summaryrefslogtreecommitdiffstats
path: root/courgette/disassembler_elf_32_x86.cc
diff options
context:
space:
mode:
authordgarrett@chromium.org <dgarrett@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2011-11-08 20:32:26 +0000
committerdgarrett@chromium.org <dgarrett@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2011-11-08 20:32:26 +0000
commit4b3d192b4f437336378b175372b417451943ab93 (patch)
tree0e78c58f4fa696b9bf0c48c1b4d2c6dcafe8818c /courgette/disassembler_elf_32_x86.cc
parent8008f0a0e3242e638fc7209ace9311981de11d3b (diff)
downloadchromium_src-4b3d192b4f437336378b175372b417451943ab93.zip
chromium_src-4b3d192b4f437336378b175372b417451943ab93.tar.gz
chromium_src-4b3d192b4f437336378b175372b417451943ab93.tar.bz2
Add Elf 32 Support to Courgette.
This change takes advantage of recent refactoring and adds support for Elf X86 32 executables to courgette. It should have no effect on handling of Windows PE executables. We have planned ahead to be able to restrict the code size of the courgette library in different cases to reduce patcher sizes, but this change does not yet take advantage of that (all platforms are supported everywhere). Also, the patcher class currently contains a very small amount of Elf/PE specific code for recreating relocation tables that cannot (currently) be compiled out. BUG=chromium-os:22149 TEST=Please verify that Chrome/Chromium patches can still be generated and work. Also, please see how much the updater executable which is downloaded to users has changed in size since R16. Review URL: http://codereview.chromium.org/8477045 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@109089 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'courgette/disassembler_elf_32_x86.cc')
-rw-r--r--courgette/disassembler_elf_32_x86.cc602
1 files changed, 602 insertions, 0 deletions
diff --git a/courgette/disassembler_elf_32_x86.cc b/courgette/disassembler_elf_32_x86.cc
new file mode 100644
index 0000000..5f3ba95
--- /dev/null
+++ b/courgette/disassembler_elf_32_x86.cc
@@ -0,0 +1,602 @@
+// Copyright (c) 2011 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "courgette/disassembler_elf_32_x86.h"
+
+#include <algorithm>
+#include <string>
+#include <vector>
+
+#include "base/basictypes.h"
+#include "base/logging.h"
+
+#include "courgette/assembly_program.h"
+#include "courgette/courgette.h"
+#include "courgette/encoded_program.h"
+
+namespace courgette {
+
+DisassemblerElf32X86::DisassemblerElf32X86(const void* start, size_t length)
+ : Disassembler(start, length) {
+}
+
+bool DisassemblerElf32X86::ParseHeader() {
+ if (length() < sizeof(Elf32_Ehdr))
+ return Bad("Too small");
+
+ header_ = (Elf32_Ehdr *)start();
+
+ // Have magic for elf header?
+ if (header_->e_ident[0] != 0x7f ||
+ header_->e_ident[1] != 'E' ||
+ header_->e_ident[2] != 'L' ||
+ header_->e_ident[3] != 'F')
+ return Bad("No Magic Number");
+
+ if (header_->e_type != ET_EXEC &&
+ header_->e_type != ET_DYN)
+ return Bad("Not an executable file or shared library");
+
+ if (header_->e_machine != EM_386)
+ return Bad("Not a supported architecture");
+
+ if (header_->e_version != 1)
+ return Bad("Unknown file version");
+
+ if (header_->e_shentsize != sizeof(Elf32_Shdr))
+ return Bad("Unexpected section header size");
+
+ if (header_->e_shoff >= length())
+ return Bad("Out of bounds section header table offset");
+
+ section_header_table_ = (Elf32_Shdr *)OffsetToPointer(header_->e_shoff);
+ section_header_table_size_ = header_->e_shnum;
+
+ if ((header_->e_shoff + header_->e_shnum ) >= length())
+ return Bad("Out of bounds section header table");
+
+ if (header_->e_phoff >= length())
+ return Bad("Out of bounds program header table offset");
+
+ program_header_table_ = (Elf32_Phdr *)OffsetToPointer(header_->e_phoff);
+ program_header_table_size_ = header_->e_phnum;
+
+ if ((header_->e_phoff + header_->e_phnum) >= length())
+ return Bad("Out of bounds program header table");
+
+ default_string_section_ = (const char *)SectionBody((int)header_->e_shstrndx);
+
+ ReduceLength(DiscoverLength());
+
+ return Good();
+}
+
+bool DisassemblerElf32X86::Disassemble(AssemblyProgram* target) {
+ if (!ok())
+ return false;
+
+ // The Image Base is always 0 for ELF Executables
+ target->set_image_base(0);
+
+ if (!ParseAbs32Relocs())
+ return false;
+
+ if (!ParseRel32RelocsFromSections())
+ return false;
+
+ if (!ParseFile(target))
+ return false;
+
+ target->DefaultAssignIndexes();
+
+ return true;
+}
+
+uint32 DisassemblerElf32X86::DiscoverLength() {
+ uint32 result = 0;
+
+ // Find the end of the last section
+ for (int section_id = 0; section_id < SectionHeaderCount(); section_id++) {
+ const Elf32_Shdr *section_header = SectionHeader(section_id);
+
+ if (section_header->sh_type == SHT_NOBITS)
+ continue;
+
+ uint32 section_end = section_header->sh_offset + section_header->sh_size;
+
+ if (section_end > result)
+ result = section_end;
+ }
+
+ // Find the end of the last segment
+ for (int i = 0; i < ProgramSegmentHeaderCount(); i++) {
+ const Elf32_Phdr *segment_header = ProgramSegmentHeader(i);
+
+ uint32 segment_end = segment_header->p_offset + segment_header->p_filesz;
+
+ if (segment_end > result)
+ result = segment_end;
+ }
+
+ uint32 section_table_end = header_->e_shoff +
+ (header_->e_shnum * sizeof(Elf32_Shdr));
+ if (section_table_end > result)
+ result = section_table_end;
+
+ uint32 segment_table_end = header_->e_phoff +
+ (header_->e_phnum * sizeof(Elf32_Phdr));
+ if (segment_table_end > result)
+ result = segment_table_end;
+
+ return result;
+}
+
+CheckBool DisassemblerElf32X86::IsValidRVA(RVA rva) const {
+
+ // It's valid if it's contained in any program segment
+ for (int i = 0; i < ProgramSegmentHeaderCount(); i++) {
+ const Elf32_Phdr *segment_header = ProgramSegmentHeader(i);
+
+ if (segment_header->p_type != PT_LOAD)
+ continue;
+
+ Elf32_Addr begin = segment_header->p_vaddr;
+ Elf32_Addr end = segment_header->p_vaddr + segment_header->p_memsz;
+
+ if (rva >= begin && rva < end)
+ return true;
+ }
+
+ return false;
+}
+
+// Convert an ELF relocation struction into an RVA
+CheckBool DisassemblerElf32X86::RelToRVA(Elf32_Rel rel, RVA* result) const {
+
+ // The rightmost byte of r_info is the type...
+ elf32_rel_386_type_values type =
+ (elf32_rel_386_type_values)(unsigned char)rel.r_info;
+
+ // The other 3 bytes of r_info are the symbol
+ uint32 symbol = rel.r_info >> 8;
+
+ switch(type)
+ {
+ case R_386_NONE:
+ case R_386_32:
+ case R_386_PC32:
+ case R_386_GOT32:
+ case R_386_PLT32:
+ case R_386_COPY:
+ case R_386_GLOB_DAT:
+ case R_386_JMP_SLOT:
+ return false;
+
+ case R_386_RELATIVE:
+ if (symbol != 0)
+ return false;
+
+ // This is a basic ABS32 relocation address
+ *result = rel.r_offset;
+ return true;
+
+ case R_386_GOTOFF:
+ case R_386_GOTPC:
+ case R_386_TLS_TPOFF:
+ return false;
+ }
+
+ return false;
+}
+
+// Returns RVA for an in memory address, or NULL.
+CheckBool DisassemblerElf32X86::RVAToFileOffset(Elf32_Addr addr,
+ size_t* result) const {
+
+ for (int i = 0; i < ProgramSegmentHeaderCount(); i++) {
+ Elf32_Addr begin = ProgramSegmentMemoryBegin(i);
+ Elf32_Addr end = begin + ProgramSegmentMemorySize(i);
+
+ if (addr >= begin && addr < end) {
+ Elf32_Addr offset = addr - begin;
+
+ if (offset < ProgramSegmentFileSize(i)) {
+ *result = ProgramSegmentFileOffset(i) + offset;
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+RVA DisassemblerElf32X86::FileOffsetToRVA(size_t offset) const {
+ // File offsets can be 64 bit values, but we are dealing with 32
+ // bit executables and so only need to support 32bit file sizes.
+ uint32 offset32 = (uint32)offset;
+
+ for (int i = 0; i < SectionHeaderCount(); i++) {
+
+ const Elf32_Shdr *section_header = SectionHeader(i);
+
+ // These can appear to have a size in the file, but don't.
+ if (section_header->sh_type == SHT_NOBITS)
+ continue;
+
+ Elf32_Off section_begin = section_header->sh_offset;
+ Elf32_Off section_end = section_begin + section_header->sh_size;
+
+ if (offset32 >= section_begin && offset32 < section_end) {
+ return section_header->sh_addr + (offset32 - section_begin);
+ }
+ }
+
+ return 0;
+}
+
+CheckBool DisassemblerElf32X86::RVAsToOffsets(std::vector<RVA>* rvas,
+ std::vector<size_t>* offsets) {
+ offsets->clear();
+
+ for (std::vector<RVA>::iterator rva = rvas->begin();
+ rva != rvas->end();
+ rva++) {
+
+ size_t offset;
+
+ if (!RVAToFileOffset(*rva, &offset))
+ return false;
+
+ offsets->push_back(offset);
+ }
+
+ return true;
+}
+
+CheckBool DisassemblerElf32X86::ParseFile(AssemblyProgram* program) {
+ bool ok = true;
+
+ // Walk all the bytes in the file, whether or not in a section.
+ uint32 file_offset = 0;
+
+ std::vector<size_t> abs_offsets;
+ std::vector<size_t> rel_offsets;
+
+ if (ok)
+ ok = RVAsToOffsets(&abs32_locations_, &abs_offsets);
+
+ if (ok)
+ ok = RVAsToOffsets(&rel32_locations_, &rel_offsets);
+
+ std::vector<size_t>::iterator current_abs_offset = abs_offsets.begin();
+ std::vector<size_t>::iterator current_rel_offset = rel_offsets.begin();
+
+ std::vector<size_t>::iterator end_abs_offset = abs_offsets.end();
+ std::vector<size_t>::iterator end_rel_offset = rel_offsets.end();
+
+ for (int section_id = 0;
+ ok && (section_id < SectionHeaderCount());
+ section_id++) {
+
+ const Elf32_Shdr *section_header = SectionHeader(section_id);
+
+ if (ok) {
+ ok = ParseSimpleRegion(file_offset,
+ section_header->sh_offset,
+ program);
+ file_offset = section_header->sh_offset;
+ }
+
+ switch (section_header->sh_type) {
+ case SHT_REL:
+ if (ok) {
+ ok = ParseRelocationSection(section_header, program);
+ file_offset = section_header->sh_offset + section_header->sh_size;
+ }
+ break;
+ case SHT_PROGBITS:
+ if (ok) {
+ ok = ParseProgbitsSection(section_header,
+ &current_abs_offset, end_abs_offset,
+ &current_rel_offset, end_rel_offset,
+ program);
+ file_offset = section_header->sh_offset + section_header->sh_size;
+ }
+
+ break;
+ default:
+ break;
+ }
+ }
+
+ // Rest of the file past the last section
+ if (ok) {
+ ok = ParseSimpleRegion(file_offset,
+ length(),
+ program);
+ }
+
+ // Make certain we consume all of the relocations as expected
+ ok = ok && (current_abs_offset == end_abs_offset);
+
+ return ok;
+}
+
+CheckBool DisassemblerElf32X86::ParseRelocationSection(
+ const Elf32_Shdr *section_header,
+ AssemblyProgram* program) {
+ // We can reproduce the R_386_RELATIVE entries in one of the relocation
+ // table based on other information in the patch, given these
+ // conditions....
+ //
+ // All R_386_RELATIVE entries are:
+ // 1) In the same relocation table
+ // 2) Are consecutive
+ // 3) Are sorted in memory address order
+ //
+ // Happily, this is normally the case, but it's not required by spec
+ // so we check, and just don't do it if we don't match up.
+
+ // The expectation is that one relocation section will contain
+ // all of our R_386_RELATIVE entries in the expected order followed
+ // by assorted other entries we can't use special handling for.
+
+ bool ok = true;
+ bool match = true;
+
+ // Walk all the bytes in the section, matching relocation table or not
+ size_t file_offset = section_header->sh_offset;
+ size_t section_end = section_header->sh_offset + section_header->sh_size;
+
+ Elf32_Rel *section_relocs_iter =
+ (Elf32_Rel *)OffsetToPointer(section_header->sh_offset);
+
+ uint32 section_relocs_count = section_header->sh_size /
+ section_header->sh_entsize;
+
+ if (abs32_locations_.size() > section_relocs_count)
+ match = false;
+
+ std::vector<RVA>::iterator reloc_iter = abs32_locations_.begin();
+
+ while (match && (reloc_iter != abs32_locations_.end())) {
+ if (section_relocs_iter->r_info != R_386_RELATIVE ||
+ section_relocs_iter->r_offset != *reloc_iter)
+ match = false;
+ section_relocs_iter++;
+ reloc_iter++;
+ }
+
+ if (match) {
+ // Skip over relocation tables
+ ok = program->EmitElfRelocationInstruction();
+ file_offset += sizeof(Elf32_Rel) * abs32_locations_.size();
+ }
+
+ if (ok) {
+ ok = ParseSimpleRegion(file_offset, section_end, program);
+ }
+
+ return ok;
+}
+
+CheckBool DisassemblerElf32X86::ParseProgbitsSection(
+ const Elf32_Shdr *section_header,
+ std::vector<size_t>::iterator* current_abs_offset,
+ std::vector<size_t>::iterator end_abs_offset,
+ std::vector<size_t>::iterator* current_rel_offset,
+ std::vector<size_t>::iterator end_rel_offset,
+ AssemblyProgram* program) {
+
+ bool ok = true;
+
+ // Walk all the bytes in the file, whether or not in a section.
+ size_t file_offset = section_header->sh_offset;
+ size_t section_end = section_header->sh_offset + section_header->sh_size;
+
+ Elf32_Addr origin = section_header->sh_addr;
+ size_t origin_offset = section_header->sh_offset;
+ ok = program->EmitOriginInstruction(origin);
+
+ while (ok && file_offset < section_end) {
+
+ if (*current_abs_offset != end_abs_offset &&
+ file_offset > **current_abs_offset) {
+ ok = false;
+ }
+
+ while (*current_rel_offset != end_rel_offset &&
+ file_offset > **current_rel_offset) {
+ (*current_rel_offset)++;
+ }
+
+ size_t next_relocation = section_end;
+
+ if (*current_abs_offset != end_abs_offset &&
+ next_relocation > **current_abs_offset)
+ next_relocation = **current_abs_offset;
+
+ // Rel offsets are heuristically derived, and might (incorrectly) overlap
+ // an Abs value, or the end of the section, so +3 to make sure there is
+ // room for the full 4 byte value.
+ if (*current_rel_offset != end_rel_offset &&
+ next_relocation > (**current_rel_offset + 3))
+ next_relocation = **current_rel_offset;
+
+ if (ok && (next_relocation > file_offset)) {
+ ok = ParseSimpleRegion(file_offset, next_relocation, program);
+
+ file_offset = next_relocation;
+ continue;
+ }
+
+ if (ok &&
+ *current_abs_offset != end_abs_offset &&
+ file_offset == **current_abs_offset) {
+
+ const uint8* p = OffsetToPointer(file_offset);
+ RVA target_rva = Read32LittleEndian(p);
+
+ ok = program->EmitAbs32(program->FindOrMakeAbs32Label(target_rva));
+ file_offset += sizeof(RVA);
+ (*current_abs_offset)++;
+ continue;
+ }
+
+ if (ok &&
+ *current_rel_offset != end_rel_offset &&
+ file_offset == **current_rel_offset) {
+
+ const uint8* p = OffsetToPointer(file_offset);
+ uint32 relative_target = Read32LittleEndian(p);
+ // This cast is for 64 bit systems, and is only safe because we
+ // are working on 32 bit executables.
+ RVA target_rva = (RVA)(origin + (file_offset - origin_offset) +
+ 4 + relative_target);
+
+ ok = program->EmitRel32(program->FindOrMakeRel32Label(target_rva));
+ file_offset += sizeof(RVA);
+ (*current_rel_offset)++;
+ continue;
+ }
+ }
+
+ // Rest of the section (if any)
+ if (ok) {
+ ok = ParseSimpleRegion(file_offset, section_end, program);
+ }
+
+ return ok;
+}
+
+CheckBool DisassemblerElf32X86::ParseSimpleRegion(
+ size_t start_file_offset,
+ size_t end_file_offset,
+ AssemblyProgram* program) {
+
+ const uint8* start = OffsetToPointer(start_file_offset);
+ const uint8* end = OffsetToPointer(end_file_offset);
+
+ const uint8* p = start;
+
+ bool ok = true;
+ while (p < end && ok) {
+ ok = program->EmitByteInstruction(*p);
+ ++p;
+ }
+
+ return ok;
+}
+
+CheckBool DisassemblerElf32X86::ParseAbs32Relocs() {
+ abs32_locations_.clear();
+
+ // Loop through sections for relocation sections
+ for (int section_id = 0; section_id < SectionHeaderCount(); section_id++) {
+ const Elf32_Shdr *section_header = SectionHeader(section_id);
+
+ if (section_header->sh_type == SHT_REL) {
+
+ Elf32_Rel *relocs_table = (Elf32_Rel *)SectionBody(section_id);
+
+ int relocs_table_count = section_header->sh_size /
+ section_header->sh_entsize;
+
+ // Elf32_Word relocation_section_id = section_header->sh_info;
+
+ // Loop through relocation objects in the relocation section
+ for (int rel_id = 0; rel_id < relocs_table_count; rel_id++) {
+ RVA rva;
+
+ // Quite a few of these conversions fail, and we simply skip
+ // them, that's okay.
+ if (RelToRVA(relocs_table[rel_id], &rva))
+ abs32_locations_.push_back(rva);
+ }
+ }
+ }
+
+ std::sort(abs32_locations_.begin(), abs32_locations_.end());
+ return true;
+}
+
+CheckBool DisassemblerElf32X86::ParseRel32RelocsFromSections() {
+
+ rel32_locations_.clear();
+
+ // Loop through sections for relocation sections
+ for (int section_id = 0;
+ section_id < SectionHeaderCount();
+ section_id++) {
+
+ const Elf32_Shdr *section_header = SectionHeader(section_id);
+
+ if (section_header->sh_type != SHT_PROGBITS)
+ continue;
+
+ if (!ParseRel32RelocsFromSection(section_header))
+ return false;
+ }
+
+ std::sort(rel32_locations_.begin(), rel32_locations_.end());
+ return true;
+}
+
+CheckBool DisassemblerElf32X86::ParseRel32RelocsFromSection(
+ const Elf32_Shdr* section_header) {
+
+ uint32 start_file_offset = section_header->sh_offset;
+ uint32 end_file_offset = start_file_offset + section_header->sh_size;
+
+ const uint8* start_pointer = OffsetToPointer(start_file_offset);
+ const uint8* end_pointer = OffsetToPointer(end_file_offset);
+
+ // Quick way to convert from Pointer to RVA within a single Section is to
+ // subtract 'pointer_to_rva'.
+ const uint8* const adjust_pointer_to_rva = start_pointer -
+ section_header->sh_addr;
+
+ // Find the rel32 relocations.
+ const uint8* p = start_pointer;
+ while (p < end_pointer) {
+ //RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
+
+ // Heuristic discovery of rel32 locations in instruction stream: are the
+ // next few bytes the start of an instruction containing a rel32
+ // addressing mode?
+ const uint8* rel32 = NULL;
+
+ if (p + 5 < end_pointer) {
+ if (*p == 0xE8 || *p == 0xE9) { // jmp rel32 and call rel32
+ rel32 = p + 1;
+ }
+ }
+ if (p + 6 < end_pointer) {
+ if (*p == 0x0F && (*(p+1) & 0xF0) == 0x80) { // Jcc long form
+ if (p[1] != 0x8A && p[1] != 0x8B) // JPE/JPO unlikely
+ rel32 = p + 2;
+ }
+ }
+ if (rel32) {
+ RVA rel32_rva = static_cast<RVA>(rel32 - adjust_pointer_to_rva);
+
+ RVA target_rva = rel32_rva + 4 + Read32LittleEndian(rel32);
+ // To be valid, rel32 target must be within image, and within this
+ // section.
+ if (IsValidRVA(target_rva)) {
+ rel32_locations_.push_back(rel32_rva);
+#if COURGETTE_HISTOGRAM_TARGETS
+ ++rel32_target_rvas_[target_rva];
+#endif
+ p += 4;
+ continue;
+ }
+ }
+ p += 1;
+ }
+
+ return true;
+}
+
+} // namespace courgette