diff options
author | agl@chromium.org <agl@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2012-07-27 21:25:19 +0000 |
---|---|---|
committer | agl@chromium.org <agl@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2012-07-27 21:25:19 +0000 |
commit | 5edb84671e92de756662871e912488107d15dedd (patch) | |
tree | 5da0baeb94a3385173fbcc65d13c07f0991beee4 /crypto | |
parent | 2500961f4fdfc570c0b51f027547a734d03c6bd3 (diff) | |
download | chromium_src-5edb84671e92de756662871e912488107d15dedd.zip chromium_src-5edb84671e92de756662871e912488107d15dedd.tar.gz chromium_src-5edb84671e92de756662871e912488107d15dedd.tar.bz2 |
crypto: special case ∞+a, a+∞ and a+a in p224.
In unrelated work, I found that the group addition formula used in p224.cc
doesn't work when one of the arguments is the point at infinity. This change
catches that case and simplifies the ScalarMult loop as a consequence.
In the course of doing this, I found a couple of bugs in Contract that would
have produced the wrong answer is very rare cases.
I also added a catch for a+a. This can't happen in the ScalarMult loop, but it
could happen from SPAKE2 at a rate of 1 in ~2**220 evaluations.
BUG=none
TEST=crypto_unittests
Review URL: https://chromiumcodereview.appspot.com/10822019
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@148815 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'crypto')
-rw-r--r-- | crypto/p224.cc | 142 | ||||
-rw-r--r-- | crypto/p224_unittest.cc | 15 |
2 files changed, 113 insertions, 44 deletions
diff --git a/crypto/p224.cc b/crypto/p224.cc index 575b51f..ac0a081 100644 --- a/crypto/p224.cc +++ b/crypto/p224.cc @@ -32,6 +32,46 @@ using base::NetToHost32; using crypto::p224::FieldElement; +// kP is the P224 prime. +const FieldElement kP = { + 1, 0, 0, 268431360, + 268435455, 268435455, 268435455, 268435455, +}; + +void Contract(FieldElement* inout); + +// IsZero returns 0xffffffff if a == 0 mod p and 0 otherwise. +uint32 IsZero(const FieldElement& a) { + FieldElement minimal; + memcpy(&minimal, &a, sizeof(minimal)); + Contract(&minimal); + + uint32 is_zero = 0, is_p = 0; + for (unsigned i = 0; i < 8; i++) { + is_zero |= minimal[i]; + is_p |= minimal[i] - kP[i]; + } + + // If either is_zero or is_p is 0, then we should return 1. + is_zero |= is_zero >> 16; + is_zero |= is_zero >> 8; + is_zero |= is_zero >> 4; + is_zero |= is_zero >> 2; + is_zero |= is_zero >> 1; + + is_p |= is_p >> 16; + is_p |= is_p >> 8; + is_p |= is_p >> 4; + is_p |= is_p >> 2; + is_p |= is_p >> 1; + + // For is_zero and is_p, the LSB is 0 iff all the bits are zero. + is_zero &= is_p & 1; + is_zero = (~is_zero) << 31; + is_zero = static_cast<int32>(is_zero) >> 31; + return is_zero; +} + // Add computes *out = a+b // // a[i] + b[i] < 2**32 @@ -313,52 +353,52 @@ void Contract(FieldElement* inout) { // unique, minimal value we see if the value is >= p and, if so, subtract p. // First we build a mask from the top four limbs, which must all be - // equal to bottom28Bits if the whole value is >= p. If top4AllOnes + // equal to bottom28Bits if the whole value is >= p. If top_4_all_ones // ends up with any zero bits in the bottom 28 bits, then this wasn't // true. - uint32 top4AllOnes = 0xffffffffu; + uint32 top_4_all_ones = 0xffffffffu; for (int i = 4; i < 8; i++) { - top4AllOnes &= (out[i] & kBottom28Bits) - 1; - } - top4AllOnes |= 0xf0000000; - // Now we replicate any zero bits to all the bits in top4AllOnes. - top4AllOnes &= top4AllOnes >> 16; - top4AllOnes &= top4AllOnes >> 8; - top4AllOnes &= top4AllOnes >> 4; - top4AllOnes &= top4AllOnes >> 2; - top4AllOnes &= top4AllOnes >> 1; - top4AllOnes = - static_cast<uint32>(static_cast<int32>(top4AllOnes << 31) >> 31); + top_4_all_ones &= out[i]; + } + top_4_all_ones |= 0xf0000000; + // Now we replicate any zero bits to all the bits in top_4_all_ones. + top_4_all_ones &= top_4_all_ones >> 16; + top_4_all_ones &= top_4_all_ones >> 8; + top_4_all_ones &= top_4_all_ones >> 4; + top_4_all_ones &= top_4_all_ones >> 2; + top_4_all_ones &= top_4_all_ones >> 1; + top_4_all_ones = + static_cast<uint32>(static_cast<int32>(top_4_all_ones << 31) >> 31); // Now we test whether the bottom three limbs are non-zero. - uint32 bottom3NonZero = out[0] | out[1] | out[2]; - bottom3NonZero |= bottom3NonZero >> 16; - bottom3NonZero |= bottom3NonZero >> 8; - bottom3NonZero |= bottom3NonZero >> 4; - bottom3NonZero |= bottom3NonZero >> 2; - bottom3NonZero |= bottom3NonZero >> 1; - bottom3NonZero = - static_cast<uint32>(static_cast<int32>(bottom3NonZero << 31) >> 31); + uint32 bottom_3_non_zero = out[0] | out[1] | out[2]; + bottom_3_non_zero |= bottom_3_non_zero >> 16; + bottom_3_non_zero |= bottom_3_non_zero >> 8; + bottom_3_non_zero |= bottom_3_non_zero >> 4; + bottom_3_non_zero |= bottom_3_non_zero >> 2; + bottom_3_non_zero |= bottom_3_non_zero >> 1; + bottom_3_non_zero = + static_cast<uint32>(static_cast<int32>(bottom_3_non_zero) >> 31); // Everything depends on the value of out[3]. - // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p - // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, + // If it's > 0xffff000 and top_4_all_ones != 0 then the whole value is >= p + // If it's = 0xffff000 and top_4_all_ones != 0 and bottom_3_non_zero != 0, // then the whole value is >= p // If it's < 0xffff000, then the whole value is < p uint32 n = out[3] - 0xffff000; - uint32 out3Equal = n; - out3Equal |= out3Equal >> 16; - out3Equal |= out3Equal >> 8; - out3Equal |= out3Equal >> 4; - out3Equal |= out3Equal >> 2; - out3Equal |= out3Equal >> 1; - out3Equal = - ~static_cast<uint32>(static_cast<int32>(out3Equal << 31) >> 31); + uint32 out_3_equal = n; + out_3_equal |= out_3_equal >> 16; + out_3_equal |= out_3_equal >> 8; + out_3_equal |= out_3_equal >> 4; + out_3_equal |= out_3_equal >> 2; + out_3_equal |= out_3_equal >> 1; + out_3_equal = + ~static_cast<uint32>(static_cast<int32>(out_3_equal << 31) >> 31); // If out[3] > 0xffff000 then n's MSB will be zero. - uint32 out3GT = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31); + uint32 out_3_gt = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31); - uint32 mask = top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT); + uint32 mask = top_4_all_ones & ((out_3_equal & bottom_3_non_zero) | out_3_gt); out[0] -= 1 & mask; out[3] -= 0xffff000 & mask; out[4] -= 0xfffffff & mask; @@ -375,18 +415,15 @@ void Contract(FieldElement* inout) { using crypto::p224::Point; -// kP is the P224 prime. -const FieldElement kP = { - 1, 0, 0, 268431360, - 268435455, 268435455, 268435455, 268435455, -}; - // kB is parameter of the elliptic curve. const FieldElement kB = { 55967668, 11768882, 265861671, 185302395, 39211076, 180311059, 84673715, 188764328, }; +void CopyConditional(Point* out, const Point& a, uint32 mask); +void DoubleJacobian(Point* out, const Point& a); + // AddJacobian computes *out = a+b where a != b. void AddJacobian(Point *out, const Point& a, @@ -394,6 +431,9 @@ void AddJacobian(Point *out, // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v; + uint32 z1_is_zero = IsZero(a.z); + uint32 z2_is_zero = IsZero(b.z); + // Z1Z1 = Z1² Square(&z1z1, a.z); @@ -417,6 +457,7 @@ void AddJacobian(Point *out, // H = U2-U1 Subtract(&h, u2, u1); Reduce(&h); + uint32 x_equal = IsZero(h); // I = (2*H)² for (int j = 0; j < 8; j++) { @@ -430,6 +471,15 @@ void AddJacobian(Point *out, // r = 2*(S2-S1) Subtract(&r, s2, s1); Reduce(&r); + uint32 y_equal = IsZero(r); + + if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { + // The two input points are the same therefore we must use the dedicated + // doubling function as the slope of the line is undefined. + DoubleJacobian(out, a); + return; + } + for (int i = 0; i < 8; i++) { r[i] <<= 1; } @@ -467,6 +517,9 @@ void AddJacobian(Point *out, Mul(&z1z1, z1z1, r); Subtract(&out->y, z1z1, s1); Reduce(&out->y); + + CopyConditional(out, a, z2_is_zero); + CopyConditional(out, b, z1_is_zero); } // DoubleJacobian computes *out = a+a. @@ -542,16 +595,13 @@ void ScalarMult(Point* out, const Point& a, memset(out, 0, sizeof(*out)); Point tmp; - uint32 first_bit = 0xffffffff; for (size_t i = 0; i < scalar_len; i++) { for (unsigned int bit_num = 0; bit_num < 8; bit_num++) { DoubleJacobian(out, *out); uint32 bit = static_cast<uint32>(static_cast<int32>( (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31)); AddJacobian(&tmp, a, *out); - CopyConditional(out, a, first_bit & bit); - CopyConditional(out, tmp, ~first_bit & bit); - first_bit = first_bit & ~bit; + CopyConditional(out, tmp, bit); } } } @@ -628,6 +678,12 @@ bool Point::SetFromString(const base::StringPiece& in) { std::string Point::ToString() const { FieldElement zinv, zinv_sq, x, y; + // If this is the point at infinity we return a string of all zeros. + if (IsZero(this->z)) { + static const char zeros[56] = {0}; + return std::string(zeros, sizeof(zeros)); + } + Invert(&zinv, this->z); Square(&zinv_sq, zinv); Mul(&x, this->x, zinv_sq); diff --git a/crypto/p224_unittest.cc b/crypto/p224_unittest.cc index 1ab2ff7..c6acfdd 100644 --- a/crypto/p224_unittest.cc +++ b/crypto/p224_unittest.cc @@ -1,4 +1,4 @@ -// Copyright (c) 2011 The Chromium Authors. All rights reserved. +// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. @@ -806,3 +806,16 @@ TEST(P224, Addition) { p224::Add(minus_b, sum, &a_again); EXPECT_TRUE(a_again.ToString() == a.ToString()); } + +TEST(P224, Infinity) { + char zeros[56]; + memset(zeros, 0, sizeof(zeros)); + + // Test that x^0 = ∞. + Point a; + p224::ScalarBaseMult(reinterpret_cast<const uint8*>(zeros), &a); + EXPECT_TRUE(memcmp(zeros, a.ToString().data(), sizeof(zeros)) == 0); + + // We shouldn't allow ∞ to be imported. + EXPECT_FALSE(a.SetFromString(std::string(zeros, sizeof(zeros)))); +} |