summaryrefslogtreecommitdiffstats
path: root/crypto/symmetric_key_win.cc
diff options
context:
space:
mode:
authorrvargas@google.com <rvargas@google.com@0039d316-1c4b-4281-b951-d872f2087c98>2011-04-14 17:37:14 +0000
committerrvargas@google.com <rvargas@google.com@0039d316-1c4b-4281-b951-d872f2087c98>2011-04-14 17:37:14 +0000
commit4b559b4ddffc0b7f688019bcb80658f05e063af7 (patch)
tree0be21d8914de707f5125d2cb66733cbcf088606c /crypto/symmetric_key_win.cc
parent056dd45d610de34312344445d7b078a31f4a1e20 (diff)
downloadchromium_src-4b559b4ddffc0b7f688019bcb80658f05e063af7.zip
chromium_src-4b559b4ddffc0b7f688019bcb80658f05e063af7.tar.gz
chromium_src-4b559b4ddffc0b7f688019bcb80658f05e063af7.tar.bz2
Move crypto files out of base, to a top level directory.
src/crypto is now an independent project that contains our cryptographic primitives (except md5 and sha1). This removes the base dependency from nss, openssl and sqlite. BUG=76996 TEST=none Review URL: http://codereview.chromium.org/6805019 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@81611 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'crypto/symmetric_key_win.cc')
-rw-r--r--crypto/symmetric_key_win.cc536
1 files changed, 536 insertions, 0 deletions
diff --git a/crypto/symmetric_key_win.cc b/crypto/symmetric_key_win.cc
new file mode 100644
index 0000000..d2034e0
--- /dev/null
+++ b/crypto/symmetric_key_win.cc
@@ -0,0 +1,536 @@
+// Copyright (c) 2011 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "crypto/symmetric_key.h"
+
+#include <winsock2.h> // For htonl.
+
+#include <vector>
+
+// TODO(wtc): replace scoped_array by std::vector.
+#include "base/memory/scoped_ptr.h"
+
+namespace crypto {
+
+namespace {
+
+// The following is a non-public Microsoft header documented in MSDN under
+// CryptImportKey / CryptExportKey. Following the header is the byte array of
+// the actual plaintext key.
+struct PlaintextBlobHeader {
+ BLOBHEADER hdr;
+ DWORD cbKeySize;
+};
+
+// CryptoAPI makes use of three distinct ALG_IDs for AES, rather than just
+// CALG_AES (which exists, but depending on the functions you are calling, may
+// result in function failure, whereas the subtype would succeed).
+ALG_ID GetAESAlgIDForKeySize(size_t key_size_in_bits) {
+ // Only AES-128/-192/-256 is supported in CryptoAPI.
+ switch (key_size_in_bits) {
+ case 128:
+ return CALG_AES_128;
+ case 192:
+ return CALG_AES_192;
+ case 256:
+ return CALG_AES_256;
+ default:
+ NOTREACHED();
+ return 0;
+ }
+};
+
+// Imports a raw/plaintext key of |key_size| stored in |*key_data| into a new
+// key created for the specified |provider|. |alg| contains the algorithm of
+// the key being imported.
+// If |key_data| is intended to be used as an HMAC key, then |alg| should be
+// CALG_HMAC.
+// If successful, returns true and stores the imported key in |*key|.
+// TODO(wtc): use this function in hmac_win.cc.
+bool ImportRawKey(HCRYPTPROV provider,
+ ALG_ID alg,
+ const void* key_data, DWORD key_size,
+ ScopedHCRYPTKEY* key) {
+ DCHECK_GT(key_size, 0);
+
+ DWORD actual_size = sizeof(PlaintextBlobHeader) + key_size;
+ std::vector<BYTE> tmp_data(actual_size);
+ BYTE* actual_key = &tmp_data[0];
+ memcpy(actual_key + sizeof(PlaintextBlobHeader), key_data, key_size);
+ PlaintextBlobHeader* key_header =
+ reinterpret_cast<PlaintextBlobHeader*>(actual_key);
+ memset(key_header, 0, sizeof(PlaintextBlobHeader));
+
+ key_header->hdr.bType = PLAINTEXTKEYBLOB;
+ key_header->hdr.bVersion = CUR_BLOB_VERSION;
+ key_header->hdr.aiKeyAlg = alg;
+
+ key_header->cbKeySize = key_size;
+
+ HCRYPTKEY unsafe_key = NULL;
+ DWORD flags = CRYPT_EXPORTABLE;
+ if (alg == CALG_HMAC) {
+ // Though it may appear odd that IPSEC and RC2 are being used, this is
+ // done in accordance with Microsoft's FIPS 140-2 Security Policy for the
+ // RSA Enhanced Provider, as the approved means of using arbitrary HMAC
+ // key material.
+ key_header->hdr.aiKeyAlg = CALG_RC2;
+ flags |= CRYPT_IPSEC_HMAC_KEY;
+ }
+
+ BOOL ok =
+ CryptImportKey(provider, actual_key, actual_size, 0, flags, &unsafe_key);
+
+ // Clean up the temporary copy of key, regardless of whether it was imported
+ // sucessfully or not.
+ SecureZeroMemory(actual_key, actual_size);
+
+ if (!ok)
+ return false;
+
+ key->reset(unsafe_key);
+ return true;
+}
+
+// Attempts to generate a random AES key of |key_size_in_bits|. Returns true
+// if generation is successful, storing the generated key in |*key| and the
+// key provider (CSP) in |*provider|.
+bool GenerateAESKey(size_t key_size_in_bits,
+ ScopedHCRYPTPROV* provider,
+ ScopedHCRYPTKEY* key) {
+ DCHECK(provider);
+ DCHECK(key);
+
+ ALG_ID alg = GetAESAlgIDForKeySize(key_size_in_bits);
+ if (alg == 0)
+ return false;
+
+ ScopedHCRYPTPROV safe_provider;
+ // Note: The only time NULL is safe to be passed as pszContainer is when
+ // dwFlags contains CRYPT_VERIFYCONTEXT, as all keys generated and/or used
+ // will be treated as ephemeral keys and not persisted.
+ BOOL ok = CryptAcquireContext(safe_provider.receive(), NULL, NULL,
+ PROV_RSA_AES, CRYPT_VERIFYCONTEXT);
+ if (!ok)
+ return false;
+
+ ScopedHCRYPTKEY safe_key;
+ // In the FIPS 140-2 Security Policy for CAPI on XP/Vista+, Microsoft notes
+ // that CryptGenKey makes use of the same functionality exposed via
+ // CryptGenRandom. The reason this is being used, as opposed to
+ // CryptGenRandom and CryptImportKey is for compliance with the security
+ // policy
+ ok = CryptGenKey(safe_provider.get(), alg, CRYPT_EXPORTABLE,
+ safe_key.receive());
+ if (!ok)
+ return false;
+
+ key->swap(safe_key);
+ provider->swap(safe_provider);
+
+ return true;
+}
+
+// Returns true if the HMAC key size meets the requirement of FIPS 198
+// Section 3. |alg| is the hash function used in the HMAC.
+bool CheckHMACKeySize(size_t key_size_in_bits, ALG_ID alg) {
+ DWORD hash_size = 0;
+ switch (alg) {
+ case CALG_SHA1:
+ hash_size = 20;
+ break;
+ case CALG_SHA_256:
+ hash_size = 32;
+ break;
+ case CALG_SHA_384:
+ hash_size = 48;
+ break;
+ case CALG_SHA_512:
+ hash_size = 64;
+ break;
+ }
+ if (hash_size == 0)
+ return false;
+
+ // An HMAC key must be >= L/2, where L is the output size of the hash
+ // function being used.
+ return (key_size_in_bits >= (hash_size / 2 * 8) &&
+ (key_size_in_bits % 8) == 0);
+}
+
+// Attempts to generate a random, |key_size_in_bits|-long HMAC key, for use
+// with the hash function |alg|.
+// |key_size_in_bits| must be >= 1/2 the hash size of |alg| for security.
+// Returns true if generation is successful, storing the generated key in
+// |*key| and the key provider (CSP) in |*provider|.
+bool GenerateHMACKey(size_t key_size_in_bits,
+ ALG_ID alg,
+ ScopedHCRYPTPROV* provider,
+ ScopedHCRYPTKEY* key,
+ scoped_array<BYTE>* raw_key) {
+ DCHECK(provider);
+ DCHECK(key);
+ DCHECK(raw_key);
+
+ if (!CheckHMACKeySize(key_size_in_bits, alg))
+ return false;
+
+ ScopedHCRYPTPROV safe_provider;
+ // See comment in GenerateAESKey as to why NULL is acceptable for the
+ // container name.
+ BOOL ok = CryptAcquireContext(safe_provider.receive(), NULL, NULL,
+ PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
+ if (!ok)
+ return false;
+
+ DWORD key_size_in_bytes = key_size_in_bits / 8;
+ scoped_array<BYTE> random(new BYTE[key_size_in_bytes]);
+ ok = CryptGenRandom(safe_provider, key_size_in_bytes, random.get());
+ if (!ok)
+ return false;
+
+ ScopedHCRYPTKEY safe_key;
+ bool rv = ImportRawKey(safe_provider, CALG_HMAC, random.get(),
+ key_size_in_bytes, &safe_key);
+ if (rv) {
+ key->swap(safe_key);
+ provider->swap(safe_provider);
+ raw_key->swap(random);
+ }
+
+ SecureZeroMemory(random.get(), key_size_in_bytes);
+ return rv;
+}
+
+// Attempts to create an HMAC hash instance using the specified |provider|
+// and |key|. The inner hash function will be |hash_alg|. If successful,
+// returns true and stores the hash in |*hash|.
+// TODO(wtc): use this function in hmac_win.cc.
+bool CreateHMACHash(HCRYPTPROV provider,
+ HCRYPTKEY key,
+ ALG_ID hash_alg,
+ ScopedHCRYPTHASH* hash) {
+ ScopedHCRYPTHASH safe_hash;
+ BOOL ok = CryptCreateHash(provider, CALG_HMAC, key, 0, safe_hash.receive());
+ if (!ok)
+ return false;
+
+ HMAC_INFO hmac_info;
+ memset(&hmac_info, 0, sizeof(hmac_info));
+ hmac_info.HashAlgid = hash_alg;
+
+ ok = CryptSetHashParam(safe_hash, HP_HMAC_INFO,
+ reinterpret_cast<const BYTE*>(&hmac_info), 0);
+ if (!ok)
+ return false;
+
+ hash->swap(safe_hash);
+ return true;
+}
+
+// Computes a block of the derived key using the PBKDF2 function F for the
+// specified |block_index| using the PRF |hash|, writing the output to
+// |output_buf|.
+// |output_buf| must have enough space to accomodate the output of the PRF
+// specified by |hash|.
+// Returns true if the block was successfully computed.
+bool ComputePBKDF2Block(HCRYPTHASH hash,
+ DWORD hash_size,
+ const std::string& salt,
+ size_t iterations,
+ uint32 block_index,
+ BYTE* output_buf) {
+ // From RFC 2898:
+ // 3. <snip> The function F is defined as the exclusive-or sum of the first
+ // c iterates of the underlying pseudorandom function PRF applied to the
+ // password P and the concatenation of the salt S and the block index i:
+ // F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c
+ // where
+ // U_1 = PRF(P, S || INT (i))
+ // U_2 = PRF(P, U_1)
+ // ...
+ // U_c = PRF(P, U_{c-1})
+ ScopedHCRYPTHASH safe_hash;
+ BOOL ok = CryptDuplicateHash(hash, NULL, 0, safe_hash.receive());
+ if (!ok)
+ return false;
+
+ // Iteration U_1: Compute PRF for S.
+ ok = CryptHashData(safe_hash, reinterpret_cast<const BYTE*>(salt.data()),
+ salt.size(), 0);
+ if (!ok)
+ return false;
+
+ // Iteration U_1: and append (big-endian) INT (i).
+ uint32 big_endian_block_index = htonl(block_index);
+ ok = CryptHashData(safe_hash,
+ reinterpret_cast<BYTE*>(&big_endian_block_index),
+ sizeof(big_endian_block_index), 0);
+
+ std::vector<BYTE> hash_value(hash_size);
+
+ DWORD size = hash_size;
+ ok = CryptGetHashParam(safe_hash, HP_HASHVAL, &hash_value[0], &size, 0);
+ if (!ok || size != hash_size)
+ return false;
+
+ memcpy(output_buf, &hash_value[0], hash_size);
+
+ // Iteration 2 - c: Compute U_{iteration} by applying the PRF to
+ // U_{iteration - 1}, then xor the resultant hash with |output|, which
+ // contains U_1 ^ U_2 ^ ... ^ U_{iteration - 1}.
+ for (size_t iteration = 2; iteration <= iterations; ++iteration) {
+ safe_hash.reset();
+ ok = CryptDuplicateHash(hash, NULL, 0, safe_hash.receive());
+ if (!ok)
+ return false;
+
+ ok = CryptHashData(safe_hash, &hash_value[0], hash_size, 0);
+ if (!ok)
+ return false;
+
+ size = hash_size;
+ ok = CryptGetHashParam(safe_hash, HP_HASHVAL, &hash_value[0], &size, 0);
+ if (!ok || size != hash_size)
+ return false;
+
+ for (int i = 0; i < hash_size; ++i)
+ output_buf[i] ^= hash_value[i];
+ }
+
+ return true;
+}
+
+} // namespace
+
+SymmetricKey::~SymmetricKey() {
+ // TODO(wtc): create a "secure" string type that zeroes itself in the
+ // destructor.
+ if (!raw_key_.empty())
+ SecureZeroMemory(const_cast<char *>(raw_key_.data()), raw_key_.size());
+}
+
+// static
+SymmetricKey* SymmetricKey::GenerateRandomKey(Algorithm algorithm,
+ size_t key_size_in_bits) {
+ DCHECK_GE(key_size_in_bits, 8);
+
+ ScopedHCRYPTPROV provider;
+ ScopedHCRYPTKEY key;
+
+ bool ok = false;
+ scoped_array<BYTE> raw_key;
+
+ switch (algorithm) {
+ case AES:
+ ok = GenerateAESKey(key_size_in_bits, &provider, &key);
+ break;
+ case HMAC_SHA1:
+ ok = GenerateHMACKey(key_size_in_bits, CALG_SHA1, &provider,
+ &key, &raw_key);
+ break;
+ }
+
+ if (!ok) {
+ NOTREACHED();
+ return NULL;
+ }
+
+ size_t key_size_in_bytes = key_size_in_bits / 8;
+ if (raw_key == NULL)
+ key_size_in_bytes = 0;
+
+ SymmetricKey* result = new SymmetricKey(provider.release(),
+ key.release(),
+ raw_key.get(),
+ key_size_in_bytes);
+ if (raw_key != NULL)
+ SecureZeroMemory(raw_key.get(), key_size_in_bytes);
+
+ return result;
+}
+
+// static
+SymmetricKey* SymmetricKey::DeriveKeyFromPassword(Algorithm algorithm,
+ const std::string& password,
+ const std::string& salt,
+ size_t iterations,
+ size_t key_size_in_bits) {
+ // CryptoAPI lacks routines to perform PBKDF2 derivation as specified
+ // in RFC 2898, so it must be manually implemented. Only HMAC-SHA1 is
+ // supported as the PRF.
+
+ // While not used until the end, sanity-check the input before proceeding
+ // with the expensive computation.
+ DWORD provider_type = 0;
+ ALG_ID alg = 0;
+ switch (algorithm) {
+ case AES:
+ provider_type = PROV_RSA_AES;
+ alg = GetAESAlgIDForKeySize(key_size_in_bits);
+ break;
+ case HMAC_SHA1:
+ provider_type = PROV_RSA_FULL;
+ alg = CALG_HMAC;
+ break;
+ default:
+ NOTREACHED();
+ break;
+ }
+ if (provider_type == 0 || alg == 0)
+ return NULL;
+
+ ScopedHCRYPTPROV provider;
+ BOOL ok = CryptAcquireContext(provider.receive(), NULL, NULL, provider_type,
+ CRYPT_VERIFYCONTEXT);
+ if (!ok)
+ return NULL;
+
+ // Convert the user password into a key suitable to be fed into the PRF
+ // function.
+ ScopedHCRYPTKEY password_as_key;
+ BYTE* password_as_bytes =
+ const_cast<BYTE*>(reinterpret_cast<const BYTE*>(password.data()));
+ if (!ImportRawKey(provider, CALG_HMAC, password_as_bytes,
+ password.size(), &password_as_key))
+ return NULL;
+
+ // Configure the PRF function. Only HMAC variants are supported, with the
+ // only hash function supported being SHA1.
+ // TODO(rsleevi): Support SHA-256 on XP SP3+.
+ ScopedHCRYPTHASH prf;
+ if (!CreateHMACHash(provider, password_as_key, CALG_SHA1, &prf))
+ return NULL;
+
+ DWORD hLen = 0;
+ DWORD param_size = sizeof(hLen);
+ ok = CryptGetHashParam(prf, HP_HASHSIZE,
+ reinterpret_cast<BYTE*>(&hLen), &param_size, 0);
+ if (!ok || hLen == 0)
+ return NULL;
+
+ // 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and stop.
+ size_t dkLen = key_size_in_bits / 8;
+ DCHECK_GT(dkLen, 0);
+
+ if ((dkLen / hLen) > 0xFFFFFFFF) {
+ DLOG(ERROR) << "Derived key too long.";
+ return NULL;
+ }
+
+ // 2. Let l be the number of hLen-octet blocks in the derived key,
+ // rounding up, and let r be the number of octets in the last
+ // block:
+ size_t L = (dkLen + hLen - 1) / hLen;
+ DCHECK_GT(L, 0);
+
+ size_t total_generated_size = L * hLen;
+ std::vector<BYTE> generated_key(total_generated_size);
+ BYTE* block_offset = &generated_key[0];
+
+ // 3. For each block of the derived key apply the function F defined below
+ // to the password P, the salt S, the iteration count c, and the block
+ // index to compute the block:
+ // T_1 = F (P, S, c, 1)
+ // T_2 = F (P, S, c, 2)
+ // ...
+ // T_l = F (P, S, c, l)
+ // <snip>
+ // 4. Concatenate the blocks and extract the first dkLen octets to produce
+ // a derived key DK:
+ // DK = T_1 || T_2 || ... || T_l<0..r-1>
+ for (uint32 block_index = 1; block_index <= L; ++block_index) {
+ if (!ComputePBKDF2Block(prf, hLen, salt, iterations, block_index,
+ block_offset))
+ return NULL;
+ block_offset += hLen;
+ }
+
+ // Convert the derived key bytes into a key handle for the desired algorithm.
+ ScopedHCRYPTKEY key;
+ if (!ImportRawKey(provider, alg, &generated_key[0], dkLen, &key))
+ return NULL;
+
+ SymmetricKey* result = new SymmetricKey(provider.release(), key.release(),
+ &generated_key[0], dkLen);
+
+ SecureZeroMemory(&generated_key[0], total_generated_size);
+
+ return result;
+}
+
+// static
+SymmetricKey* SymmetricKey::Import(Algorithm algorithm,
+ const std::string& raw_key) {
+ DWORD provider_type = 0;
+ ALG_ID alg = 0;
+ switch (algorithm) {
+ case AES:
+ provider_type = PROV_RSA_AES;
+ alg = GetAESAlgIDForKeySize(raw_key.size() * 8);
+ break;
+ case HMAC_SHA1:
+ provider_type = PROV_RSA_FULL;
+ alg = CALG_HMAC;
+ break;
+ default:
+ NOTREACHED();
+ break;
+ }
+ if (provider_type == 0 || alg == 0)
+ return NULL;
+
+ ScopedHCRYPTPROV provider;
+ BOOL ok = CryptAcquireContext(provider.receive(), NULL, NULL, provider_type,
+ CRYPT_VERIFYCONTEXT);
+ if (!ok)
+ return NULL;
+
+ ScopedHCRYPTKEY key;
+ if (!ImportRawKey(provider, alg, raw_key.data(), raw_key.size(), &key))
+ return NULL;
+
+ return new SymmetricKey(provider.release(), key.release(),
+ raw_key.data(), raw_key.size());
+}
+
+bool SymmetricKey::GetRawKey(std::string* raw_key) {
+ // Short circuit for when the key was supplied to the constructor.
+ if (!raw_key_.empty()) {
+ *raw_key = raw_key_;
+ return true;
+ }
+
+ DWORD size = 0;
+ BOOL ok = CryptExportKey(key_, 0, PLAINTEXTKEYBLOB, 0, NULL, &size);
+ if (!ok)
+ return false;
+
+ std::vector<BYTE> result(size);
+
+ ok = CryptExportKey(key_, 0, PLAINTEXTKEYBLOB, 0, &result[0], &size);
+ if (!ok)
+ return false;
+
+ PlaintextBlobHeader* header =
+ reinterpret_cast<PlaintextBlobHeader*>(&result[0]);
+ raw_key->assign(reinterpret_cast<char*>(&result[sizeof(*header)]),
+ header->cbKeySize);
+
+ SecureZeroMemory(&result[0], size);
+
+ return true;
+}
+
+SymmetricKey::SymmetricKey(HCRYPTPROV provider,
+ HCRYPTKEY key,
+ const void* key_data, size_t key_size_in_bytes)
+ : provider_(provider), key_(key) {
+ if (key_data) {
+ raw_key_.assign(reinterpret_cast<const char*>(key_data),
+ key_size_in_bytes);
+ }
+}
+
+} // namespace crypto