentation about PeekMessage with no filter):
-// * Sent messages
-// * Posted messages
-// * Sent messages (again)
-// * WM_PAINT messages
-// * WM_TIMER messages
-//
-// Summary: none of the above classes is starved, and sent messages has twice
-// the chance of being processed (i.e., reduced service time).
-
-void MessageLoop::RunInternal(Dispatcher* dispatcher, bool non_blocking) {
- // Preserve ability to be called recursively.
- ScopedStateSave save(this); // State is restored on exit.
- dispatcher_ = dispatcher;
- StartHistogrammer();
+void MessageLoop::RunInternal() {
DCHECK(this == current());
- //
- // Process pending messages and signaled objects.
- //
- // Flush these queues before exiting due to a kMsgQuit or else we risk not
- // shutting down properly as some operations may depend on further event
- // processing. (Note: some tests may use quit_now_ to exit more swiftly,
- // and leave messages pending, so don't assert the above fact).
- RunTraditional(non_blocking);
- DCHECK(non_blocking || quit_received_ || quit_now_);
-}
-void MessageLoop::RunTraditional(bool non_blocking) {
- for (;;) {
- // If we do any work, we may create more messages etc., and more work
- // may possibly be waiting in another task group. When we (for example)
- // ProcessNextWindowsMessage(), there is a good chance there are still more
- // messages waiting (same thing for ProcessNextObject(), which responds to
- // only one signaled object; etc.). On the other hand, when any of these
- // methods return having done no work, then it is pretty unlikely that
- // calling them again quickly will find any work to do.
- // Finally, if they all say they had no work, then it is a good time to
- // consider sleeping (waiting) for more work.
- bool more_work_is_plausible = ProcessNextWindowsMessage();
- if (quit_now_)
- return;
-
- more_work_is_plausible |= ProcessNextDeferredTask();
- more_work_is_plausible |= ProcessNextObject();
- if (more_work_is_plausible)
- continue;
-
- if (quit_received_)
- return;
-
- // Run any timer that is ready to run. It may create messages etc.
- if (ProcessSomeTimers())
- continue;
-
- // We run delayed non nestable tasks only after all nestable tasks have
- // run, to preserve FIFO ordering.
- if (ProcessNextDelayedNonNestableTask())
- continue;
-
- if (non_blocking)
- return;
+ StartHistogrammer();
- // We service APCs in WaitForWork, without returning.
- WaitForWork(); // Wait (sleep) until we have work to do again.
+#if defined(OS_WIN)
+ if (state_->dispatcher) {
+ pump_win()->RunWithDispatcher(this, state_->dispatcher);
+ return;
}
+#endif
+
+ pump_->Run(this);
}
//------------------------------------------------------------------------------
// Wrapper functions for use in above message loop framework.
bool MessageLoop::ProcessNextDelayedNonNestableTask() {
- if (run_depth_ != 1)
+ if (state_->run_depth != 1)
return false;
if (delayed_non_nestable_queue_.Empty())
@@ -287,53 +191,15 @@ bool MessageLoop::ProcessNextDelayedNonNestableTask() {
return true;
}
-bool MessageLoop::ProcessNextDeferredTask() {
- ReloadWorkQueue();
- return QueueOrRunTask(NULL);
-}
-
-bool MessageLoop::ProcessSomeTimers() {
- return timer_manager_.RunSomePendingTimers();
-}
-
//------------------------------------------------------------------------------
void MessageLoop::Quit() {
- EnsureMessageGetsPosted(kMsgQuit);
-}
-
-bool MessageLoop::WatchObject(HANDLE object, Watcher* watcher) {
- DCHECK(this == current());
- DCHECK(object);
- DCHECK_NE(object, INVALID_HANDLE_VALUE);
-
- std::vector<HANDLE>::iterator it = find(objects_.begin(), objects_.end(),
- object);
- if (watcher) {
- if (it == objects_.end()) {
- static size_t warning_multiple = 1;
- if (objects_.size() >= warning_multiple * MAXIMUM_WAIT_OBJECTS / 2) {
- LOG(INFO) << "More than " << warning_multiple * MAXIMUM_WAIT_OBJECTS / 2
- << " objects being watched";
- // This DCHECK() is an artificial limitation, meant to warn us if we
- // start creating too many objects. It can safely be raised to a higher
- // level, and the program is designed to handle much larger values.
- // Before raising this limit, make sure that there is a very good reason
- // (in your debug testing) to be watching this many objects.
- DCHECK(2 <= warning_multiple);
- ++warning_multiple;
- }
- objects_.push_back(object);
- watchers_.push_back(watcher);
- } else {
- watchers_[it - objects_.begin()] = watcher;
- }
- } else if (it != objects_.end()) {
- std::vector<HANDLE>::difference_type index = it - objects_.begin();
- objects_.erase(it);
- watchers_.erase(watchers_.begin() + index);
+ DCHECK(current() == this);
+ if (state_) {
+ state_->quit_received = true;
+ } else {
+ NOTREACHED() << "Must be inside Run to call Quit";
}
- return true;
}
// Possibly called on a background thread!
@@ -352,88 +218,23 @@ void MessageLoop::PostTaskInternal(Task* task) {
// directly, as it could starve handling of foreign threads. Put every task
// into this queue.
- // Local stack variables to use IF we need to process after releasing locks.
- HWND message_hwnd;
+ scoped_refptr<base::MessagePump> pump;
{
- AutoLock lock1(incoming_queue_lock_);
+ AutoLock locked(incoming_queue_lock_);
+
bool was_empty = incoming_queue_.Empty();
incoming_queue_.Push(task);
if (!was_empty)
return; // Someone else should have started the sub-pump.
- // We may have to start the sub-pump.
- AutoLock lock2(task_pump_message_lock_);
- if (task_pump_message_pending_)
- return; // Someone else continued the pumping.
- task_pump_message_pending_ = true; // We'll send one.
- message_hwnd = message_hwnd_;
- } // Release both locks.
- // We may have just posted a kMsgQuit, and so this instance may now destroyed!
- // Do not invoke non-static methods, or members in any way!
-
- // PostMessage may fail, as the hwnd may have vanished due to kMsgQuit.
- PostMessage(message_hwnd, kMsgPumpATask, 0, 0);
-}
-
-void MessageLoop::InitMessageWnd() {
- HINSTANCE hinst = GetModuleHandle(NULL);
-
- WNDCLASSEX wc = {0};
- wc.cbSize = sizeof(wc);
- wc.lpfnWndProc = WndProcThunk;
- wc.hInstance = hinst;
- wc.lpszClassName = kWndClass;
- RegisterClassEx(&wc);
-
- message_hwnd_ = CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0,
- hinst, 0);
- DCHECK(message_hwnd_);
-}
-
-// static
-LRESULT CALLBACK MessageLoop::WndProcThunk(
- HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
- DCHECK(MessageLoop::current());
- return MessageLoop::current()->WndProc(hwnd, message, wparam, lparam);
-}
-
-LRESULT MessageLoop::WndProc(
- HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
- if (hwnd == message_hwnd_) {
- switch (message) {
- case kMsgPumpATask: {
- ProcessPumpReplacementMessage(); // Avoid starving paint and timer.
- if (!nestable_tasks_allowed_)
- return 0;
- PumpATaskDuringWndProc();
- return 0;
- }
-
- case WM_TIMER:
- ProcessSomeTimers(); // Give the TimerManager a tickle.
- DidChangeNextTimerExpiry(); // Maybe generate another WM_TIMER.
- return 0;
-
- case kMsgQuit: {
- // TODO(jar): bug 1300541 The following assert should be used, but
- // currently too much code actually triggers the assert, especially in
- // tests :-(.
- // Discarding a second quit will cause a hang.
- //CHECK(!quit_received_);
- quit_received_ = true;
- return 0;
- }
- }
+ pump = pump_;
}
- return ::DefWindowProc(hwnd, message, wparam, lparam);
-}
+ // Since the incoming_queue_ may contain a task that destroys this message
+ // loop, we cannot exit incoming_queue_lock_ until we are done with |this|.
+ // We use a stack-based reference to the message pump so that we can call
+ // ScheduleWork outside of incoming_queue_lock_.
-void MessageLoop::WillProcessMessage(const MSG& msg) {
- FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
-}
-
-void MessageLoop::DidProcessMessage(const MSG& msg) {
- FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
+ pump->ScheduleWork();
}
void MessageLoop::SetNestableTasksAllowed(bool allowed) {
@@ -442,7 +243,7 @@ void MessageLoop::SetNestableTasksAllowed(bool allowed) {
if (!nestable_tasks_allowed_)
return;
// Start the native pump if we are not already pumping.
- EnsurePumpATaskWasPosted();
+ pump_->ScheduleWork();
}
}
@@ -450,215 +251,7 @@ bool MessageLoop::NestableTasksAllowed() const {
return nestable_tasks_allowed_;
}
-bool MessageLoop::ProcessNextWindowsMessage() {
- MSG msg;
- if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
- return ProcessMessageHelper(msg);
- }
- return false;
-}
-
-bool MessageLoop::ProcessMessageHelper(const MSG& msg) {
- HistogramEvent(msg.message);
-
- if (WM_QUIT == msg.message) {
- // Repost the QUIT message so that it will be retrieved by the primary
- // GetMessage() loop.
- quit_now_ = true;
- PostQuitMessage(static_cast<int>(msg.wParam));
- return false;
- }
-
- // While running our main message pump, we discard kMsgPumpATask messages.
- if (msg.message == kMsgPumpATask && msg.hwnd == message_hwnd_)
- return ProcessPumpReplacementMessage();
-
- WillProcessMessage(msg);
-
- if (dispatcher_) {
- if (!dispatcher_->Dispatch(msg))
- quit_now_ = true;
- } else {
- TranslateMessage(&msg);
- DispatchMessage(&msg);
- }
-
- DidProcessMessage(msg);
- return true;
-}
-
-bool MessageLoop::ProcessPumpReplacementMessage() {
- MSG msg;
- bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
- DCHECK(!have_message || kMsgPumpATask != msg.message
- || msg.hwnd != message_hwnd_);
- {
- // Since we discarded a kMsgPumpATask message, we must update the flag.
- AutoLock lock(task_pump_message_lock_);
- DCHECK(task_pump_message_pending_);
- task_pump_message_pending_ = false;
- }
- return have_message && ProcessMessageHelper(msg);
-}
-
-// Create a mini-message-pump to force immediate processing of only Windows
-// WM_PAINT messages.
-void MessageLoop::PumpOutPendingPaintMessages() {
- // Don't provide an infinite loop, but do enough peeking to get the job done.
- // Actual common max is 4 peeks, but we'll be a little safe here.
- const int kMaxPeekCount = 20;
- int peek_count;
- bool win2k(true);
- if (win_util::GetWinVersion() > win_util::WINVERSION_2000)
- win2k = false;
- for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
- MSG msg;
- if (win2k) {
- if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE))
- break;
- } else {
- if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
- break;
- }
- ProcessMessageHelper(msg);
- if (quit_now_ ) // Handle WM_QUIT.
- break;
- }
- // Histogram what was really being used, to help to adjust kMaxPeekCount.
- DHISTOGRAM_COUNTS(L"Loop.PumpOutPendingPaintMessages Peeks", peek_count);
-}
-
//------------------------------------------------------------------------------
-// If we handle more than the OS limit on the number of objects that can be
-// waited for, we'll need to poll (sequencing through subsets of the objects
-// that can be passed in a single OS wait call). The following is the polling
-// interval used in that (unusual) case. (I don't have a lot of justifcation
-// for the specific value, but it needed to be short enough that it would not
-// add a lot of latency, and long enough that we wouldn't thrash the CPU for no
-// reason... especially considering the silly user probably has a million tabs
-// open, etc.)
-static const int kMultipleWaitPollingInterval = 20;
-
-void MessageLoop::WaitForWork() {
- bool original_can_run = nestable_tasks_allowed_;
- int wait_flags = original_can_run ? MWMO_ALERTABLE | MWMO_INPUTAVAILABLE
- : MWMO_INPUTAVAILABLE;
-
- bool use_polling = false; // Poll if too many objects for one OS Wait call.
- for (;;) {
- // Do initialization here, in case APC modifies object list.
- size_t total_objs = original_can_run ? objects_.size() : 0;
-
- int delay;
- size_t polling_index = 0; // The first unprocessed object index.
- do {
- size_t objs_len =
- (polling_index < total_objs) ? total_objs - polling_index : 0;
- if (objs_len >= CHROME_MAXIMUM_WAIT_OBJECTS) {
- objs_len = CHROME_MAXIMUM_WAIT_OBJECTS - 1;
- use_polling = true;
- }
- HANDLE* objs = objs_len ? polling_index + &objects_.front() : NULL;
-
- // Only wait up to the time needed by the timer manager to fire the next
- // set of timers.
- delay = timer_manager_.GetCurrentDelay();
- if (use_polling && delay > kMultipleWaitPollingInterval)
- delay = kMultipleWaitPollingInterval;
- if (delay < 0) // Negative value means no timers waiting.
- delay = INFINITE;
-
- DWORD result;
- result = MsgWaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs,
- delay, QS_ALLINPUT, wait_flags);
-
- if (WAIT_IO_COMPLETION == result) {
- HistogramEvent(kSleepingApcEvent);
- // We'll loop here when we service an APC. At it currently stands,
- // *ONLY* the IO thread uses *any* APCs, so this should have no impact
- // on the UI thread.
- break; // Break to outer loop, and waitforwork() again.
- }
-
- // Use unsigned type to simplify range detection;
- size_t signaled_index = result - WAIT_OBJECT_0;
- if (signaled_index < objs_len) {
- SignalWatcher(polling_index + signaled_index);
- HistogramEvent(kSleepingSignalEvent);
- return; // We serviced a signaled object.
- }
-
- if (objs_len == signaled_index)
- return; // A WM_* message is available.
-
- DCHECK_NE(WAIT_FAILED, result) << GetLastError();
-
- DCHECK(!objs || result == WAIT_TIMEOUT);
- if (!use_polling)
- return;
- polling_index += objs_len;
- } while (polling_index < total_objs);
- // For compatibility, we didn't return sooner. This made us do *some* wait
- // call(s) before returning. This will probably change in next rev.
- if (!delay || !timer_manager_.GetCurrentDelay())
- return; // No work done, but timer is ready to fire.
- }
-}
-
-// Note: MsgWaitMultipleObjects() can't take a nil list, and that is why I had
-// to use SleepEx() to handle APCs when there were no objects.
-bool MessageLoop::ProcessNextObject() {
- if (!nestable_tasks_allowed_)
- return false;
-
- size_t total_objs = objects_.size();
- if (!total_objs) {
- return false;
- }
-
- size_t polling_index = 0; // The first unprocessed object index.
- do {
- DCHECK(polling_index < total_objs);
- size_t objs_len = total_objs - polling_index;
- if (objs_len >= CHROME_MAXIMUM_WAIT_OBJECTS)
- objs_len = CHROME_MAXIMUM_WAIT_OBJECTS - 1;
- HANDLE* objs = polling_index + &objects_.front();
-
- // Identify 1 pending object, or allow an IO APC to be completed.
- DWORD result = WaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs,
- FALSE, // 1 signal is sufficient.
- 0, // Wait 0ms.
- false); // Not alertable (no APC).
-
- // Use unsigned type to simplify range detection;
- size_t signaled_index = result - WAIT_OBJECT_0;
- if (signaled_index < objs_len) {
- SignalWatcher(polling_index + signaled_index);
- HistogramEvent(kPollingSignalEvent);
- return true; // We serviced a signaled object.
- }
-
- // If an handle is invalid, it will be WAIT_FAILED.
- DCHECK_EQ(WAIT_TIMEOUT, result) << GetLastError();
- polling_index += objs_len;
- } while (polling_index < total_objs);
- return false; // We serviced nothing.
-}
-
-bool MessageLoop::SignalWatcher(size_t object_index) {
- BeforeTaskRunSetup();
- DCHECK(objects_.size() > object_index);
- // On reception of OnObjectSignaled() to a Watcher object, it may call
- // WatchObject(). watchers_ and objects_ will be modified. This is
- // expected, so don't be afraid if, while tracing a OnObjectSignaled()
- // function, the corresponding watchers_[result] is inexistant.
- watchers_[object_index]->OnObjectSignaled(objects_[object_index]);
- // Signaled objects tend to be removed from the watch list, and then added
- // back (appended). As a result, they move to the end of the objects_ array,
- // and this should make their service "fair" (no HANDLEs should be starved).
- AfterTaskRunRestore();
- return true;
-}
bool MessageLoop::RunTimerTask(Timer* timer) {
HistogramEvent(kTimerEvent);
@@ -705,16 +298,15 @@ bool MessageLoop::QueueOrRunTask(Task* new_task) {
// Execute oldest task.
while (!work_queue_.Empty()) {
Task* task = work_queue_.Pop();
- if (task->nestable() || run_depth_ == 1) {
+ if (task->nestable() || state_->run_depth == 1) {
RunTask(task);
// Show that we ran a task (Note: a new one might arrive as a
// consequence!).
return true;
- } else {
- // We couldn't run the task now because we're in a nested message loop
- // and the task isn't nestable.
- delayed_non_nestable_queue_.Push(task);
}
+ // We couldn't run the task now because we're in a nested message loop
+ // and the task isn't nestable.
+ delayed_non_nestable_queue_.Push(task);
}
// Nothing happened.
@@ -743,54 +335,12 @@ void MessageLoop::AfterTaskRunRestore() {
nestable_tasks_allowed_ = true;
}
-void MessageLoop::PumpATaskDuringWndProc() {
- // TODO(jar): Perchance we should check on signaled objects here??
- // Signals are generally starved during a native message loop. Even if we
- // try to service a signaled object now, we wouldn't automatically get here
- // (i.e., the native pump would not re-start) when the next object was
- // signaled. If we really want to avoid starving signaled objects, we need
- // to translate them into Tasks that can be passed in via PostTask.
- // If these native message loops (and sub-pumping activities) are short
- // lived, then the starvation won't be that long :-/.
-
- if (!ProcessNextDeferredTask())
- return; // Nothing to do, so lets stop the sub-pump.
-
- // We ran a task, so make sure we come back and try to run more tasks.
- EnsurePumpATaskWasPosted();
-}
-
-void MessageLoop::EnsurePumpATaskWasPosted() {
- {
- AutoLock lock(task_pump_message_lock_);
- if (task_pump_message_pending_)
- return; // Someone else continued the pumping.
- task_pump_message_pending_ = true; // We'll send one.
- }
- EnsureMessageGetsPosted(kMsgPumpATask);
-}
-
-void MessageLoop::EnsureMessageGetsPosted(int message) const {
- const int kRetryCount = 30;
- const int kSleepDurationWhenFailing = 100;
- for (int i = 0; i < kRetryCount; ++i) {
- // Posting to our own windows should always succeed. If it doesn't we're in
- // big trouble.
- if (PostMessage(message_hwnd_, message, 0, 0))
- return;
- Sleep(kSleepDurationWhenFailing);
- }
- LOG(FATAL) << "Crash with last error " << GetLastError();
- int* p = NULL;
- *p = 0; // Crash.
-}
-
void MessageLoop::ReloadWorkQueue() {
// We can improve performance of our loading tasks from incoming_queue_ to
- // work_queue_ by wating until the last minute (work_queue_ is empty) to load.
- // That reduces the number of locks-per-task significantly when our queues get
- // large. The optimization is disabled on threads that make use of the
- // priority queue (prioritization requires all our tasks to be in the
+ // work_queue_ by waiting until the last minute (work_queue_ is empty) to
+ // load. That reduces the number of locks-per-task significantly when our
+ // queues get large. The optimization is disabled on threads that make use
+ // of the priority queue (prioritization requires all our tasks to be in the
// work_queue_ ASAP).
if (!work_queue_.Empty() && !work_queue_.use_priority_queue())
return; // Wait till we *really* need to lock and load.
@@ -833,42 +383,65 @@ void MessageLoop::DeletePendingTasks() {
}
void MessageLoop::DidChangeNextTimerExpiry() {
-#if defined(OS_WIN)
- //
- // We would *like* to provide high resolution timers. Windows timers using
- // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
- // mechanism because the application can enter modal windows loops where it
- // is not running our MessageLoop; the only way to have our timers fire in
- // these cases is to post messages there.
- //
- // To provide sub-10ms timers, we process timers directly from our run loop.
- // For the common case, timers will be processed there as the run loop does
- // its normal work. However, we *also* set the system timer so that WM_TIMER
- // events fire. This mops up the case of timers not being able to work in
- // modal message loops. It is possible for the SetTimer to pop and have no
- // pending timers, because they could have already been processed by the
- // run loop itself.
- //
- // We use a single SetTimer corresponding to the timer that will expire
- // soonest. As new timers are created and destroyed, we update SetTimer.
- // Getting a spurrious SetTimer event firing is benign, as we'll just be
- // processing an empty timer queue.
- //
int delay = timer_manager_.GetCurrentDelay();
- if (delay == -1) {
- KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
+ if (delay == -1)
+ return;
+
+ // Simulates malfunctioning, early firing timers. Pending tasks should only
+ // be invoked when the delay they specify has elapsed.
+ if (timer_manager_.use_broken_delay())
+ delay = 10;
+
+ pump_->ScheduleDelayedWork(TimeDelta::FromMilliseconds(delay));
+}
+
+bool MessageLoop::DoWork() {
+ ReloadWorkQueue();
+ return QueueOrRunTask(NULL);
+}
+
+bool MessageLoop::DoDelayedWork(TimeDelta* next_delay) {
+ bool did_work = timer_manager_.RunSomePendingTimers();
+
+ // We may not have run any timers, but we may still have future timers to
+ // run, so we need to inform the pump again of pending timers.
+ *next_delay = TimeDelta::FromMilliseconds(timer_manager_.GetCurrentDelay());
+
+ return did_work;
+}
+
+bool MessageLoop::DoIdleWork() {
+ if (ProcessNextDelayedNonNestableTask())
+ return true;
+
+ if (state_->quit_received)
+ pump_->Quit();
+
+ return false;
+}
+
+//------------------------------------------------------------------------------
+// MessageLoop::AutoRunState
+
+MessageLoop::AutoRunState::AutoRunState(MessageLoop* loop) : loop_(loop) {
+ // Make the loop reference us.
+ previous_state_ = loop_->state_;
+ if (previous_state_) {
+ run_depth = previous_state_->run_depth + 1;
} else {
- if (delay < USER_TIMER_MINIMUM)
- delay = USER_TIMER_MINIMUM;
- // Simulates malfunctioning, early firing timers. Pending tasks should only
- // be invoked when the delay they specify has elapsed.
- if (timer_manager_.use_broken_delay())
- delay = 10;
- // Create a WM_TIMER event that will wake us up to check for any pending
- // timers (in case we are running within a nested, external sub-pump).
- SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay, NULL);
+ run_depth = 1;
}
-#endif // defined(OS_WIN)
+ loop_->state_ = this;
+
+ // Initialize the other fields:
+ quit_received = false;
+#if defined(OS_WIN)
+ dispatcher = NULL;
+#endif
+}
+
+MessageLoop::AutoRunState::~AutoRunState() {
+ loop_->state_ = previous_state_;
}
//------------------------------------------------------------------------------
@@ -963,6 +536,7 @@ void MessageLoop::EnableHistogrammer(bool enable) {
void MessageLoop::StartHistogrammer() {
if (enable_histogrammer_ && !message_histogram_.get()
&& StatisticsRecorder::WasStarted()) {
+ DCHECK(!thread_name_.empty());
message_histogram_.reset(new LinearHistogram(
ASCIIToWide("MsgLoop:" + thread_name_).c_str(),
kLeastNonZeroMessageId,
@@ -978,11 +552,6 @@ void MessageLoop::HistogramEvent(int event) {
message_histogram_->Add(event);
}
-// Add one undocumented windows message to clean up our display.
-#ifndef WM_SYSTIMER
-#define WM_SYSTIMER 0x118
-#endif
-
// Provide a macro that takes an expression (such as a constant, or macro
// constant) and creates a pair to initalize an array of pairs. In this case,
// our pair consists of the expressions value, and the "stringized" version
@@ -999,33 +568,13 @@ void MessageLoop::HistogramEvent(int event) {
// in the pair (i.e., the quoted string) when printing out a histogram.
#define VALUE_TO_NUMBER_AND_NAME(name) {name, #name},
-
// static
const LinearHistogram::DescriptionPair MessageLoop::event_descriptions_[] = {
- // Only provide an extensive list in debug mode. In release mode, we have to
- // read the octal values.... but we save about 450 strings, each of length
- // 10 from our binary image.
-#ifndef NDEBUG
- // Prepare to include a list of names provided in a special header file4.
-#define A_NAMED_MESSAGE_FROM_WINUSER_H VALUE_TO_NUMBER_AND_NAME
-#include "base/windows_message_list.h"
-#undef A_NAMED_MESSAGE_FROM_WINUSER_H
- // Add an undocumented message that appeared in our list :-/.
- VALUE_TO_NUMBER_AND_NAME(WM_SYSTIMER)
-#endif // NDEBUG
-
// Provide some pretty print capability in our histogram for our internal
// messages.
- // Values we use for WM_USER+n
- VALUE_TO_NUMBER_AND_NAME(kMsgPumpATask)
- VALUE_TO_NUMBER_AND_NAME(kMsgQuit)
-
// A few events we handle (kindred to messages), and used to profile actions.
VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent)
- VALUE_TO_NUMBER_AND_NAME(kSleepingApcEvent)
- VALUE_TO_NUMBER_AND_NAME(kSleepingSignalEvent)
- VALUE_TO_NUMBER_AND_NAME(kPollingSignalEvent)
VALUE_TO_NUMBER_AND_NAME(kTimerEvent)
{-1, NULL} // The list must be null terminated, per API to histogram.
diff --git a/base/message_loop.h b/base/message_loop.h
index 8ff2c62..afcab64 100644
--- a/base/message_loop.h
+++ b/base/message_loop.h
@@ -27,8 +27,8 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#ifndef BASE_MESSAGE_LOOP_H__
-#define BASE_MESSAGE_LOOP_H__
+#ifndef BASE_MESSAGE_LOOP_H_
+#define BASE_MESSAGE_LOOP_H_
#include <deque>
#include <queue>
@@ -36,33 +36,39 @@
#include <vector>
#include "base/histogram.h"
+#include "base/message_pump.h"
#include "base/observer_list.h"
-#include "base/id_map.h"
+#include "base/ref_counted.h"
#include "base/task.h"
#include "base/timer.h"
#include "base/thread_local_storage.h"
-//
-// A MessageLoop is used to process events for a particular thread.
-// There is at most one MessageLoop instance per thread.
-// Events include Windows Message Queue messages, Tasks submitted to PostTask
-// or managed by TimerManager, APC calls (as time permits), and signals sent to
-// a registered set of HANDLES.
-// Processing events corresponds (respectively) to dispatching Windows messages,
-// running Tasks, yielding time to APCs, and calling Watchers when the
-// corresponding HANDLE is signaled.
+#if defined(OS_WIN)
+// We need this to declare base::MessagePumpWin::Dispatcher, which we should
+// really just eliminate.
+#include "base/message_pump_win.h"
+#endif
+// A MessageLoop is used to process events for a particular thread. There is
+// at most one MessageLoop instance per thread.
+//
+// Events include at a minimum Task instances submitted to PostTask or those
+// managed by TimerManager. Depending on the type of message pump used by the
+// MessageLoop other events such as UI messages may be processed. On Windows
+// APC calls (as time permits) and signals sent to a registered set of HANDLEs
+// may also be processed.
//
// NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
// on the thread where the MessageLoop's Run method executes.
//
-// WARNING: MessageLoop has task reentrancy protection. This means that if a
+// NOTE: MessageLoop has task reentrancy protection. This means that if a
// task is being processed, a second task cannot start until the first task is
-// finished. Reentrancy can happen when processing a task, and an inner message
-// pump is created. That inner pump then processes windows messages which could
-// implicitly start an inner task. Inner messages pumps are created with dialogs
-// (DialogBox), common dialogs (GetOpenFileName), OLE functions (DoDragDrop),
-// printer functions (StartDoc) and *many* others.
+// finished. Reentrancy can happen when processing a task, and an inner
+// message pump is created. That inner pump then processes native messages
+// which could implicitly start an inner task. Inner message pumps are created
+// with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
+// (DoDragDrop), printer functions (StartDoc) and *many* others.
+//
// Sample workaround when inner task processing is needed:
// bool old_state = MessageLoop::current()->NestableTasksAllowed();
// MessageLoop::current()->SetNestableTasksAllowed(true);
@@ -70,142 +76,13 @@
// MessageLoop::current()->SetNestableTasksAllowed(old_state);
// // Process hr (the result returned by DoDragDrop().
//
-// Please be **SURE** your task is reentrant and all global variables are stable
-// and accessible before calling SetNestableTasksAllowed(true).
-//
-
-// Message loop has several distinct functions. It provides message pumps,
-// responds to windows message dispatches, manipulates queues of Tasks.
-// The most central operation is the implementation of message pumps, along with
-// several subtleties.
-
-// MessageLoop currently implements several different message pumps. A message
-// pump is (traditionally) something that reads from an incoming queue, and then
-// dispatches the work.
-//
-// The first message pump, RunTraditional(), is among other things a
-// traditional Windows Message pump. It contains a nearly infinite loop that
-// peeks out messages, and then dispatches them.
-// Intermixed with those peeks are checks on a queue of Tasks, checks for
-// signaled objects, and checks to see if TimerManager has tasks to run.
-// When there are no events to be serviced, this pump goes into a wait state.
-// For 99.99% of all events, this first message pump handles all processing.
-//
-// When a task, or windows event, invokes on the stack a native dialog box or
-// such, that window typically provides a bare bones (native?) message pump.
-// That bare-bones message pump generally supports little more than a peek of
-// the Windows message queue, followed by a dispatch of the peeked message.
-// MessageLoop extends that bare-bones message pump to also service Tasks, at
-// the cost of some complexity.
-// The basic structure of the extension (refered to as a sub-pump) is that a
-// special message,kMsgPumpATask, is repeatedly injected into the Windows
-// Message queue. Each time the kMsgPumpATask message is peeked, checks are made
-// for an extended set of events, including the availability of Tasks to run.
-//
-// After running a task, the special message kMsgPumpATask is again posted to
-// the Windows Message queue, ensuring a future time slice for processing a
-// future event.
-//
-// To prevent flooding the Windows Message queue, care is taken to be sure that
-// at most one kMsgPumpATask message is EVER pending in the Winow's Message
-// queue.
+// Please be SURE your task is reentrant (nestable) and all global variables
+// are stable and accessible before calling SetNestableTasksAllowed(true).
//
-// There are a few additional complexities in this system where, when there are
-// no Tasks to run, this otherwise infinite stream of messages which drives the
-// sub-pump is halted. The pump is automatically re-started when Tasks are
-// queued.
-//
-// A second complexity is that the presence of this stream of posted tasks may
-// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
-// Such paint and timer events always give priority to a posted message, such as
-// kMsgPumpATask messages. As a result, care is taken to do some peeking in
-// between the posting of each kMsgPumpATask message (i.e., after kMsgPumpATask
-// is peeked, and before a replacement kMsgPumpATask is posted).
-//
-//
-// NOTE: Although it may seem odd that messages are used to start and stop this
-// flow (as opposed to signaling objects, etc.), it should be understood that
-// the native message pump will *only* respond to messages. As a result, it is
-// an excellent choice. It is also helpful that the starter messages that are
-// placed in the queue when new task arrive also awakens the RunTraditional()
-// loop.
-
-//------------------------------------------------------------------------------
-class MessageLoop {
+class MessageLoop : public base::MessagePump::Delegate {
public:
-
- // Select a non-default strategy for serving pending requests, that is to be
- // used by all MessageLoop instances. This is called only once before
- // constructing any instances.
- static void SetStrategy(int strategy);
static void EnableHistogrammer(bool enable_histogrammer);
-#ifdef OS_WIN
- // Used with WatchObject to asynchronously monitor the signaled state of a
- // HANDLE object.
- class Watcher {
- public:
- virtual ~Watcher() {}
- // Called from MessageLoop::Run when a signalled object is detected.
- virtual void OnObjectSignaled(HANDLE object) = 0;
- };
-
- // Have the current thread's message loop watch for a signaled object.
- // Pass a null watcher to stop watching the object.
- bool WatchObject(HANDLE, Watcher*);
-
- // An Observer is an object that receives global notifications from the
- // MessageLoop.
- //
- // NOTE: An Observer implementation should be extremely fast!
- //
- class Observer {
- public:
- virtual ~Observer() {}
-
- // This method is called before processing a message.
- // The message may be undefined in which case msg.message is 0
- virtual void WillProcessMessage(const MSG& msg) = 0;
-
- // This method is called when control returns from processing a UI message.
- // The message may be undefined in which case msg.message is 0
- virtual void DidProcessMessage(const MSG& msg) = 0;
- };
-
- // Add an Observer, which will start receiving notifications immediately.
- void AddObserver(Observer* observer);
-
- // Remove an Observer. It is safe to call this method while an Observer is
- // receiving a notification callback.
- void RemoveObserver(Observer* observer);
-
- // Give a chance to code processing additional messages to notify the
- // message loop observers that another message has been processed.
- void WillProcessMessage(const MSG& msg);
- void DidProcessMessage(const MSG& msg);
-
- // Dispatcher is used during a nested invocation of Run to dispatch events.
- // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not
- // dispatch events (or invoke TranslateMessage), rather every message is
- // passed to Dispatcher's Dispatch method for dispatch. It is up to the
- // Dispatcher to dispatch, or not, the event.
- //
- // The nested loop is exited by either posting a quit, or returning false
- // from Dispatch.
- class Dispatcher {
- public:
- virtual ~Dispatcher() {}
- // Dispatches the event. If true is returned processing continues as
- // normal. If false is returned, the nested loop exits immediately.
- virtual bool Dispatch(const MSG& msg) = 0;
- };
-#else // !OS_WIN
- // On non-Windows platforms, the Dispatcher does not exist, but we allow the
- // typename to exist for convenience. On non-Windows platforms, a Dispatcher
- // pointer should always be NULL.
- class Dispatcher;
-#endif // OS_*
-
// A DestructionObserver is notified when the current MessageLoop is being
// destroyed. These obsevers are notified prior to MessageLoop::current()
// being changed to return NULL. This gives interested parties the chance to
@@ -283,19 +160,18 @@ class MessageLoop {
// Return as soon as all items that can be run are taken care of.
void RunAllPending();
- // See description of Dispatcher for how Run uses Dispatcher.
- void Run(Dispatcher* dispatcher);
-
// Signals the Run method to return after it is done processing all pending
- // messages. This method may be called from any thread, but no effort is
- // made to support concurrent calls to this method from multiple threads.
+ // messages. This method may only be called on the same thread that called
+ // Run, and Run must still be on the call stack.
+ //
+ // Use QuitTask if you need to Quit another thread's MessageLoop, but note
+ // that doing so is fairly dangerous if the target thread makes nested calls
+ // to MessageLoop::Run. The problem being that you won't know which nested
+ // run loop you are quiting, so be careful!
//
- // For example, the first call to Quit may lead to the MessageLoop being
- // deleted once its Run method returns, so a second call from another thread
- // could be problematic.
void Quit();
- // Invokes Quit on the current MessageLoop when run. Useful to schedule an
+ // Invokes Quit on the current MessageLoop when run. Useful to schedule an
// arbitrary MessageLoop to Quit.
class QuitTask : public Task {
public:
@@ -310,8 +186,10 @@ class MessageLoop {
~MessageLoop();
// Optional call to connect the thread name with this loop.
- void SetThreadName(const std::string& thread_name);
- void set_thread_name(const std::string& name) { SetThreadName(name); }
+ void set_thread_name(const std::string& thread_name) {
+ DCHECK(thread_name_.empty()) << "Should not rename this thread!";
+ thread_name_ = thread_name;
+ }
const std::string& thread_name() const { return thread_name_; }
// Returns the MessageLoop object for the current thread, or null if none.
@@ -348,51 +226,62 @@ class MessageLoop {
exception_restoration_ = restore;
}
- // Public entry point for TimerManager to request the Run() of a task. If we
- // created the task during an PostTask(FROM_HERE, ), then we will also perform
- // destructions, and we'll have the option of queueing the task. If we didn't
- // create the timer, then we will Run it immediately.
- bool RunTimerTask(Timer* timer);
+ //----------------------------------------------------------------------------
+#if defined(OS_WIN)
+ // Backwards-compat for the old Windows-specific MessageLoop API. These APIs
+ // are deprecated.
- // Since some Timer's are owned by MessageLoop, the TimerManager (when it is
- // being destructed) passses us the timers to discard (without doing a Run()).
- void DiscardTimer(Timer* timer);
+ typedef base::MessagePumpWin::Dispatcher Dispatcher;
+ typedef base::MessagePumpWin::Observer Observer;
+ typedef base::MessagePumpWin::Watcher Watcher;
- // Applications can call this to encourage us to process all pending WM_PAINT
- // messages.
- // This method will process all paint messages the Windows Message queue can
- // provide, up to some fixed number (to avoid any infinite loops).
- void PumpOutPendingPaintMessages();
+ void Run(Dispatcher* dispatcher);
+
+ void WatchObject(HANDLE object, Watcher* watcher) {
+ pump_win()->WatchObject(object, watcher);
+ }
+ void AddObserver(Observer* observer) {
+ pump_win()->AddObserver(observer);
+ }
+ void RemoveObserver(Observer* observer) {
+ pump_win()->RemoveObserver(observer);
+ }
+ void WillProcessMessage(const MSG& message) {
+ pump_win()->WillProcessMessage(message);
+ }
+ void DidProcessMessage(const MSG& message) {
+ pump_win()->DidProcessMessage(message);
+ }
+ void PumpOutPendingPaintMessages() {
+ pump_win()->PumpOutPendingPaintMessages();
+ }
+#endif // defined(OS_WIN)
//----------------------------------------------------------------------------
private:
friend class TimerManager; // So it can call DidChangeNextTimerExpiry
- struct ScopedStateSave {
- explicit ScopedStateSave(MessageLoop* loop)
- : loop_(loop),
- dispatcher_(loop->dispatcher_),
- quit_now_(loop->quit_now_),
- quit_received_(loop->quit_received_),
- run_depth_(loop->run_depth_) {
- loop->quit_now_ = loop->quit_received_ = false;
- ++loop->run_depth_;
- }
+ struct RunState {
+ // Used to count how many Run() invocations are on the stack.
+ int run_depth;
- ~ScopedStateSave() {
- loop_->run_depth_ = run_depth_;
- loop_->quit_received_ = quit_received_;
- loop_->quit_now_ = quit_now_;
- loop_->dispatcher_ = dispatcher_;
- }
+ // Used to record that Quit() was called, or that we should quit the pump
+ // once it becomes idle.
+ bool quit_received;
+#if defined(OS_WIN)
+ base::MessagePumpWin::Dispatcher* dispatcher;
+#endif
+ };
+
+ class AutoRunState : RunState {
+ public:
+ AutoRunState(MessageLoop* loop);
+ ~AutoRunState();
private:
MessageLoop* loop_;
- Dispatcher* dispatcher_;
- bool quit_now_;
- bool quit_received_;
- int run_depth_;
- }; // struct ScopedStateSave
+ RunState* previous_state_;
+ };
// A prioritized queue with interface that mostly matches std::queue<>.
// For debugging/performance testing, you can swap in std::queue<Task*>.
@@ -459,86 +348,36 @@ class MessageLoop {
DISALLOW_EVIL_CONSTRUCTORS(OptionallyPrioritizedTaskQueue);
};
-#ifdef OS_WIN
- void InitMessageWnd();
-
- // Windows procedure for message_hwnd_.
- static LRESULT CALLBACK WndProcThunk(
- HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
- LRESULT WndProc(
- HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
-#endif // OS_WIN
+#if defined(OS_WIN)
+ base::MessagePumpWin* pump_win() {
+ return static_cast<base::MessagePumpWin*>(pump_.get());
+ }
+#endif
// A function to encapsulate all the exception handling capability in the
- // stacks around the running of a main message loop.
- // It will run the message loop in a SEH try block or not depending on the
- // set_SEH_restoration() flag.
- void RunHandler(Dispatcher* dispatcher, bool non_blocking);
+ // stacks around the running of a main message loop. It will run the message
+ // loop in a SEH try block or not depending on the set_SEH_restoration()
+ // flag.
+ void RunHandler();
// A surrounding stack frame around the running of the message loop that
// supports all saving and restoring of state, as is needed for any/all (ugly)
// recursive calls.
- void RunInternal(Dispatcher* dispatcher, bool non_blocking);
+ void RunInternal();
- // An extended message loop (message pump) that loops mostly forever, and
- // processes task, signals, timers, etc.
- // If non-blocking is set, it will return rather than wait for new things to
- // arrive for processing.
- void RunTraditional(bool non_blocking);
-
- //----------------------------------------------------------------------------
- // A list of method wrappers with identical calling signatures (no arguments)
- // for use in the main message loop. Method pointers to these methods may be
- // called round-robin from the main message loop, on any desired schedule.
-
- bool ProcessNextDeferredTask();
+ // Called to process any delayed non-nestable tasks.
bool ProcessNextDelayedNonNestableTask();
- bool ProcessNextObject();
- bool ProcessSomeTimers();
//----------------------------------------------------------------------------
- // Process some pending messages. Returns true if a message was processed.
- bool ProcessNextWindowsMessage();
-
- // Wait until either an object is signaled, a message is available, a timer
- // needs attention, or our incoming_queue_ has gotten a task.
- // Handle (without returning) any APCs (only IO thread currently has APCs.)
- void WaitForWork();
-
-#ifdef OS_WIN
- // Helper function for processing window messages. This includes handling
- // WM_QUIT, message translation and dispatch, etc.
- //
- // If dispatcher_ is non-NULL this method does NOT dispatch the event, instead
- // it invokes Dispatch on the dispatcher_.
- bool ProcessMessageHelper(const MSG& msg);
-#endif // OS_WIN
-
- // When we encounter a kMsgPumpATask, the following helper can be called to
- // peek and process a replacement message, such as a WM_PAINT or WM_TIMER.
- // The goal is to make the kMsgPumpATask as non-intrusive as possible, even
- // though a continuous stream of such messages are posted. This method
- // carefully peeks a message while there is no chance for a kMsgPumpATask to
- // be pending, then releases the lock (allowing a replacement kMsgPumpATask to
- // possibly be posted), and finally dispatches that peeked replacement.
- // Note that the re-post of kMsgPumpATask may be asynchronous to this thread!!
- bool ProcessPumpReplacementMessage();
-
- // Signals a watcher if a wait falls within the range of objects we're
- // waiting on. object_index is the offset in objects_ that was signaled.
- // Returns true if an object was signaled.
- bool SignalWatcher(size_t object_index);
-
// Run a work_queue_ task or new_task, and delete it (if it was processed by
// PostTask). If there are queued tasks, the oldest one is executed and
// new_task is queued. new_task is optional and can be NULL. In this NULL
// case, the method will run one pending task (if any exist). Returns true if
- // it executes a task.
- // Queued tasks accumulate only when there is a nonreentrant task currently
- // processing, in which case the new_task is appended to the list
- // work_queue_. Such re-entrancy generally happens when an unrequested
- // message pump (typical of a native dialog) is executing in the context of a
- // task.
+ // it executes a task. Queued tasks accumulate only when there is a
+ // non-nestable task currently processing, in which case the new_task is
+ // appended to the list work_queue_. Such re-entrancy generally happens when
+ // an unrequested message pump (typical of a native dialog) is executing in
+ // the context of a task.
bool QueueOrRunTask(Task* new_task);
// Runs the specified task and deletes it.
@@ -549,14 +388,6 @@ class MessageLoop {
void BeforeTaskRunSetup();
void AfterTaskRunRestore();
- // When processing messages in our MessageWndProc(), we are sometimes called
- // by a native message pump (i.e., We are not called out of our Run() pump).
- // In those cases, we need to process tasks during the Windows Message
- // callback. This method processes a task, and also posts a new kMsgPumpATask
- // messages to the Windows Msg Queue so that we are called back later (to
- // process additional tasks).
- void PumpATaskDuringWndProc();
-
// Load tasks from the incoming_queue_ into work_queue_ if the latter is
// empty. The former requires a lock to access, while the latter is directly
// accessible on this thread.
@@ -566,19 +397,27 @@ class MessageLoop {
// destructor to make sure all the task's destructors get called.
void DeletePendingTasks();
- // Make sure a kPumpATask message is in flight, which starts/continues the
- // sub-pump.
- void EnsurePumpATaskWasPosted();
-
- // Do a PostMessage(), and crash if we can't eventually do the post.
- void EnsureMessageGetsPosted(int message) const;
-
// Post a task to our incomming queue.
void PostTaskInternal(Task* task);
// Called by the TimerManager when its next timer changes.
void DidChangeNextTimerExpiry();
+ // Entry point for TimerManager to request the Run() of a task. If we
+ // created the task during an PostTask(FROM_HERE, ), then we will also
+ // perform destructions, and we'll have the option of queueing the task. If
+ // we didn't create the timer, then we will Run it immediately.
+ bool RunTimerTask(Timer* timer);
+
+ // Since some Timer's are owned by MessageLoop, the TimerManager (when it is
+ // being destructed) passses us the timers to discard (without doing a Run()).
+ void DiscardTimer(Timer* timer);
+
+ // base::MessagePump::Delegate methods:
+ virtual bool DoWork();
+ virtual bool DoDelayedWork(TimeDelta* next_delay);
+ virtual bool DoIdleWork();
+
// Start recording histogram info about events and action IF it was enabled
// and IF the statistics recorder can accept a registration of our histogram.
void StartHistogrammer();
@@ -589,7 +428,6 @@ class MessageLoop {
void HistogramEvent(int event);
static TLSSlot tls_index_;
- static int strategy_selector_;
static const LinearHistogram::DescriptionPair event_descriptions_[];
static bool enable_histogrammer_;
@@ -604,29 +442,15 @@ class MessageLoop {
// there was no real prioritization.
OptionallyPrioritizedTaskQueue work_queue_;
-#ifdef OS_WIN
- HWND message_hwnd_;
-
- // A vector of objects (and corresponding watchers) that are routinely
- // serviced by this message loop's pump.
- std::vector<HANDLE> objects_;
- std::vector<Watcher*> watchers_;
-
- ObserverList<Observer> observers_;
-#endif // OS_WIN
+ scoped_refptr<base::MessagePump> pump_;
ObserverList<DestructionObserver> destruction_observers_;
- IDMap<Task> timed_tasks_;
// A recursion block that prevents accidentally running additonal tasks when
// insider a (accidentally induced?) nested message pump.
bool nestable_tasks_allowed_;
bool exception_restoration_;
- Dispatcher* dispatcher_;
- bool quit_received_;
- bool quit_now_;
-
std::string thread_name_;
// A profiling histogram showing the counts of various messages and events.
scoped_ptr<LinearHistogram> message_histogram_;
@@ -644,17 +468,9 @@ class MessageLoop {
// will execute once we're out of nested message loops.
TaskQueue delayed_non_nestable_queue_;
- // Indicate if there is a kMsgPumpATask message pending in the Windows Message
- // queue. There is at most one such message, and it can drive execution of
- // tasks when a native message pump is running.
- bool task_pump_message_pending_;
- // Protect access to task_pump_message_pending_.
- Lock task_pump_message_lock_;
-
- // Used to count how many Run() invocations are on the stack.
- int run_depth_;
+ RunState* state_;
- DISALLOW_EVIL_CONSTRUCTORS(MessageLoop);
+ DISALLOW_COPY_AND_ASSIGN(MessageLoop);
};
-#endif // BASE_MESSAGE_LOOP_H__
+#endif // BASE_MESSAGE_LOOP_H_
diff --git a/base/message_pump.h b/base/message_pump.h
index 8e80fc8..90336df 100644
--- a/base/message_pump.h
+++ b/base/message_pump.h
@@ -50,8 +50,11 @@ class MessagePump : public RefCountedThreadSafe<MessagePump> {
// Called from within Run in response to ScheduleDelayedWork or when the
// message pump would otherwise sleep waiting for more work. Returns true
// to indicate that delayed work was done. DoIdleWork will not be called
- // if DoDelayedWork returns true.
- virtual bool DoDelayedWork() = 0;
+ // if DoDelayedWork returns true. Upon return |next_delay| indicates the
+ // next delayed work interval. If |next_delay| is negative, then the queue
+ // of future delayed work (timer events) is currently empty, and no
+ // additional calls to this function need to be scheduled.
+ virtual bool DoDelayedWork(TimeDelta* next_delay) = 0;
// Called from within Run just before the message pump goes to sleep.
// Returns true to indicate that idle work was done.
diff --git a/base/message_pump_win.cc b/base/message_pump_win.cc
index d07b4f7..f290e44 100644
--- a/base/message_pump_win.cc
+++ b/base/message_pump_win.cc
@@ -182,6 +182,7 @@ void MessagePumpWin::ScheduleDelayedWork(const TimeDelta& delay) {
// processing an empty timer queue.
//
int delay_msec = static_cast<int>(delay.InMilliseconds());
+ DCHECK(delay_msec >= 0);
if (delay_msec < USER_TIMER_MINIMUM)
delay_msec = USER_TIMER_MINIMUM;
@@ -249,7 +250,10 @@ void MessagePumpWin::HandleTimerMessage() {
if (!state_)
return;
- state_->delegate->DoDelayedWork();
+ TimeDelta next_delay;
+ state_->delegate->DoDelayedWork(&next_delay);
+ if (next_delay >= TimeDelta::FromMilliseconds(0))
+ ScheduleDelayedWork(next_delay);
}
void MessagePumpWin::DoRunLoop() {
@@ -291,7 +295,15 @@ void MessagePumpWin::DoRunLoop() {
if (more_work_is_plausible)
continue;
- more_work_is_plausible = state_->delegate->DoDelayedWork();
+ TimeDelta next_delay;
+ more_work_is_plausible = state_->delegate->DoDelayedWork(&next_delay);
+ // If we did not process any delayed work, then we can assume that our
+ // existing WM_TIMER if any will fire when delayed work should run. We
+ // don't want to disturb that timer if it is already in flight. However,
+ // if we did do all remaining delayed work, then lets kill the WM_TIMER.
+ if (more_work_is_plausible &&
+ next_delay < TimeDelta::FromMilliseconds(0))
+ KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
if (state_->should_quit)
break;