summaryrefslogtreecommitdiffstats
path: root/crypto/ghash.cc
diff options
context:
space:
mode:
authoragl@chromium.org <agl@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2012-11-09 19:30:32 +0000
committeragl@chromium.org <agl@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2012-11-09 19:30:32 +0000
commit017105b9700ceb92a5f340cbc789087af43aa585 (patch)
tree1d91da98dea41d2eeb111c2aec268809c6e2151f /crypto/ghash.cc
parent8619a384c733746c7249fef2e04e84f1a8918ace (diff)
downloadchromium_src-017105b9700ceb92a5f340cbc789087af43aa585.zip
chromium_src-017105b9700ceb92a5f340cbc789087af43aa585.tar.gz
chromium_src-017105b9700ceb92a5f340cbc789087af43aa585.tar.bz2
crypto: add GHASH implementation.
Can be used to implement GCM until GCM support in NSS is widespread. Review URL: https://codereview.chromium.org/11175015 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@166952 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'crypto/ghash.cc')
-rw-r--r--crypto/ghash.cc257
1 files changed, 257 insertions, 0 deletions
diff --git a/crypto/ghash.cc b/crypto/ghash.cc
new file mode 100644
index 0000000..939dd0b
--- /dev/null
+++ b/crypto/ghash.cc
@@ -0,0 +1,257 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "crypto/ghash.h"
+
+#include "base/logging.h"
+#include "base/sys_byteorder.h"
+
+namespace crypto {
+
+// GaloisHash is a polynomial authenticator that works in GF(2^128).
+//
+// Elements of the field are represented in `little-endian' order (which
+// matches the description in the paper[1]), thus the most significant bit is
+// the right-most bit. (This is backwards from the way that everybody else does
+// it.)
+//
+// We store field elements in a pair of such `little-endian' uint64s. So the
+// value one is represented by {low = 2**63, high = 0} and doubling a value
+// involves a *right* shift.
+//
+// [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
+
+namespace {
+
+// Get64 reads a 64-bit, big-endian number from |bytes|.
+uint64 Get64(const uint8 bytes[8]) {
+ uint64 t;
+ memcpy(&t, bytes, sizeof(t));
+ return base::NetToHost64(t);
+}
+
+// Put64 writes |x| to |bytes| as a 64-bit, big-endian number.
+void Put64(uint8 bytes[8], uint64 x) {
+ x = base::HostToNet64(x);
+ memcpy(bytes, &x, sizeof(x));
+}
+
+// Reverse reverses the order of the bits of 4-bit number in |i|.
+int Reverse(int i) {
+ i = ((i << 2) & 0xc) | ((i >> 2) & 0x3);
+ i = ((i << 1) & 0xa) | ((i >> 1) & 0x5);
+ return i;
+}
+
+} // namespace
+
+GaloisHash::GaloisHash(const uint8 key[16]) {
+ Reset();
+
+ // We precompute 16 multiples of |key|. However, when we do lookups into this
+ // table we'll be using bits from a field element and therefore the bits will
+ // be in the reverse order. So normally one would expect, say, 4*key to be in
+ // index 4 of the table but due to this bit ordering it will actually be in
+ // index 0010 (base 2) = 2.
+ FieldElement x = {Get64(key), Get64(key+8)};
+ product_table_[0].low = 0;
+ product_table_[0].hi = 0;
+ product_table_[Reverse(1)] = x;
+
+ for (int i = 0; i < 16; i += 2) {
+ product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]);
+ product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x);
+ }
+}
+
+void GaloisHash::Reset() {
+ state_ = kHashingAdditionalData;
+ additional_bytes_ = 0;
+ ciphertext_bytes_ = 0;
+ buf_used_ = 0;
+ y_.low = 0;
+ y_.hi = 0;
+}
+
+void GaloisHash::UpdateAdditional(const uint8* data, size_t length) {
+ DCHECK_EQ(state_, kHashingAdditionalData);
+ additional_bytes_ += length;
+ Update(data, length);
+}
+
+void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) {
+ if (state_ == kHashingAdditionalData) {
+ // If there's any remaining additional data it's zero padded to the next
+ // full block.
+ if (buf_used_ > 0) {
+ memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
+ UpdateBlocks(buf_, 1);
+ buf_used_ = 0;
+ }
+ state_ = kHashingCiphertext;
+ }
+
+ DCHECK_EQ(state_, kHashingCiphertext);
+ ciphertext_bytes_ += length;
+ Update(data, length);
+}
+
+void GaloisHash::Finish(void* output, size_t len) {
+ DCHECK(state_ != kComplete);
+
+ if (buf_used_ > 0) {
+ // If there's any remaining data (additional data or ciphertext), it's zero
+ // padded to the next full block.
+ memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
+ UpdateBlocks(buf_, 1);
+ buf_used_ = 0;
+ }
+
+ state_ = kComplete;
+
+ // The lengths of the additional data and ciphertext are included as the last
+ // block. The lengths are the number of bits.
+ y_.low ^= additional_bytes_*8;
+ y_.hi ^= ciphertext_bytes_*8;
+ MulAfterPrecomputation(product_table_, &y_);
+
+ uint8 *result, result_tmp[16];
+ if (len >= 16) {
+ result = reinterpret_cast<uint8*>(output);
+ } else {
+ result = result_tmp;
+ }
+
+ Put64(result, y_.low);
+ Put64(result + 8, y_.hi);
+
+ if (len < 16)
+ memcpy(output, result_tmp, len);
+}
+
+// static
+GaloisHash::FieldElement GaloisHash::Add(
+ const FieldElement& x,
+ const FieldElement& y) {
+ // Addition in a characteristic 2 field is just XOR.
+ FieldElement z = {x.low^y.low, x.hi^y.hi};
+ return z;
+}
+
+// static
+GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) {
+ const bool msb_set = x.hi & 1;
+
+ FieldElement xx;
+ // Because of the bit-ordering, doubling is actually a right shift.
+ xx.hi = x.hi >> 1;
+ xx.hi |= x.low << 63;
+ xx.low = x.low >> 1;
+
+ // If the most-significant bit was set before shifting then it, conceptually,
+ // becomes a term of x^128. This is greater than the irreducible polynomial
+ // so the result has to be reduced. The irreducible polynomial is
+ // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128
+ // which also means subtracting the other four terms. In characteristic 2
+ // fields, subtraction == addition == XOR.
+ if (msb_set)
+ xx.low ^= 0xe100000000000000ULL;
+
+ return xx;
+}
+
+void GaloisHash::MulAfterPrecomputation(const FieldElement* table,
+ FieldElement* x) {
+ FieldElement z = {0, 0};
+
+ // In order to efficiently multiply, we use the precomputed table of i*key,
+ // for i in 0..15, to handle four bits at a time. We could obviously use
+ // larger tables for greater speedups but the next convenient table size is
+ // 4K, which is a little large.
+ //
+ // In other fields one would use bit positions spread out across the field in
+ // order to reduce the number of doublings required. However, in
+ // characteristic 2 fields, repeated doublings are exceptionally cheap and
+ // it's not worth spending more precomputation time to eliminate them.
+ for (unsigned i = 0; i < 2; i++) {
+ uint64 word;
+ if (i == 0) {
+ word = x->hi;
+ } else {
+ word = x->low;
+ }
+
+ for (unsigned j = 0; j < 64; j += 4) {
+ Mul16(&z);
+ // the values in |table| are ordered for little-endian bit positions. See
+ // the comment in the constructor.
+ const FieldElement& t = table[word & 0xf];
+ z.low ^= t.low;
+ z.hi ^= t.hi;
+ word >>= 4;
+ }
+ }
+
+ *x = z;
+}
+
+// kReductionTable allows for rapid multiplications by 16. A multiplication by
+// 16 is a right shift by four bits, which results in four bits at 2**128.
+// These terms have to be eliminated by dividing by the irreducible polynomial.
+// In GHASH, the polynomial is such that all the terms occur in the
+// least-significant 8 bits, save for the term at x^128. Therefore we can
+// precompute the value to be added to the field element for each of the 16 bit
+// patterns at 2**128 and the values fit within 12 bits.
+static const uint16 kReductionTable[16] = {
+ 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
+ 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
+};
+
+// static
+void GaloisHash::Mul16(FieldElement* x) {
+ const unsigned msw = x->hi & 0xf;
+ x->hi >>= 4;
+ x->hi |= x->low << 60;
+ x->low >>= 4;
+ x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48;
+}
+
+void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) {
+ for (size_t i = 0; i < num_blocks; i++) {
+ y_.low ^= Get64(bytes);
+ bytes += 8;
+ y_.hi ^= Get64(bytes);
+ bytes += 8;
+ MulAfterPrecomputation(product_table_, &y_);
+ }
+}
+
+void GaloisHash::Update(const uint8* data, size_t length) {
+ if (buf_used_ > 0) {
+ const size_t n = std::min(length, buf_used_);
+ memcpy(&buf_[buf_used_], data, n);
+ buf_used_ += n;
+ length -= n;
+ data += n;
+
+ if (buf_used_ == sizeof(buf_)) {
+ UpdateBlocks(buf_, 1);
+ buf_used_ = 0;
+ }
+ }
+
+ if (length >= 16) {
+ const size_t n = length / 16;
+ UpdateBlocks(data, n);
+ length -= n*16;
+ data += n*16;
+ }
+
+ if (length > 0) {
+ memcpy(buf_, data, length);
+ buf_used_ = length;
+ }
+}
+
+} // namespace crypto