diff options
author | sra@chromium.org <sra@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2009-05-08 23:00:29 +0000 |
---|---|---|
committer | sra@chromium.org <sra@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2009-05-08 23:00:29 +0000 |
commit | 04ca1bc65afb76ea30698c25f24599d20119e3d2 (patch) | |
tree | 2bb65e974d478f4d607b83f6a84a56c01f501ac0 /courgette/encoded_program.cc | |
parent | 9adf1dcf3281408560267787eddcc767566b425f (diff) | |
download | chromium_src-04ca1bc65afb76ea30698c25f24599d20119e3d2.zip chromium_src-04ca1bc65afb76ea30698c25f24599d20119e3d2.tar.gz chromium_src-04ca1bc65afb76ea30698c25f24599d20119e3d2.tar.bz2 |
Move Courgette
from src\third_party\courgette
to src\courgette and src\courgette\third_party
Fixed #includes
Added properties to ignore generated files:
C:\c5\src>svn pg svn:ignore courgette
courgette.xcodeproj
courgette.sln
courgette_fuzz.vcproj
courgette_lib.vcproj
courgette_minimal_tool.vcproj
courgette_tool.vcproj
courgette.vcproj
courgette_unittests.vcproj
SConstruct
courgette_fuzz.scons
courgette_lib.scons
courgette_main.scons
courgette_minimal_tool.scons
courgette.scons
courgette_tool.scons
courgette_unittests.scons
Review URL: http://codereview.chromium.org/115062
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@15692 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'courgette/encoded_program.cc')
-rw-r--r-- | courgette/encoded_program.cc | 573 |
1 files changed, 573 insertions, 0 deletions
diff --git a/courgette/encoded_program.cc b/courgette/encoded_program.cc new file mode 100644 index 0000000..f606f96 --- /dev/null +++ b/courgette/encoded_program.cc @@ -0,0 +1,573 @@ +// Copyright (c) 2009 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "courgette/encoded_program.h" + +#include <algorithm> +#include <map> +#include <string> +#include <vector> + +#include "base/logging.h" +#include "base/sys_info.h" + +#include "courgette/courgette.h" +#include "courgette/streams.h" + +namespace courgette { + +// Stream indexes. +const int kStreamMisc = 0; +const int kStreamOps = 1; +const int kStreamBytes = 2; +const int kStreamAbs32Indexes = 3; +const int kStreamRel32Indexes = 4; +const int kStreamAbs32Addresses = 5; +const int kStreamRel32Addresses = 6; +const int kStreamCopyCounts = 7; +const int kStreamOriginAddresses = kStreamMisc; + +const int kStreamLimit = 9; + +// Binary assembly language operations. +enum EncodedProgram::OP { + ORIGIN, // ORIGIN <rva> - set address for subsequent assembly. + COPY, // COPY <count> <bytes> - copy bytes to output. + COPY1, // COPY1 <byte> - same as COPY 1 <byte>. + REL32, // REL32 <index> - emit rel32 encoded reference to address at + // address table offset <index> + ABS32, // ABS32 <index> - emit abs32 encoded reference to address at + // address table offset <index> + MAKE_BASE_RELOCATION_TABLE, // Emit base relocation table blocks. + OP_LAST +}; + + +// Constructor is here rather than in the header. Although the constructor +// appears to do nothing it is fact quite large because of the implict calls to +// field constructors. Ditto for the destructor. +EncodedProgram::EncodedProgram() {} +EncodedProgram::~EncodedProgram() {} + +// Serializes a vector of integral values using Varint32 coding. +template<typename T> +void WriteVector(const std::vector<T>& items, SinkStream* buffer) { + size_t count = items.size(); + buffer->WriteVarint32(count); + for (size_t i = 0; i < count; ++i) { + COMPILE_ASSERT(sizeof(T) <= sizeof(uint32), T_must_fit_in_uint32); + buffer->WriteVarint32(static_cast<uint32>(items[i])); + } +} + +template<typename T> +bool ReadVector(std::vector<T>* items, SourceStream* buffer) { + uint32 count; + if (!buffer->ReadVarint32(&count)) + return false; + + items->clear(); + items->reserve(count); + for (size_t i = 0; i < count; ++i) { + uint32 item; + if (!buffer->ReadVarint32(&item)) + return false; + items->push_back(static_cast<T>(item)); + } + + return true; +} + +// Serializes a vector, using delta coding followed by Varint32 coding. +void WriteU32Delta(const std::vector<uint32>& set, SinkStream* buffer) { + size_t count = set.size(); + buffer->WriteVarint32(count); + uint32 prev = 0; + for (size_t i = 0; i < count; ++i) { + uint32 current = set[i]; + uint32 delta = current - prev; + buffer->WriteVarint32(delta); + prev = current; + } +} + +static bool ReadU32Delta(std::vector<uint32>* set, SourceStream* buffer) { + uint32 count; + + if (!buffer->ReadVarint32(&count)) + return false; + + set->clear(); + set->reserve(count); + uint32 prev = 0; + + for (size_t i = 0; i < count; ++i) { + uint32 delta; + if (!buffer->ReadVarint32(&delta)) + return false; + uint32 current = prev + delta; + set->push_back(current); + prev = current; + } + + return true; +} + +// Write a vector as the byte representation of the contents. +// +// (This only really makes sense for a type T that has sizeof(T)==1, otherwise +// serilized representation is not endian-agnositic. But it is useful to keep +// the possibility of a greater size for experiments comparing Varint32 encoding +// of a vector of larger integrals vs a plain form.) +// +template<typename T> +void WriteVectorU8(const std::vector<T>& items, SinkStream* buffer) { + uint32 count = items.size(); + buffer->WriteVarint32(count); + if (count != 0) { + size_t byte_count = count * sizeof(T); + buffer->Write(static_cast<const void*>(&items[0]), byte_count); + } +} + +template<typename T> +bool ReadVectorU8(std::vector<T>* items, SourceStream* buffer) { + uint32 count; + if (!buffer->ReadVarint32(&count)) + return false; + + items->clear(); + items->resize(count); + if (count != 0) { + size_t byte_count = count * sizeof(T); + return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count); + } + return true; +} + +//////////////////////////////////////////////////////////////////////////////// + +void EncodedProgram::DefineRel32Label(int index, RVA value) { + DefineLabelCommon(&rel32_rva_, index, value); +} + +void EncodedProgram::DefineAbs32Label(int index, RVA value) { + DefineLabelCommon(&abs32_rva_, index, value); +} + +static const RVA kUnassignedRVA = static_cast<RVA>(-1); + +void EncodedProgram::DefineLabelCommon(std::vector<RVA>* rvas, + int index, + RVA rva) { + if (static_cast<int>(rvas->size()) <= index) { + rvas->resize(index + 1, kUnassignedRVA); + } + if ((*rvas)[index] != kUnassignedRVA) { + NOTREACHED() << "DefineLabel double assigned " << index; + } + (*rvas)[index] = rva; +} + +void EncodedProgram::EndLabels() { + FinishLabelsCommon(&abs32_rva_); + FinishLabelsCommon(&rel32_rva_); +} + +void EncodedProgram::FinishLabelsCommon(std::vector<RVA>* rvas) { + // Replace all unassigned slots with the value at the previous index so they + // delta-encode to zero. (There might be better values than zero. The way to + // get that is have the higher level assembly program assign the unassigned + // slots.) + RVA previous = 0; + size_t size = rvas->size(); + for (size_t i = 0; i < size; ++i) { + if ((*rvas)[i] == kUnassignedRVA) + (*rvas)[i] = previous; + else + previous = (*rvas)[i]; + } +} + +void EncodedProgram::AddOrigin(RVA origin) { + ops_.push_back(ORIGIN); + origins_.push_back(origin); +} + +void EncodedProgram::AddCopy(int count, const void* bytes) { + const uint8* source = static_cast<const uint8*>(bytes); + + // Fold adjacent COPY instructions into one. This nearly halves the size of + // an EncodedProgram with only COPY1 instructions since there are approx plain + // 16 bytes per reloc. This has a working-set benefit during decompression. + // For compression of files with large differences this makes a small (4%) + // improvement in size. For files with small differences this degrades the + // compressed size by 1.3% + if (ops_.size() > 0) { + if (ops_.back() == COPY1) { + ops_.back() = COPY; + copy_counts_.push_back(1); + } + if (ops_.back() == COPY) { + copy_counts_.back() += count; + for (int i = 0; i < count; ++i) { + copy_bytes_.push_back(source[i]); + } + return; + } + } + + if (count == 1) { + ops_.push_back(COPY1); + copy_bytes_.push_back(source[0]); + } else { + ops_.push_back(COPY); + copy_counts_.push_back(count); + for (int i = 0; i < count; ++i) { + copy_bytes_.push_back(source[i]); + } + } +} + +void EncodedProgram::AddAbs32(int label_index) { + ops_.push_back(ABS32); + abs32_ix_.push_back(label_index); +} + +void EncodedProgram::AddRel32(int label_index) { + ops_.push_back(REL32); + rel32_ix_.push_back(label_index); +} + +void EncodedProgram::AddMakeRelocs() { + ops_.push_back(MAKE_BASE_RELOCATION_TABLE); +} + +void EncodedProgram::DebuggingSummary() { + LOG(INFO) << "EncodedProgram Summary"; + LOG(INFO) << " image base " << image_base_; + LOG(INFO) << " abs32 rvas " << abs32_rva_.size(); + LOG(INFO) << " rel32 rvas " << rel32_rva_.size(); + LOG(INFO) << " ops " << ops_.size(); + LOG(INFO) << " origins " << origins_.size(); + LOG(INFO) << " copy_counts " << copy_counts_.size(); + LOG(INFO) << " copy_bytes " << copy_bytes_.size(); + LOG(INFO) << " abs32_ix " << abs32_ix_.size(); + LOG(INFO) << " rel32_ix " << rel32_ix_.size(); +} + +//////////////////////////////////////////////////////////////////////////////// + +// For algorithm refinement purposes it is useful to write subsets of the file +// format. This gives us the ability to estimate the entropy of the +// differential compression of the individual streams, which can provide +// invaluable insights. The default, of course, is to include all the streams. +// +enum FieldSelect { + INCLUDE_ABS32_ADDRESSES = 0x0001, + INCLUDE_REL32_ADDRESSES = 0x0002, + INCLUDE_ABS32_INDEXES = 0x0010, + INCLUDE_REL32_INDEXES = 0x0020, + INCLUDE_OPS = 0x0100, + INCLUDE_BYTES = 0x0200, + INCLUDE_COPY_COUNTS = 0x0400, + INCLUDE_MISC = 0x1000 +}; + +static FieldSelect GetFieldSelect() { +#if 1 + // TODO(sra): Use better configuration. + std::wstring s = base::SysInfo::GetEnvVar(L"A_FIELDS"); + if (!s.empty()) { + return static_cast<FieldSelect>(wcstoul(s.c_str(), 0, 0)); + } +#endif + return static_cast<FieldSelect>(~0); +} + +void EncodedProgram::WriteTo(SinkStreamSet* streams) { + FieldSelect select = GetFieldSelect(); + + // The order of fields must be consistent in WriteTo and ReadFrom, regardless + // of the streams used. The code can be configured with all kStreamXXX + // constants the same. + // + // If we change the code to pipeline reading with assembly (to avoid temporary + // storage vectors by consuming operands directly from the stream) then we + // need to read the base address and the random access address tables first, + // the rest can be interleaved. + + if (select & INCLUDE_MISC) { + // TODO(sra): write 64 bits. + streams->stream(kStreamMisc)->WriteVarint32( + static_cast<uint32>(image_base_)); + } + + if (select & INCLUDE_ABS32_ADDRESSES) + WriteU32Delta(abs32_rva_, streams->stream(kStreamAbs32Addresses)); + if (select & INCLUDE_REL32_ADDRESSES) + WriteU32Delta(rel32_rva_, streams->stream(kStreamRel32Addresses)); + if (select & INCLUDE_MISC) + WriteVector(origins_, streams->stream(kStreamOriginAddresses)); + if (select & INCLUDE_OPS) { + streams->stream(kStreamOps)->Reserve(ops_.size() + 5); // 5 for length. + WriteVector(ops_, streams->stream(kStreamOps)); + } + if (select & INCLUDE_COPY_COUNTS) + WriteVector(copy_counts_, streams->stream(kStreamCopyCounts)); + if (select & INCLUDE_BYTES) + WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes)); + if (select & INCLUDE_ABS32_INDEXES) + WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes)); + if (select & INCLUDE_REL32_INDEXES) + WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes)); +} + +bool EncodedProgram::ReadFrom(SourceStreamSet* streams) { + // TODO(sra): read 64 bits. + uint32 temp; + if (!streams->stream(kStreamMisc)->ReadVarint32(&temp)) + return false; + image_base_ = temp; + + if (!ReadU32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses))) + return false; + if (!ReadU32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses))) + return false; + if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses))) + return false; + if (!ReadVector(&ops_, streams->stream(kStreamOps))) + return false; + if (!ReadVector(©_counts_, streams->stream(kStreamCopyCounts))) + return false; + if (!ReadVectorU8(©_bytes_, streams->stream(kStreamBytes))) + return false; + if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes))) + return false; + if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes))) + return false; + + // Check that streams have been completely consumed. + for (int i = 0; i < kStreamLimit; ++i) { + if (streams->stream(i)->Remaining() > 0) + return false; + } + + return true; +} + +// Safe, non-throwing version of std::vector::at(). Returns 'true' for success, +// 'false' for out-of-bounds index error. +template<typename T> +bool VectorAt(const std::vector<T>& v, size_t index, T* output) { + if (index >= v.size()) + return false; + *output = v[index]; + return true; +} + +bool EncodedProgram::AssembleTo(SinkStream* final_buffer) { + // For the most part, the assembly process walks the various tables. + // ix_mumble is the index into the mumble table. + size_t ix_origins = 0; + size_t ix_copy_counts = 0; + size_t ix_copy_bytes = 0; + size_t ix_abs32_ix = 0; + size_t ix_rel32_ix = 0; + + RVA current_rva = 0; + + bool pending_base_relocation_table = false; + SinkStream bytes_following_base_relocation_table; + + SinkStream* output = final_buffer; + + for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) { + OP op = ops_[ix_ops]; + + switch (op) { + default: + return false; + + case ORIGIN: { + RVA section_rva; + if (!VectorAt(origins_, ix_origins, §ion_rva)) + return false; + ++ix_origins; + current_rva = section_rva; + break; + } + + case COPY: { + int count; + if (!VectorAt(copy_counts_, ix_copy_counts, &count)) + return false; + ++ix_copy_counts; + for (int i = 0; i < count; ++i) { + uint8 b; + if (!VectorAt(copy_bytes_, ix_copy_bytes, &b)) + return false; + ++ix_copy_bytes; + output->Write(&b, 1); + } + current_rva += count; + break; + } + + case COPY1: { + uint8 b; + if (!VectorAt(copy_bytes_, ix_copy_bytes, &b)) + return false; + ++ix_copy_bytes; + output->Write(&b, 1); + current_rva += 1; + break; + } + + case REL32: { + uint32 index; + if (!VectorAt(rel32_ix_, ix_rel32_ix, &index)) + return false; + ++ix_rel32_ix; + RVA rva; + if (!VectorAt(rel32_rva_, index, &rva)) + return false; + uint32 offset = (rva - (current_rva + 4)); + output->Write(&offset, 4); + current_rva += 4; + break; + } + + case ABS32: { + uint32 index; + if (!VectorAt(abs32_ix_, ix_abs32_ix, &index)) + return false; + ++ix_abs32_ix; + RVA rva; + if (!VectorAt(abs32_rva_, index, &rva)) + return false; + uint32 abs32 = static_cast<uint32>(rva + image_base_); + abs32_relocs_.push_back(current_rva); + output->Write(&abs32, 4); + current_rva += 4; + break; + } + + case MAKE_BASE_RELOCATION_TABLE: { + // We can see the base relocation anywhere, but we only have the + // information to generate it at the very end. So we divert the bytes + // we are generating to a temporary stream. + if (pending_base_relocation_table) // Can't have two base relocation + // tables. + return false; + + pending_base_relocation_table = true; + output = &bytes_following_base_relocation_table; + break; + // There is a potential problem *if* the instruction stream contains + // some REL32 relocations following the base relocation and in the same + // section. We don't know the size of the table, so 'current_rva' will + // be wrong, causing REL32 offsets to be miscalculated. This never + // happens; the base relocation table is usually in a section of its + // own, a data-only section, and following everything else in the + // executable except some padding zero bytes. We could fix this by + // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE. + } + } + } + + if (pending_base_relocation_table) { + GenerateBaseRelocations(final_buffer); + final_buffer->Append(&bytes_following_base_relocation_table); + } + + // Final verification check: did we consume all lists? + if (ix_copy_counts != copy_counts_.size()) + return false; + if (ix_copy_bytes != copy_bytes_.size()) + return false; + if (ix_abs32_ix != abs32_ix_.size()) + return false; + if (ix_rel32_ix != rel32_ix_.size()) + return false; + + return true; +} + + +// RelocBlock has the layout of a block of relocations in the base relocation +// table file format. +// +class RelocBlock { + public: + uint32 page_rva; + uint32 block_size; + uint16 relocs[4096]; // Allow up to one relocation per byte of a 4k page. + + RelocBlock() : page_rva(~0), block_size(8) {} + + void Add(uint16 item) { + relocs[(block_size-8)/2] = item; + block_size += 2; + } + + void Flush(SinkStream* buffer) { + if (block_size != 8) { + if (block_size % 4 != 0) { // Pad to make size multiple of 4 bytes. + Add(0); + } + buffer->Write(this, block_size); + block_size = 8; + } + } +}; + +COMPILE_ASSERT(offsetof(RelocBlock, relocs) == 8, reloc_block_header_size); + +void EncodedProgram::GenerateBaseRelocations(SinkStream* buffer) { + std::sort(abs32_relocs_.begin(), abs32_relocs_.end()); + + RelocBlock block; + + for (size_t i = 0; i < abs32_relocs_.size(); ++i) { + uint32 rva = abs32_relocs_[i]; + uint32 page_rva = rva & ~0xFFF; + if (page_rva != block.page_rva) { + block.Flush(buffer); + block.page_rva = page_rva; + } + block.Add(0x3000 | (rva & 0xFFF)); + } + block.Flush(buffer); +} + +//////////////////////////////////////////////////////////////////////////////// + +Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) { + encoded->WriteTo(sink); + return C_OK; +} + +Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) { + EncodedProgram* encoded = new EncodedProgram(); + if (encoded->ReadFrom(streams)) { + *output = encoded; + return C_OK; + } + delete encoded; + return C_DESERIALIZATION_FAILED; +} + +Status Assemble(EncodedProgram* encoded, SinkStream* buffer) { + bool assembled = encoded->AssembleTo(buffer); + if (assembled) + return C_OK; + return C_ASSEMBLY_FAILED; +} + +void DeleteEncodedProgram(EncodedProgram* encoded) { + delete encoded; +} + +} // end namespace |