summaryrefslogtreecommitdiffstats
path: root/courgette/encoded_program.cc
diff options
context:
space:
mode:
authorsra@chromium.org <sra@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2009-05-08 23:00:29 +0000
committersra@chromium.org <sra@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2009-05-08 23:00:29 +0000
commit04ca1bc65afb76ea30698c25f24599d20119e3d2 (patch)
tree2bb65e974d478f4d607b83f6a84a56c01f501ac0 /courgette/encoded_program.cc
parent9adf1dcf3281408560267787eddcc767566b425f (diff)
downloadchromium_src-04ca1bc65afb76ea30698c25f24599d20119e3d2.zip
chromium_src-04ca1bc65afb76ea30698c25f24599d20119e3d2.tar.gz
chromium_src-04ca1bc65afb76ea30698c25f24599d20119e3d2.tar.bz2
Move Courgette
from src\third_party\courgette to src\courgette and src\courgette\third_party Fixed #includes Added properties to ignore generated files: C:\c5\src>svn pg svn:ignore courgette courgette.xcodeproj courgette.sln courgette_fuzz.vcproj courgette_lib.vcproj courgette_minimal_tool.vcproj courgette_tool.vcproj courgette.vcproj courgette_unittests.vcproj SConstruct courgette_fuzz.scons courgette_lib.scons courgette_main.scons courgette_minimal_tool.scons courgette.scons courgette_tool.scons courgette_unittests.scons Review URL: http://codereview.chromium.org/115062 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@15692 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'courgette/encoded_program.cc')
-rw-r--r--courgette/encoded_program.cc573
1 files changed, 573 insertions, 0 deletions
diff --git a/courgette/encoded_program.cc b/courgette/encoded_program.cc
new file mode 100644
index 0000000..f606f96
--- /dev/null
+++ b/courgette/encoded_program.cc
@@ -0,0 +1,573 @@
+// Copyright (c) 2009 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "courgette/encoded_program.h"
+
+#include <algorithm>
+#include <map>
+#include <string>
+#include <vector>
+
+#include "base/logging.h"
+#include "base/sys_info.h"
+
+#include "courgette/courgette.h"
+#include "courgette/streams.h"
+
+namespace courgette {
+
+// Stream indexes.
+const int kStreamMisc = 0;
+const int kStreamOps = 1;
+const int kStreamBytes = 2;
+const int kStreamAbs32Indexes = 3;
+const int kStreamRel32Indexes = 4;
+const int kStreamAbs32Addresses = 5;
+const int kStreamRel32Addresses = 6;
+const int kStreamCopyCounts = 7;
+const int kStreamOriginAddresses = kStreamMisc;
+
+const int kStreamLimit = 9;
+
+// Binary assembly language operations.
+enum EncodedProgram::OP {
+ ORIGIN, // ORIGIN <rva> - set address for subsequent assembly.
+ COPY, // COPY <count> <bytes> - copy bytes to output.
+ COPY1, // COPY1 <byte> - same as COPY 1 <byte>.
+ REL32, // REL32 <index> - emit rel32 encoded reference to address at
+ // address table offset <index>
+ ABS32, // ABS32 <index> - emit abs32 encoded reference to address at
+ // address table offset <index>
+ MAKE_BASE_RELOCATION_TABLE, // Emit base relocation table blocks.
+ OP_LAST
+};
+
+
+// Constructor is here rather than in the header. Although the constructor
+// appears to do nothing it is fact quite large because of the implict calls to
+// field constructors. Ditto for the destructor.
+EncodedProgram::EncodedProgram() {}
+EncodedProgram::~EncodedProgram() {}
+
+// Serializes a vector of integral values using Varint32 coding.
+template<typename T>
+void WriteVector(const std::vector<T>& items, SinkStream* buffer) {
+ size_t count = items.size();
+ buffer->WriteVarint32(count);
+ for (size_t i = 0; i < count; ++i) {
+ COMPILE_ASSERT(sizeof(T) <= sizeof(uint32), T_must_fit_in_uint32);
+ buffer->WriteVarint32(static_cast<uint32>(items[i]));
+ }
+}
+
+template<typename T>
+bool ReadVector(std::vector<T>* items, SourceStream* buffer) {
+ uint32 count;
+ if (!buffer->ReadVarint32(&count))
+ return false;
+
+ items->clear();
+ items->reserve(count);
+ for (size_t i = 0; i < count; ++i) {
+ uint32 item;
+ if (!buffer->ReadVarint32(&item))
+ return false;
+ items->push_back(static_cast<T>(item));
+ }
+
+ return true;
+}
+
+// Serializes a vector, using delta coding followed by Varint32 coding.
+void WriteU32Delta(const std::vector<uint32>& set, SinkStream* buffer) {
+ size_t count = set.size();
+ buffer->WriteVarint32(count);
+ uint32 prev = 0;
+ for (size_t i = 0; i < count; ++i) {
+ uint32 current = set[i];
+ uint32 delta = current - prev;
+ buffer->WriteVarint32(delta);
+ prev = current;
+ }
+}
+
+static bool ReadU32Delta(std::vector<uint32>* set, SourceStream* buffer) {
+ uint32 count;
+
+ if (!buffer->ReadVarint32(&count))
+ return false;
+
+ set->clear();
+ set->reserve(count);
+ uint32 prev = 0;
+
+ for (size_t i = 0; i < count; ++i) {
+ uint32 delta;
+ if (!buffer->ReadVarint32(&delta))
+ return false;
+ uint32 current = prev + delta;
+ set->push_back(current);
+ prev = current;
+ }
+
+ return true;
+}
+
+// Write a vector as the byte representation of the contents.
+//
+// (This only really makes sense for a type T that has sizeof(T)==1, otherwise
+// serilized representation is not endian-agnositic. But it is useful to keep
+// the possibility of a greater size for experiments comparing Varint32 encoding
+// of a vector of larger integrals vs a plain form.)
+//
+template<typename T>
+void WriteVectorU8(const std::vector<T>& items, SinkStream* buffer) {
+ uint32 count = items.size();
+ buffer->WriteVarint32(count);
+ if (count != 0) {
+ size_t byte_count = count * sizeof(T);
+ buffer->Write(static_cast<const void*>(&items[0]), byte_count);
+ }
+}
+
+template<typename T>
+bool ReadVectorU8(std::vector<T>* items, SourceStream* buffer) {
+ uint32 count;
+ if (!buffer->ReadVarint32(&count))
+ return false;
+
+ items->clear();
+ items->resize(count);
+ if (count != 0) {
+ size_t byte_count = count * sizeof(T);
+ return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count);
+ }
+ return true;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+void EncodedProgram::DefineRel32Label(int index, RVA value) {
+ DefineLabelCommon(&rel32_rva_, index, value);
+}
+
+void EncodedProgram::DefineAbs32Label(int index, RVA value) {
+ DefineLabelCommon(&abs32_rva_, index, value);
+}
+
+static const RVA kUnassignedRVA = static_cast<RVA>(-1);
+
+void EncodedProgram::DefineLabelCommon(std::vector<RVA>* rvas,
+ int index,
+ RVA rva) {
+ if (static_cast<int>(rvas->size()) <= index) {
+ rvas->resize(index + 1, kUnassignedRVA);
+ }
+ if ((*rvas)[index] != kUnassignedRVA) {
+ NOTREACHED() << "DefineLabel double assigned " << index;
+ }
+ (*rvas)[index] = rva;
+}
+
+void EncodedProgram::EndLabels() {
+ FinishLabelsCommon(&abs32_rva_);
+ FinishLabelsCommon(&rel32_rva_);
+}
+
+void EncodedProgram::FinishLabelsCommon(std::vector<RVA>* rvas) {
+ // Replace all unassigned slots with the value at the previous index so they
+ // delta-encode to zero. (There might be better values than zero. The way to
+ // get that is have the higher level assembly program assign the unassigned
+ // slots.)
+ RVA previous = 0;
+ size_t size = rvas->size();
+ for (size_t i = 0; i < size; ++i) {
+ if ((*rvas)[i] == kUnassignedRVA)
+ (*rvas)[i] = previous;
+ else
+ previous = (*rvas)[i];
+ }
+}
+
+void EncodedProgram::AddOrigin(RVA origin) {
+ ops_.push_back(ORIGIN);
+ origins_.push_back(origin);
+}
+
+void EncodedProgram::AddCopy(int count, const void* bytes) {
+ const uint8* source = static_cast<const uint8*>(bytes);
+
+ // Fold adjacent COPY instructions into one. This nearly halves the size of
+ // an EncodedProgram with only COPY1 instructions since there are approx plain
+ // 16 bytes per reloc. This has a working-set benefit during decompression.
+ // For compression of files with large differences this makes a small (4%)
+ // improvement in size. For files with small differences this degrades the
+ // compressed size by 1.3%
+ if (ops_.size() > 0) {
+ if (ops_.back() == COPY1) {
+ ops_.back() = COPY;
+ copy_counts_.push_back(1);
+ }
+ if (ops_.back() == COPY) {
+ copy_counts_.back() += count;
+ for (int i = 0; i < count; ++i) {
+ copy_bytes_.push_back(source[i]);
+ }
+ return;
+ }
+ }
+
+ if (count == 1) {
+ ops_.push_back(COPY1);
+ copy_bytes_.push_back(source[0]);
+ } else {
+ ops_.push_back(COPY);
+ copy_counts_.push_back(count);
+ for (int i = 0; i < count; ++i) {
+ copy_bytes_.push_back(source[i]);
+ }
+ }
+}
+
+void EncodedProgram::AddAbs32(int label_index) {
+ ops_.push_back(ABS32);
+ abs32_ix_.push_back(label_index);
+}
+
+void EncodedProgram::AddRel32(int label_index) {
+ ops_.push_back(REL32);
+ rel32_ix_.push_back(label_index);
+}
+
+void EncodedProgram::AddMakeRelocs() {
+ ops_.push_back(MAKE_BASE_RELOCATION_TABLE);
+}
+
+void EncodedProgram::DebuggingSummary() {
+ LOG(INFO) << "EncodedProgram Summary";
+ LOG(INFO) << " image base " << image_base_;
+ LOG(INFO) << " abs32 rvas " << abs32_rva_.size();
+ LOG(INFO) << " rel32 rvas " << rel32_rva_.size();
+ LOG(INFO) << " ops " << ops_.size();
+ LOG(INFO) << " origins " << origins_.size();
+ LOG(INFO) << " copy_counts " << copy_counts_.size();
+ LOG(INFO) << " copy_bytes " << copy_bytes_.size();
+ LOG(INFO) << " abs32_ix " << abs32_ix_.size();
+ LOG(INFO) << " rel32_ix " << rel32_ix_.size();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+// For algorithm refinement purposes it is useful to write subsets of the file
+// format. This gives us the ability to estimate the entropy of the
+// differential compression of the individual streams, which can provide
+// invaluable insights. The default, of course, is to include all the streams.
+//
+enum FieldSelect {
+ INCLUDE_ABS32_ADDRESSES = 0x0001,
+ INCLUDE_REL32_ADDRESSES = 0x0002,
+ INCLUDE_ABS32_INDEXES = 0x0010,
+ INCLUDE_REL32_INDEXES = 0x0020,
+ INCLUDE_OPS = 0x0100,
+ INCLUDE_BYTES = 0x0200,
+ INCLUDE_COPY_COUNTS = 0x0400,
+ INCLUDE_MISC = 0x1000
+};
+
+static FieldSelect GetFieldSelect() {
+#if 1
+ // TODO(sra): Use better configuration.
+ std::wstring s = base::SysInfo::GetEnvVar(L"A_FIELDS");
+ if (!s.empty()) {
+ return static_cast<FieldSelect>(wcstoul(s.c_str(), 0, 0));
+ }
+#endif
+ return static_cast<FieldSelect>(~0);
+}
+
+void EncodedProgram::WriteTo(SinkStreamSet* streams) {
+ FieldSelect select = GetFieldSelect();
+
+ // The order of fields must be consistent in WriteTo and ReadFrom, regardless
+ // of the streams used. The code can be configured with all kStreamXXX
+ // constants the same.
+ //
+ // If we change the code to pipeline reading with assembly (to avoid temporary
+ // storage vectors by consuming operands directly from the stream) then we
+ // need to read the base address and the random access address tables first,
+ // the rest can be interleaved.
+
+ if (select & INCLUDE_MISC) {
+ // TODO(sra): write 64 bits.
+ streams->stream(kStreamMisc)->WriteVarint32(
+ static_cast<uint32>(image_base_));
+ }
+
+ if (select & INCLUDE_ABS32_ADDRESSES)
+ WriteU32Delta(abs32_rva_, streams->stream(kStreamAbs32Addresses));
+ if (select & INCLUDE_REL32_ADDRESSES)
+ WriteU32Delta(rel32_rva_, streams->stream(kStreamRel32Addresses));
+ if (select & INCLUDE_MISC)
+ WriteVector(origins_, streams->stream(kStreamOriginAddresses));
+ if (select & INCLUDE_OPS) {
+ streams->stream(kStreamOps)->Reserve(ops_.size() + 5); // 5 for length.
+ WriteVector(ops_, streams->stream(kStreamOps));
+ }
+ if (select & INCLUDE_COPY_COUNTS)
+ WriteVector(copy_counts_, streams->stream(kStreamCopyCounts));
+ if (select & INCLUDE_BYTES)
+ WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes));
+ if (select & INCLUDE_ABS32_INDEXES)
+ WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes));
+ if (select & INCLUDE_REL32_INDEXES)
+ WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes));
+}
+
+bool EncodedProgram::ReadFrom(SourceStreamSet* streams) {
+ // TODO(sra): read 64 bits.
+ uint32 temp;
+ if (!streams->stream(kStreamMisc)->ReadVarint32(&temp))
+ return false;
+ image_base_ = temp;
+
+ if (!ReadU32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses)))
+ return false;
+ if (!ReadU32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses)))
+ return false;
+ if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses)))
+ return false;
+ if (!ReadVector(&ops_, streams->stream(kStreamOps)))
+ return false;
+ if (!ReadVector(&copy_counts_, streams->stream(kStreamCopyCounts)))
+ return false;
+ if (!ReadVectorU8(&copy_bytes_, streams->stream(kStreamBytes)))
+ return false;
+ if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes)))
+ return false;
+ if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes)))
+ return false;
+
+ // Check that streams have been completely consumed.
+ for (int i = 0; i < kStreamLimit; ++i) {
+ if (streams->stream(i)->Remaining() > 0)
+ return false;
+ }
+
+ return true;
+}
+
+// Safe, non-throwing version of std::vector::at(). Returns 'true' for success,
+// 'false' for out-of-bounds index error.
+template<typename T>
+bool VectorAt(const std::vector<T>& v, size_t index, T* output) {
+ if (index >= v.size())
+ return false;
+ *output = v[index];
+ return true;
+}
+
+bool EncodedProgram::AssembleTo(SinkStream* final_buffer) {
+ // For the most part, the assembly process walks the various tables.
+ // ix_mumble is the index into the mumble table.
+ size_t ix_origins = 0;
+ size_t ix_copy_counts = 0;
+ size_t ix_copy_bytes = 0;
+ size_t ix_abs32_ix = 0;
+ size_t ix_rel32_ix = 0;
+
+ RVA current_rva = 0;
+
+ bool pending_base_relocation_table = false;
+ SinkStream bytes_following_base_relocation_table;
+
+ SinkStream* output = final_buffer;
+
+ for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) {
+ OP op = ops_[ix_ops];
+
+ switch (op) {
+ default:
+ return false;
+
+ case ORIGIN: {
+ RVA section_rva;
+ if (!VectorAt(origins_, ix_origins, &section_rva))
+ return false;
+ ++ix_origins;
+ current_rva = section_rva;
+ break;
+ }
+
+ case COPY: {
+ int count;
+ if (!VectorAt(copy_counts_, ix_copy_counts, &count))
+ return false;
+ ++ix_copy_counts;
+ for (int i = 0; i < count; ++i) {
+ uint8 b;
+ if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
+ return false;
+ ++ix_copy_bytes;
+ output->Write(&b, 1);
+ }
+ current_rva += count;
+ break;
+ }
+
+ case COPY1: {
+ uint8 b;
+ if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
+ return false;
+ ++ix_copy_bytes;
+ output->Write(&b, 1);
+ current_rva += 1;
+ break;
+ }
+
+ case REL32: {
+ uint32 index;
+ if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
+ return false;
+ ++ix_rel32_ix;
+ RVA rva;
+ if (!VectorAt(rel32_rva_, index, &rva))
+ return false;
+ uint32 offset = (rva - (current_rva + 4));
+ output->Write(&offset, 4);
+ current_rva += 4;
+ break;
+ }
+
+ case ABS32: {
+ uint32 index;
+ if (!VectorAt(abs32_ix_, ix_abs32_ix, &index))
+ return false;
+ ++ix_abs32_ix;
+ RVA rva;
+ if (!VectorAt(abs32_rva_, index, &rva))
+ return false;
+ uint32 abs32 = static_cast<uint32>(rva + image_base_);
+ abs32_relocs_.push_back(current_rva);
+ output->Write(&abs32, 4);
+ current_rva += 4;
+ break;
+ }
+
+ case MAKE_BASE_RELOCATION_TABLE: {
+ // We can see the base relocation anywhere, but we only have the
+ // information to generate it at the very end. So we divert the bytes
+ // we are generating to a temporary stream.
+ if (pending_base_relocation_table) // Can't have two base relocation
+ // tables.
+ return false;
+
+ pending_base_relocation_table = true;
+ output = &bytes_following_base_relocation_table;
+ break;
+ // There is a potential problem *if* the instruction stream contains
+ // some REL32 relocations following the base relocation and in the same
+ // section. We don't know the size of the table, so 'current_rva' will
+ // be wrong, causing REL32 offsets to be miscalculated. This never
+ // happens; the base relocation table is usually in a section of its
+ // own, a data-only section, and following everything else in the
+ // executable except some padding zero bytes. We could fix this by
+ // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE.
+ }
+ }
+ }
+
+ if (pending_base_relocation_table) {
+ GenerateBaseRelocations(final_buffer);
+ final_buffer->Append(&bytes_following_base_relocation_table);
+ }
+
+ // Final verification check: did we consume all lists?
+ if (ix_copy_counts != copy_counts_.size())
+ return false;
+ if (ix_copy_bytes != copy_bytes_.size())
+ return false;
+ if (ix_abs32_ix != abs32_ix_.size())
+ return false;
+ if (ix_rel32_ix != rel32_ix_.size())
+ return false;
+
+ return true;
+}
+
+
+// RelocBlock has the layout of a block of relocations in the base relocation
+// table file format.
+//
+class RelocBlock {
+ public:
+ uint32 page_rva;
+ uint32 block_size;
+ uint16 relocs[4096]; // Allow up to one relocation per byte of a 4k page.
+
+ RelocBlock() : page_rva(~0), block_size(8) {}
+
+ void Add(uint16 item) {
+ relocs[(block_size-8)/2] = item;
+ block_size += 2;
+ }
+
+ void Flush(SinkStream* buffer) {
+ if (block_size != 8) {
+ if (block_size % 4 != 0) { // Pad to make size multiple of 4 bytes.
+ Add(0);
+ }
+ buffer->Write(this, block_size);
+ block_size = 8;
+ }
+ }
+};
+
+COMPILE_ASSERT(offsetof(RelocBlock, relocs) == 8, reloc_block_header_size);
+
+void EncodedProgram::GenerateBaseRelocations(SinkStream* buffer) {
+ std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
+
+ RelocBlock block;
+
+ for (size_t i = 0; i < abs32_relocs_.size(); ++i) {
+ uint32 rva = abs32_relocs_[i];
+ uint32 page_rva = rva & ~0xFFF;
+ if (page_rva != block.page_rva) {
+ block.Flush(buffer);
+ block.page_rva = page_rva;
+ }
+ block.Add(0x3000 | (rva & 0xFFF));
+ }
+ block.Flush(buffer);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) {
+ encoded->WriteTo(sink);
+ return C_OK;
+}
+
+Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) {
+ EncodedProgram* encoded = new EncodedProgram();
+ if (encoded->ReadFrom(streams)) {
+ *output = encoded;
+ return C_OK;
+ }
+ delete encoded;
+ return C_DESERIALIZATION_FAILED;
+}
+
+Status Assemble(EncodedProgram* encoded, SinkStream* buffer) {
+ bool assembled = encoded->AssembleTo(buffer);
+ if (assembled)
+ return C_OK;
+ return C_ASSEMBLY_FAILED;
+}
+
+void DeleteEncodedProgram(EncodedProgram* encoded) {
+ delete encoded;
+}
+
+} // end namespace