diff options
author | jar@chromium.org <jar@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2010-07-28 22:37:23 +0000 |
---|---|---|
committer | jar@chromium.org <jar@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2010-07-28 22:37:23 +0000 |
commit | f4ef861ba773e66d1c6e7e023a38db32afdd531d (patch) | |
tree | 6ae53ffb969fa9ddf39131deb79c15b2ae8fa592 /chrome/browser/net/referrer.cc | |
parent | 175aa689f7f9b705ee2c6eebb29aca1c93c540d5 (diff) | |
download | chromium_src-f4ef861ba773e66d1c6e7e023a38db32afdd531d.zip chromium_src-f4ef861ba773e66d1c6e7e023a38db32afdd531d.tar.gz chromium_src-f4ef861ba773e66d1c6e7e023a38db32afdd531d.tar.bz2 |
Support both preconnection, and pre-resolution for subresources
With this change, both preconnection and preresolution are
enabled when the --enable-preconnection flag is turned on.
I'm expecting to enable this feature by default soon, so
as to better tune the parameters.
BUG=42694
r=mbelshe
Review URL: http://codereview.chromium.org/3032014
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@54044 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'chrome/browser/net/referrer.cc')
-rw-r--r-- | chrome/browser/net/referrer.cc | 114 |
1 files changed, 35 insertions, 79 deletions
diff --git a/chrome/browser/net/referrer.cc b/chrome/browser/net/referrer.cc index 936d25b..b5d8c82 100644 --- a/chrome/browser/net/referrer.cc +++ b/chrome/browser/net/referrer.cc @@ -7,23 +7,24 @@ #include <limits.h> #include "base/logging.h" +#include "chrome/browser/net/predictor.h" namespace chrome_browser_net { //------------------------------------------------------------------------------ // Smoothing parameter for updating subresource_use_rate_. -// We always combine our old expected value, weighted by some factor, with the -// new expected value Enew. The new "expected value" is the number of actual -// connections made due to the curernt navigations. -// This means the formula (in a concise form) is: -// Eupdated = Eold * W + Enew * (1 - W) +// We always combine our old expected value, weighted by some factor W (we use +// kWeightingForOldExpectedValue), with the new expected value Enew. The new +// "expected value" is the number of actual connections made due to the current +// navigations. // That means that IF we end up needing to connect, we should apply the formula: -// Pupdated = Pold * W + Enew * (1 - W) -// If we visit the containing url, but don't end up needing a connection: -// Pupdated = Pold * W -// To achive the above upating algorithm, we end up doing the multiplication -// by W every time we contemplate doing a preconneciton (i.e., when we navigate +// Eupdated = Eold * W + Enew * (1 - W) +// If we visit the containing url, but don't end up needing a connection, then +// Enew == 0, so we use the formula: +// Eupdated = Eold * W +// To achieve the above updating algorithm, we end up doing the multiplication +// by W every time we contemplate doing a preconnection (i.e., when we navigate // to the containing URL, and consider doing a preconnection), and then IFF we // learn that we really needed a connection to the subresource, we complete the // above algorithm by adding the (1 - W) for each connection we make. @@ -32,13 +33,14 @@ namespace chrome_browser_net { // 1.0. static const double kWeightingForOldExpectedValue = 0.66; -// The expected value needed before we actually do a preconnection. -static const double kPreconnectWorthyExpectedValue = 0.7; - -// The expected value that we'll need a preconnection when we first see the -// subresource getting fetched. Very conservative is 0.0, which will mean that -// we have to wait for a while before using preconnection... but we do persist -// results, so we'll have the learned answer in the long run. +// To estimate the expected value of the number of connections that we'll need +// when a referrer is navigated to, we start with the following rather low +// initial value. Each time we do indeed (again) need the subresource, this +// value will get increased. Each time we navigate to the refererrer but never +// end up needing this subresource, the value will decrease. +// Very conservative is 0.0, which will mean that we have to wait for a while +// before doing much speculative acvtivity... but we do persist results, so +// we'll save the asymptotic (correct?) learned answer in the long run. static const double kInitialExpectedValue = 0.0; // static @@ -71,71 +73,43 @@ void Referrer::SuggestHost(const GURL& url) { void Referrer::DeleteLeastUseful() { // Find the item with the lowest value. Most important is preconnection_rate, - // next is latency savings, and last is lifetime (age). + // and least is lifetime (age). GURL least_useful_url; double lowest_rate_seen = 0.0; // We use longs for durations because we will use multiplication on them. - int64 lowest_latency_seen = 0; // Duration in milliseconds. int64 least_useful_lifetime = 0; // Duration in milliseconds. const base::Time kNow(base::Time::Now()); // Avoid multiple calls. for (SubresourceMap::iterator it = begin(); it != end(); ++it) { int64 lifetime = (kNow - it->second.birth_time()).InMilliseconds(); - int64 latency = it->second.latency().InMilliseconds(); double rate = it->second.subresource_use_rate(); if (least_useful_url.has_host()) { if (rate > lowest_rate_seen) continue; - if (!latency && !lowest_latency_seen) { - // Older name is less useful. - if (lifetime <= least_useful_lifetime) - continue; - } else { - // Compare the ratios: - // latency/lifetime - // vs. - // lowest_latency_seen/least_useful_lifetime - // by cross multiplying (to avoid integer division hassles). Overflow's - // won't happen until both latency and lifetime pass about 49 days. - if (latency * least_useful_lifetime > - lowest_latency_seen * lifetime) { - continue; - } - } + if (lifetime <= least_useful_lifetime) + continue; } least_useful_url = it->first; lowest_rate_seen = rate; - lowest_latency_seen = latency; least_useful_lifetime = lifetime; } - erase(least_useful_url); - // Note: there is a small chance that we will discard a least_useful_url - // that is currently being prefetched because it *was* in this referer list. - // In that case, when a benefit appears in AccrueValue() below, we are careful - // to check before accessing the member. -} - -void Referrer::AccrueValue(const base::TimeDelta& delta, - const GURL& url) { - SubresourceMap::iterator it = find(url); - // Be careful that we weren't evicted from this referrer in DeleteLeastUseful. - if (it != end()) - it->second.AccrueValue(delta); + if (least_useful_url.has_host()) + erase(least_useful_url); } bool Referrer::Trim() { - bool has_some_latency_left = false; + std::vector<GURL> discarded_urls; for (SubresourceMap::iterator it = begin(); it != end(); ++it) - if (it->second.Trim()) - has_some_latency_left = true; - return has_some_latency_left; + if (!it->second.Trim()) + discarded_urls.push_back(it->first); + for (size_t i = 0; i < discarded_urls.size(); ++i) + erase(discarded_urls[i]); + return size() > 0; } bool ReferrerValue::Trim() { - int64 latency_ms = latency_.InMilliseconds() / 2; - latency_ = base::TimeDelta::FromMilliseconds(latency_ms); - return latency_ms > 0 || - subresource_use_rate_ > kPreconnectWorthyExpectedValue / 2; + subresource_use_rate_ /= 2.0; + return subresource_use_rate_ > Predictor::kPersistWorthyExpectedValue; } @@ -148,22 +122,17 @@ void Referrer::Deserialize(const Value& value) { std::string url_spec; if (!subresource_list->GetString(index++, &url_spec)) return; - int latency_ms; - if (!subresource_list->GetInteger(index++, &latency_ms)) - return; double rate; if (!subresource_list->GetReal(index++, &rate)) return; GURL url(url_spec); - base::TimeDelta latency = base::TimeDelta::FromMilliseconds(latency_ms); // TODO(jar): We could be more direct, and change birth date or similar to // show that this is a resurrected value we're adding in. I'm not yet sure // of how best to optimize the learning and pruning (Trim) algorithm at this // level, so for now, we just suggest subresources, which leaves them all // with the same birth date (typically start of process). SuggestHost(url); - AccrueValue(latency, url); (*this)[url].SetSubresourceUseRate(rate); } } @@ -172,21 +141,10 @@ Value* Referrer::Serialize() const { ListValue* subresource_list(new ListValue); for (const_iterator it = begin(); it != end(); ++it) { StringValue* url_spec(new StringValue(it->first.spec())); - int latency_integer = static_cast<int>(it->second.latency(). - InMilliseconds()); - // Watch out for overflow in the above static_cast! Check to see if we went - // negative, and just use a "big" value. The value seems unimportant once - // we get to such high latencies. Probable cause of high latency is a bug - // in other code, so also do a DCHECK. - DCHECK_GE(latency_integer, 0); - if (latency_integer < 0) - latency_integer = INT_MAX; - FundamentalValue* latency(new FundamentalValue(latency_integer)); FundamentalValue* rate(new FundamentalValue( it->second.subresource_use_rate())); subresource_list->Append(url_spec); - subresource_list->Append(latency); subresource_list->Append(rate); } return subresource_list; @@ -198,6 +156,7 @@ ReferrerValue::ReferrerValue() : birth_time_(base::Time::Now()), navigation_count_(0), preconnection_count_(0), + preresolution_count_(0), subresource_use_rate_(kInitialExpectedValue) { } @@ -208,15 +167,12 @@ void ReferrerValue::SubresourceIsNeeded() { subresource_use_rate_ += 1 - kWeightingForOldExpectedValue; } -bool ReferrerValue::IsPreconnectWorthDoing() { - bool preconnecting = kPreconnectWorthyExpectedValue < subresource_use_rate_; - if (preconnecting) - ++preconnection_count_; +void ReferrerValue::ReferrerWasObserved() { subresource_use_rate_ *= kWeightingForOldExpectedValue; // Note: the use rate is temporarilly possibly incorect, as we need to find // out if we really end up connecting. This will happen in a few hundred // milliseconds (when content arrives, etc.). - return preconnecting; + // Value of subresource_use_rate_ should be sampled before this call. } } // namespace chrome_browser_net |