summaryrefslogtreecommitdiffstats
path: root/courgette/disassembler_win32_x86.cc
diff options
context:
space:
mode:
authordgarrett@chromium.org <dgarrett@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2011-10-26 00:50:20 +0000
committerdgarrett@chromium.org <dgarrett@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2011-10-26 00:50:20 +0000
commit423a381f4fd3efd99dfd7bc932777ea596cf7b17 (patch)
treefdbf4a4bc5f2b8d73b90020da470c40a22f4cc2a /courgette/disassembler_win32_x86.cc
parentda1543a1a526aefd1114853cf737846eb5c29640 (diff)
downloadchromium_src-423a381f4fd3efd99dfd7bc932777ea596cf7b17.zip
chromium_src-423a381f4fd3efd99dfd7bc932777ea596cf7b17.tar.gz
chromium_src-423a381f4fd3efd99dfd7bc932777ea596cf7b17.tar.bz2
Further refactoring, move ImageInfo into Disassembler/DisassemblerWin32X86.
This means that all PE specific knowledge is now contained in a single class which leaves us in pretty good shape for supporting ELF 32. There are still widespread assumptions about being 32 bit, but those can be addressed at a much later date. BUG=None TEST=Unittests Review URL: http://codereview.chromium.org/8166013 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@107260 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'courgette/disassembler_win32_x86.cc')
-rw-r--r--courgette/disassembler_win32_x86.cc480
1 files changed, 419 insertions, 61 deletions
diff --git a/courgette/disassembler_win32_x86.cc b/courgette/disassembler_win32_x86.cc
index fb12c22..d09d67d 100644
--- a/courgette/disassembler_win32_x86.cc
+++ b/courgette/disassembler_win32_x86.cc
@@ -14,7 +14,6 @@
#include "courgette/assembly_program.h"
#include "courgette/courgette.h"
#include "courgette/encoded_program.h"
-#include "courgette/image_info.h"
// COURGETTE_HISTOGRAM_TARGETS prints out a histogram of how frequently
// different target addresses are referenced. Purely for debugging.
@@ -22,16 +21,189 @@
namespace courgette {
-DisassemblerWin32X86::DisassemblerWin32X86(PEInfo* pe_info)
- : pe_info_(pe_info),
- incomplete_disassembly_(false) {
+DisassemblerWin32X86::DisassemblerWin32X86(const void* start, size_t length)
+ : Disassembler(start, length),
+ incomplete_disassembly_(false),
+ is_PE32_plus_(false),
+ optional_header_(NULL),
+ size_of_optional_header_(0),
+ offset_of_data_directories_(0),
+ machine_type_(0),
+ number_of_sections_(0),
+ sections_(NULL),
+ has_text_section_(false),
+ size_of_code_(0),
+ size_of_initialized_data_(0),
+ size_of_uninitialized_data_(0),
+ base_of_code_(0),
+ base_of_data_(0),
+ image_base_(0),
+ size_of_image_(0),
+ number_of_data_directories_(0) {
+}
+
+// ParseHeader attempts to match up the buffer with the Windows data
+// structures that exist within a Windows 'Portable Executable' format file.
+// Returns 'true' if the buffer matches, and 'false' if the data looks
+// suspicious. Rather than try to 'map' the buffer to the numerous windows
+// structures, we extract the information we need into the courgette::PEInfo
+// structure.
+//
+bool DisassemblerWin32X86::ParseHeader() {
+ if (length() < kOffsetOfFileAddressOfNewExeHeader + 4 /*size*/)
+ return Bad("Too small");
+
+ // Have 'MZ' magic for a DOS header?
+ if (start()[0] != 'M' || start()[1] != 'Z')
+ return Bad("Not MZ");
+
+ // offset from DOS header to PE header is stored in DOS header.
+ uint32 offset = ReadU32(start(),
+ kOffsetOfFileAddressOfNewExeHeader);
+
+ if (offset >= length())
+ return Bad("Bad offset to PE header");
+
+ const uint8* const pe_header = OffsetToPointer(offset);
+ const size_t kMinPEHeaderSize = 4 /*signature*/ + kSizeOfCoffHeader;
+ if (pe_header <= start() ||
+ pe_header >= end() - kMinPEHeaderSize)
+ return Bad("Bad offset to PE header");
+
+ if (offset % 8 != 0)
+ return Bad("Misaligned PE header");
+
+ // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H.
+ // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx
+ //
+ // The first field of the IMAGE_NT_HEADERS is the signature.
+ if (!(pe_header[0] == 'P' &&
+ pe_header[1] == 'E' &&
+ pe_header[2] == 0 &&
+ pe_header[3] == 0))
+ return Bad("no PE signature");
+
+ // The second field of the IMAGE_NT_HEADERS is the COFF header.
+ // The COFF header is also called an IMAGE_FILE_HEADER
+ // http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx
+ const uint8* const coff_header = pe_header + 4;
+ machine_type_ = ReadU16(coff_header, 0);
+ number_of_sections_ = ReadU16(coff_header, 2);
+ size_of_optional_header_ = ReadU16(coff_header, 16);
+
+ // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64)
+ const uint8* const optional_header = coff_header + kSizeOfCoffHeader;
+ optional_header_ = optional_header;
+
+ if (optional_header + size_of_optional_header_ >= end())
+ return Bad("optional header past end of file");
+
+ // Check we can read the magic.
+ if (size_of_optional_header_ < 2)
+ return Bad("optional header no magic");
+
+ uint16 magic = ReadU16(optional_header, 0);
+
+ if (magic == kImageNtOptionalHdr32Magic) {
+ is_PE32_plus_ = false;
+ offset_of_data_directories_ =
+ kOffsetOfDataDirectoryFromImageOptionalHeader32;
+ } else if (magic == kImageNtOptionalHdr64Magic) {
+ is_PE32_plus_ = true;
+ offset_of_data_directories_ =
+ kOffsetOfDataDirectoryFromImageOptionalHeader64;
+ } else {
+ return Bad("unrecognized magic");
+ }
+
+ // Check that we can read the rest of the the fixed fields. Data directories
+ // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER.
+ if (size_of_optional_header_ < offset_of_data_directories_)
+ return Bad("optional header too short");
+
+ // The optional header is either an IMAGE_OPTIONAL_HEADER32 or
+ // IMAGE_OPTIONAL_HEADER64
+ // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx
+ //
+ // Copy the fields we care about.
+ size_of_code_ = ReadU32(optional_header, 4);
+ size_of_initialized_data_ = ReadU32(optional_header, 8);
+ size_of_uninitialized_data_ = ReadU32(optional_header, 12);
+ base_of_code_ = ReadU32(optional_header, 20);
+ if (is_PE32_plus_) {
+ base_of_data_ = 0;
+ image_base_ = ReadU64(optional_header, 24);
+ } else {
+ base_of_data_ = ReadU32(optional_header, 24);
+ image_base_ = ReadU32(optional_header, 28);
+ }
+ size_of_image_ = ReadU32(optional_header, 56);
+ number_of_data_directories_ =
+ ReadU32(optional_header, (is_PE32_plus_ ? 108 : 92));
+
+ if (size_of_code_ >= length() ||
+ size_of_initialized_data_ >= length() ||
+ size_of_code_ + size_of_initialized_data_ >= length()) {
+ // This validation fires on some perfectly fine executables.
+ // return Bad("code or initialized data too big");
+ }
+
+ // TODO(sra): we can probably get rid of most of the data directories.
+ bool b = true;
+ // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary
+ // for correctness and it compiles smaller this way.
+ b &= ReadDataDirectory(0, &export_table_);
+ b &= ReadDataDirectory(1, &import_table_);
+ b &= ReadDataDirectory(2, &resource_table_);
+ b &= ReadDataDirectory(3, &exception_table_);
+ b &= ReadDataDirectory(5, &base_relocation_table_);
+ b &= ReadDataDirectory(11, &bound_import_table_);
+ b &= ReadDataDirectory(12, &import_address_table_);
+ b &= ReadDataDirectory(13, &delay_import_descriptor_);
+ b &= ReadDataDirectory(14, &clr_runtime_header_);
+ if (!b) {
+ return Bad("malformed data directory");
+ }
+
+ // Sections follow the optional header.
+ sections_ =
+ reinterpret_cast<const Section*>(optional_header +
+ size_of_optional_header_);
+ size_t detected_length = 0;
+
+ for (int i = 0; i < number_of_sections_; ++i) {
+ const Section* section = &sections_[i];
+
+ // TODO(sra): consider using the 'characteristics' field of the section
+ // header to see if the section contains instructions.
+ if (memcmp(section->name, ".text", 6) == 0)
+ has_text_section_ = true;
+
+ uint32 section_end =
+ section->file_offset_of_raw_data + section->size_of_raw_data;
+ if (section_end > detected_length)
+ detected_length = section_end;
+ }
+
+ // Pretend our in-memory copy is only as long as our detected length.
+ ReduceLength(detected_length);
+
+ if (!is_32bit()) {
+ return Bad("64 bit executables are not yet supported");
+ }
+
+ if (!has_text_section()) {
+ return Bad("Resource-only executables are not yet supported");
+ }
+
+ return Good();
}
bool DisassemblerWin32X86::Disassemble(AssemblyProgram* target) {
- if (!pe_info().ok())
+ if (!ok())
return false;
- target->set_image_base(pe_info().image_base());
+ target->set_image_base(image_base());
if (!ParseAbs32Relocs())
return false;
@@ -46,13 +218,159 @@ bool DisassemblerWin32X86::Disassemble(AssemblyProgram* target) {
return true;
}
-static uint32 Read32LittleEndian(const void* address) {
- return *reinterpret_cast<const uint32*>(address);
+////////////////////////////////////////////////////////////////////////////////
+
+bool DisassemblerWin32X86::ParseRelocs(std::vector<RVA> *relocs) {
+ relocs->clear();
+
+ size_t relocs_size = base_relocation_table_.size_;
+ if (relocs_size == 0)
+ return true;
+
+ // The format of the base relocation table is a sequence of variable sized
+ // IMAGE_BASE_RELOCATION blocks. Search for
+ // "The format of the base relocation data is somewhat quirky"
+ // at http://msdn.microsoft.com/en-us/library/ms809762.aspx
+
+ const uint8* relocs_start = RVAToPointer(base_relocation_table_.address_);
+ const uint8* relocs_end = relocs_start + relocs_size;
+
+ // Make sure entire base relocation table is within the buffer.
+ if (relocs_start < start() ||
+ relocs_start >= end() ||
+ relocs_end <= start() ||
+ relocs_end > end()) {
+ return Bad(".relocs outside image");
+ }
+
+ const uint8* block = relocs_start;
+
+ // Walk the variable sized blocks.
+ while (block + 8 < relocs_end) {
+ RVA page_rva = ReadU32(block, 0);
+ uint32 size = ReadU32(block, 4);
+ if (size < 8 || // Size includes header ...
+ size % 4 != 0) // ... and is word aligned.
+ return Bad("unreasonable relocs block");
+
+ const uint8* end_entries = block + size;
+
+ if (end_entries <= block ||
+ end_entries <= start() ||
+ end_entries > end())
+ return Bad(".relocs block outside image");
+
+ // Walk through the two-byte entries.
+ for (const uint8* p = block + 8; p < end_entries; p += 2) {
+ uint16 entry = ReadU16(p, 0);
+ int type = entry >> 12;
+ int offset = entry & 0xFFF;
+
+ RVA rva = page_rva + offset;
+ if (type == 3) { // IMAGE_REL_BASED_HIGHLOW
+ relocs->push_back(rva);
+ } else if (type == 0) { // IMAGE_REL_BASED_ABSOLUTE
+ // Ignore, used as padding.
+ } else {
+ // Does not occur in Windows x86 executables.
+ return Bad("unknown type of reloc");
+ }
+ }
+
+ block += size;
+ }
+
+ std::sort(relocs->begin(), relocs->end());
+
+ return true;
+}
+
+const Section* DisassemblerWin32X86::RVAToSection(RVA rva) const {
+ for (int i = 0; i < number_of_sections_; i++) {
+ const Section* section = &sections_[i];
+ uint32 offset = rva - section->virtual_address;
+ if (offset < section->virtual_size) {
+ return section;
+ }
+ }
+ return NULL;
+}
+
+int DisassemblerWin32X86::RVAToFileOffset(RVA rva) const {
+ const Section* section = RVAToSection(rva);
+ if (section) {
+ uint32 offset = rva - section->virtual_address;
+ if (offset < section->size_of_raw_data) {
+ return section->file_offset_of_raw_data + offset;
+ } else {
+ return kNoOffset; // In section but not in file (e.g. uninit data).
+ }
+ }
+
+ // Small RVA values point into the file header in the loaded image.
+ // RVA 0 is the module load address which Windows uses as the module handle.
+ // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the
+ // DOS header.
+ if (rva == 0 || rva == 2)
+ return rva;
+
+ NOTREACHED();
+ return kNoOffset;
+}
+
+const uint8* DisassemblerWin32X86::RVAToPointer(RVA rva) const {
+ int file_offset = RVAToFileOffset(rva);
+ if (file_offset == kNoOffset)
+ return NULL;
+ else
+ return OffsetToPointer(file_offset);
+}
+
+std::string DisassemblerWin32X86::SectionName(const Section* section) {
+ if (section == NULL)
+ return "<none>";
+ char name[9];
+ memcpy(name, section->name, 8);
+ name[8] = '\0'; // Ensure termination.
+ return name;
+}
+
+CheckBool DisassemblerWin32X86::ParseFile(AssemblyProgram* program) {
+ bool ok = true;
+ // Walk all the bytes in the file, whether or not in a section.
+ uint32 file_offset = 0;
+ while (ok && file_offset < length()) {
+ const Section* section = FindNextSection(file_offset);
+ if (section == NULL) {
+ // No more sections. There should not be extra stuff following last
+ // section.
+ // ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
+ break;
+ }
+ if (file_offset < section->file_offset_of_raw_data) {
+ uint32 section_start_offset = section->file_offset_of_raw_data;
+ ok = ParseNonSectionFileRegion(file_offset, section_start_offset,
+ program);
+ file_offset = section_start_offset;
+ }
+ if (ok) {
+ uint32 end = file_offset + section->size_of_raw_data;
+ ok = ParseFileRegion(section, file_offset, end, program);
+ file_offset = end;
+ }
+ }
+
+#if COURGETTE_HISTOGRAM_TARGETS
+ HistogramTargets("abs32 relocs", abs32_target_rvas_);
+ HistogramTargets("rel32 relocs", rel32_target_rvas_);
+#endif
+
+ return ok;
}
bool DisassemblerWin32X86::ParseAbs32Relocs() {
abs32_locations_.clear();
- if (!pe_info().ParseRelocs(&abs32_locations_))
+ if (!ParseRelocs(&abs32_locations_))
return false;
std::sort(abs32_locations_.begin(), abs32_locations_.end());
@@ -61,8 +379,8 @@ bool DisassemblerWin32X86::ParseAbs32Relocs() {
for (size_t i = 0; i < abs32_locations_.size(); ++i) {
RVA rva = abs32_locations_[i];
// The 4 bytes at the relocation are a reference to some address.
- uint32 target_address = Read32LittleEndian(pe_info().RVAToPointer(rva));
- ++abs32_target_rvas_[target_address - pe_info().image_base()];
+ uint32 target_address = Read32LittleEndian(RVAToPointer(rva));
+ ++abs32_target_rvas_[target_address - image_base()];
}
#endif
return true;
@@ -70,8 +388,8 @@ bool DisassemblerWin32X86::ParseAbs32Relocs() {
void DisassemblerWin32X86::ParseRel32RelocsFromSections() {
uint32 file_offset = 0;
- while (file_offset < pe_info().length()) {
- const Section* section = pe_info().FindNextSection(file_offset);
+ while (file_offset < length()) {
+ const Section* section = FindNextSection(file_offset);
if (section == NULL)
break;
if (file_offset < section->file_offset_of_raw_data)
@@ -114,12 +432,12 @@ void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) {
uint32 start_file_offset = section->file_offset_of_raw_data;
uint32 end_file_offset = start_file_offset + section->size_of_raw_data;
- RVA relocs_start_rva = pe_info().base_relocation_table().address_;
+ RVA relocs_start_rva = base_relocation_table().address_;
- const uint8* start_pointer = pe_info().FileOffsetToPointer(start_file_offset);
- const uint8* end_pointer = pe_info().FileOffsetToPointer(end_file_offset);
+ const uint8* start_pointer = OffsetToPointer(start_file_offset);
+ const uint8* end_pointer = OffsetToPointer(end_file_offset);
- RVA start_rva = pe_info().FileOffsetToRVA(start_file_offset);
+ RVA start_rva = FileOffsetToRVA(start_file_offset);
RVA end_rva = start_rva + section->virtual_size;
// Quick way to convert from Pointer to RVA within a single Section is to
@@ -133,7 +451,7 @@ void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) {
while (p < end_pointer) {
RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
if (current_rva == relocs_start_rva) {
- uint32 relocs_size = pe_info().base_relocation_table().size_;
+ uint32 relocs_size = base_relocation_table().size_;
if (relocs_size) {
p += relocs_size;
continue;
@@ -179,7 +497,7 @@ void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) {
RVA target_rva = rel32_rva + 4 + Read32LittleEndian(rel32);
// To be valid, rel32 target must be within image, and within this
// section.
- if (pe_info().IsValidRVA(target_rva) &&
+ if (IsValidRVA(target_rva) &&
start_rva <= target_rva && target_rva < end_rva) {
rel32_locations_.push_back(rel32_rva);
#if COURGETTE_HISTOGRAM_TARGETS
@@ -193,39 +511,6 @@ void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) {
}
}
-CheckBool DisassemblerWin32X86::ParseFile(AssemblyProgram* program) {
- bool ok = true;
- // Walk all the bytes in the file, whether or not in a section.
- uint32 file_offset = 0;
- while (ok && file_offset < pe_info().length()) {
- const Section* section = pe_info().FindNextSection(file_offset);
- if (section == NULL) {
- // No more sections. There should not be extra stuff following last
- // section.
- // ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
- break;
- }
- if (file_offset < section->file_offset_of_raw_data) {
- uint32 section_start_offset = section->file_offset_of_raw_data;
- ok = ParseNonSectionFileRegion(file_offset, section_start_offset,
- program);
- file_offset = section_start_offset;
- }
- if (ok) {
- uint32 end = file_offset + section->size_of_raw_data;
- ok = ParseFileRegion(section, file_offset, end, program);
- file_offset = end;
- }
- }
-
-#if COURGETTE_HISTOGRAM_TARGETS
- HistogramTargets("abs32 relocs", abs32_target_rvas_);
- HistogramTargets("rel32 relocs", rel32_target_rvas_);
-#endif
-
- return ok;
-}
-
CheckBool DisassemblerWin32X86::ParseNonSectionFileRegion(
uint32 start_file_offset,
uint32 end_file_offset,
@@ -233,8 +518,8 @@ CheckBool DisassemblerWin32X86::ParseNonSectionFileRegion(
if (incomplete_disassembly_)
return true;
- const uint8* start = pe_info().FileOffsetToPointer(start_file_offset);
- const uint8* end = pe_info().FileOffsetToPointer(end_file_offset);
+ const uint8* start = OffsetToPointer(start_file_offset);
+ const uint8* end = OffsetToPointer(end_file_offset);
const uint8* p = start;
@@ -251,12 +536,12 @@ CheckBool DisassemblerWin32X86::ParseFileRegion(
const Section* section,
uint32 start_file_offset, uint32 end_file_offset,
AssemblyProgram* program) {
- RVA relocs_start_rva = pe_info().base_relocation_table().address_;
+ RVA relocs_start_rva = base_relocation_table().address_;
- const uint8* start_pointer = pe_info().FileOffsetToPointer(start_file_offset);
- const uint8* end_pointer = pe_info().FileOffsetToPointer(end_file_offset);
+ const uint8* start_pointer = OffsetToPointer(start_file_offset);
+ const uint8* end_pointer = OffsetToPointer(end_file_offset);
- RVA start_rva = pe_info().FileOffsetToRVA(start_file_offset);
+ RVA start_rva = FileOffsetToRVA(start_file_offset);
RVA end_rva = start_rva + section->virtual_size;
// Quick way to convert from Pointer to RVA within a single Section is to
@@ -280,7 +565,7 @@ CheckBool DisassemblerWin32X86::ParseFileRegion(
ok = program->EmitMakeRelocsInstruction();
if (!ok)
break;
- uint32 relocs_size = pe_info().base_relocation_table().size_;
+ uint32 relocs_size = base_relocation_table().size_;
if (relocs_size) {
p += relocs_size;
continue;
@@ -292,7 +577,7 @@ CheckBool DisassemblerWin32X86::ParseFileRegion(
if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) {
uint32 target_address = Read32LittleEndian(p);
- RVA target_rva = target_address - pe_info().image_base();
+ RVA target_rva = target_address - image_base();
// TODO(sra): target could be Label+offset. It is not clear how to guess
// which it might be. We assume offset==0.
ok = program->EmitAbs32(program->FindOrMakeAbs32Label(target_rva));
@@ -363,7 +648,7 @@ void DisassemblerWin32X86::HistogramTargets(const char* kind,
std::cout << std::dec << p->first << ": " << count;
if (count <= 2) {
for (size_t i = 0; i < count; ++i)
- std::cout << " " << pe_info().DescribeRVA(p->second[i]);
+ std::cout << " " << DescribeRVA(p->second[i]);
}
std::cout << std::endl;
someSkipped = false;
@@ -374,4 +659,77 @@ void DisassemblerWin32X86::HistogramTargets(const char* kind,
}
#endif // COURGETTE_HISTOGRAM_TARGETS
+
+// DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except
+// that during development I'm finding I need to call it when compiled in
+// Release mode. Hence:
+// TODO(sra): make this compile only for debug mode.
+std::string DisassemblerWin32X86::DescribeRVA(RVA rva) const {
+ const Section* section = RVAToSection(rva);
+ std::ostringstream s;
+ s << std::hex << rva;
+ if (section) {
+ s << " (";
+ s << SectionName(section) << "+"
+ << std::hex << (rva - section->virtual_address)
+ << ")";
+ }
+ return s.str();
+}
+
+const Section* DisassemblerWin32X86::FindNextSection(uint32 fileOffset) const {
+ const Section* best = 0;
+ for (int i = 0; i < number_of_sections_; i++) {
+ const Section* section = &sections_[i];
+ if (section->size_of_raw_data > 0) { // i.e. has data in file.
+ if (fileOffset <= section->file_offset_of_raw_data) {
+ if (best == 0 ||
+ section->file_offset_of_raw_data < best->file_offset_of_raw_data) {
+ best = section;
+ }
+ }
+ }
+ }
+ return best;
+}
+
+RVA DisassemblerWin32X86::FileOffsetToRVA(uint32 file_offset) const {
+ for (int i = 0; i < number_of_sections_; i++) {
+ const Section* section = &sections_[i];
+ uint32 offset = file_offset - section->file_offset_of_raw_data;
+ if (offset < section->size_of_raw_data) {
+ return section->virtual_address + offset;
+ }
+ }
+ return 0;
+}
+
+bool DisassemblerWin32X86::ReadDataDirectory(
+ int index,
+ ImageDataDirectory* directory) {
+
+ if (index < number_of_data_directories_) {
+ size_t offset = index * 8 + offset_of_data_directories_;
+ if (offset >= size_of_optional_header_)
+ return Bad("number of data directories inconsistent");
+ const uint8* data_directory = optional_header_ + offset;
+ if (data_directory < start() ||
+ data_directory + 8 >= end())
+ return Bad("data directory outside image");
+ RVA rva = ReadU32(data_directory, 0);
+ size_t size = ReadU32(data_directory, 4);
+ if (size > size_of_image_)
+ return Bad("data directory size too big");
+
+ // TODO(sra): validate RVA.
+ directory->address_ = rva;
+ directory->size_ = static_cast<uint32>(size);
+ return true;
+ } else {
+ directory->address_ = 0;
+ directory->size_ = 0;
+ return true;
+ }
+}
+
} // namespace courgette