diff options
author | agl@chromium.org <agl@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2012-11-09 19:30:32 +0000 |
---|---|---|
committer | agl@chromium.org <agl@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2012-11-09 19:30:32 +0000 |
commit | 017105b9700ceb92a5f340cbc789087af43aa585 (patch) | |
tree | 1d91da98dea41d2eeb111c2aec268809c6e2151f /crypto/ghash.cc | |
parent | 8619a384c733746c7249fef2e04e84f1a8918ace (diff) | |
download | chromium_src-017105b9700ceb92a5f340cbc789087af43aa585.zip chromium_src-017105b9700ceb92a5f340cbc789087af43aa585.tar.gz chromium_src-017105b9700ceb92a5f340cbc789087af43aa585.tar.bz2 |
crypto: add GHASH implementation.
Can be used to implement GCM until GCM support in NSS is widespread.
Review URL: https://codereview.chromium.org/11175015
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@166952 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'crypto/ghash.cc')
-rw-r--r-- | crypto/ghash.cc | 257 |
1 files changed, 257 insertions, 0 deletions
diff --git a/crypto/ghash.cc b/crypto/ghash.cc new file mode 100644 index 0000000..939dd0b --- /dev/null +++ b/crypto/ghash.cc @@ -0,0 +1,257 @@ +// Copyright (c) 2012 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "crypto/ghash.h" + +#include "base/logging.h" +#include "base/sys_byteorder.h" + +namespace crypto { + +// GaloisHash is a polynomial authenticator that works in GF(2^128). +// +// Elements of the field are represented in `little-endian' order (which +// matches the description in the paper[1]), thus the most significant bit is +// the right-most bit. (This is backwards from the way that everybody else does +// it.) +// +// We store field elements in a pair of such `little-endian' uint64s. So the +// value one is represented by {low = 2**63, high = 0} and doubling a value +// involves a *right* shift. +// +// [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf + +namespace { + +// Get64 reads a 64-bit, big-endian number from |bytes|. +uint64 Get64(const uint8 bytes[8]) { + uint64 t; + memcpy(&t, bytes, sizeof(t)); + return base::NetToHost64(t); +} + +// Put64 writes |x| to |bytes| as a 64-bit, big-endian number. +void Put64(uint8 bytes[8], uint64 x) { + x = base::HostToNet64(x); + memcpy(bytes, &x, sizeof(x)); +} + +// Reverse reverses the order of the bits of 4-bit number in |i|. +int Reverse(int i) { + i = ((i << 2) & 0xc) | ((i >> 2) & 0x3); + i = ((i << 1) & 0xa) | ((i >> 1) & 0x5); + return i; +} + +} // namespace + +GaloisHash::GaloisHash(const uint8 key[16]) { + Reset(); + + // We precompute 16 multiples of |key|. However, when we do lookups into this + // table we'll be using bits from a field element and therefore the bits will + // be in the reverse order. So normally one would expect, say, 4*key to be in + // index 4 of the table but due to this bit ordering it will actually be in + // index 0010 (base 2) = 2. + FieldElement x = {Get64(key), Get64(key+8)}; + product_table_[0].low = 0; + product_table_[0].hi = 0; + product_table_[Reverse(1)] = x; + + for (int i = 0; i < 16; i += 2) { + product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]); + product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x); + } +} + +void GaloisHash::Reset() { + state_ = kHashingAdditionalData; + additional_bytes_ = 0; + ciphertext_bytes_ = 0; + buf_used_ = 0; + y_.low = 0; + y_.hi = 0; +} + +void GaloisHash::UpdateAdditional(const uint8* data, size_t length) { + DCHECK_EQ(state_, kHashingAdditionalData); + additional_bytes_ += length; + Update(data, length); +} + +void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) { + if (state_ == kHashingAdditionalData) { + // If there's any remaining additional data it's zero padded to the next + // full block. + if (buf_used_ > 0) { + memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); + UpdateBlocks(buf_, 1); + buf_used_ = 0; + } + state_ = kHashingCiphertext; + } + + DCHECK_EQ(state_, kHashingCiphertext); + ciphertext_bytes_ += length; + Update(data, length); +} + +void GaloisHash::Finish(void* output, size_t len) { + DCHECK(state_ != kComplete); + + if (buf_used_ > 0) { + // If there's any remaining data (additional data or ciphertext), it's zero + // padded to the next full block. + memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); + UpdateBlocks(buf_, 1); + buf_used_ = 0; + } + + state_ = kComplete; + + // The lengths of the additional data and ciphertext are included as the last + // block. The lengths are the number of bits. + y_.low ^= additional_bytes_*8; + y_.hi ^= ciphertext_bytes_*8; + MulAfterPrecomputation(product_table_, &y_); + + uint8 *result, result_tmp[16]; + if (len >= 16) { + result = reinterpret_cast<uint8*>(output); + } else { + result = result_tmp; + } + + Put64(result, y_.low); + Put64(result + 8, y_.hi); + + if (len < 16) + memcpy(output, result_tmp, len); +} + +// static +GaloisHash::FieldElement GaloisHash::Add( + const FieldElement& x, + const FieldElement& y) { + // Addition in a characteristic 2 field is just XOR. + FieldElement z = {x.low^y.low, x.hi^y.hi}; + return z; +} + +// static +GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) { + const bool msb_set = x.hi & 1; + + FieldElement xx; + // Because of the bit-ordering, doubling is actually a right shift. + xx.hi = x.hi >> 1; + xx.hi |= x.low << 63; + xx.low = x.low >> 1; + + // If the most-significant bit was set before shifting then it, conceptually, + // becomes a term of x^128. This is greater than the irreducible polynomial + // so the result has to be reduced. The irreducible polynomial is + // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128 + // which also means subtracting the other four terms. In characteristic 2 + // fields, subtraction == addition == XOR. + if (msb_set) + xx.low ^= 0xe100000000000000ULL; + + return xx; +} + +void GaloisHash::MulAfterPrecomputation(const FieldElement* table, + FieldElement* x) { + FieldElement z = {0, 0}; + + // In order to efficiently multiply, we use the precomputed table of i*key, + // for i in 0..15, to handle four bits at a time. We could obviously use + // larger tables for greater speedups but the next convenient table size is + // 4K, which is a little large. + // + // In other fields one would use bit positions spread out across the field in + // order to reduce the number of doublings required. However, in + // characteristic 2 fields, repeated doublings are exceptionally cheap and + // it's not worth spending more precomputation time to eliminate them. + for (unsigned i = 0; i < 2; i++) { + uint64 word; + if (i == 0) { + word = x->hi; + } else { + word = x->low; + } + + for (unsigned j = 0; j < 64; j += 4) { + Mul16(&z); + // the values in |table| are ordered for little-endian bit positions. See + // the comment in the constructor. + const FieldElement& t = table[word & 0xf]; + z.low ^= t.low; + z.hi ^= t.hi; + word >>= 4; + } + } + + *x = z; +} + +// kReductionTable allows for rapid multiplications by 16. A multiplication by +// 16 is a right shift by four bits, which results in four bits at 2**128. +// These terms have to be eliminated by dividing by the irreducible polynomial. +// In GHASH, the polynomial is such that all the terms occur in the +// least-significant 8 bits, save for the term at x^128. Therefore we can +// precompute the value to be added to the field element for each of the 16 bit +// patterns at 2**128 and the values fit within 12 bits. +static const uint16 kReductionTable[16] = { + 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, + 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, +}; + +// static +void GaloisHash::Mul16(FieldElement* x) { + const unsigned msw = x->hi & 0xf; + x->hi >>= 4; + x->hi |= x->low << 60; + x->low >>= 4; + x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48; +} + +void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) { + for (size_t i = 0; i < num_blocks; i++) { + y_.low ^= Get64(bytes); + bytes += 8; + y_.hi ^= Get64(bytes); + bytes += 8; + MulAfterPrecomputation(product_table_, &y_); + } +} + +void GaloisHash::Update(const uint8* data, size_t length) { + if (buf_used_ > 0) { + const size_t n = std::min(length, buf_used_); + memcpy(&buf_[buf_used_], data, n); + buf_used_ += n; + length -= n; + data += n; + + if (buf_used_ == sizeof(buf_)) { + UpdateBlocks(buf_, 1); + buf_used_ = 0; + } + } + + if (length >= 16) { + const size_t n = length / 16; + UpdateBlocks(data, n); + length -= n*16; + data += n*16; + } + + if (length > 0) { + memcpy(buf_, data, length); + buf_used_ = length; + } +} + +} // namespace crypto |