summaryrefslogtreecommitdiffstats
path: root/crypto
diff options
context:
space:
mode:
authorjkummerow@chromium.org <jkummerow@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2011-11-07 15:48:38 +0000
committerjkummerow@chromium.org <jkummerow@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2011-11-07 15:48:38 +0000
commite22bd0de2f37b831db7c6a57543029a5aac9dd9d (patch)
tree2ecc8ce4489281caec57b777d5d794e78bd8aa6f /crypto
parentf00c299976e4af12a0569275426780d5164f6899 (diff)
downloadchromium_src-e22bd0de2f37b831db7c6a57543029a5aac9dd9d.zip
chromium_src-e22bd0de2f37b831db7c6a57543029a5aac9dd9d.tar.gz
chromium_src-e22bd0de2f37b831db7c6a57543029a5aac9dd9d.tar.bz2
Revert 108866 - crypto: add simple P224 implementation.
This is intended to be the underlying group for an EKE implementation for Remoting. BUG=none TEST=crypto_unittests Review URL: http://codereview.chromium.org/8431007 TBR=agl@chromium.org Review URL: http://codereview.chromium.org/8467016 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@108869 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'crypto')
-rw-r--r--crypto/crypto.gyp3
-rw-r--r--crypto/p224.cc652
-rw-r--r--crypto/p224.h56
-rw-r--r--crypto/p224_unittest.cc808
4 files changed, 0 insertions, 1519 deletions
diff --git a/crypto/crypto.gyp b/crypto/crypto.gyp
index 906cbed..7b031b2 100644
--- a/crypto/crypto.gyp
+++ b/crypto/crypto.gyp
@@ -138,8 +138,6 @@
'openpgp_symmetric_encryption.h',
'openssl_util.cc',
'openssl_util.h',
- 'p224.cc',
- 'p224.h',
'rsa_private_key.cc',
'rsa_private_key.h',
'rsa_private_key_mac.cc',
@@ -186,7 +184,6 @@
# Tests.
'encryptor_unittest.cc',
'hmac_unittest.cc',
- 'p224_unittest.cc',
'rsa_private_key_unittest.cc',
'rsa_private_key_nss_unittest.cc',
'secure_hash_unittest.cc',
diff --git a/crypto/p224.cc b/crypto/p224.cc
deleted file mode 100644
index 0c87a5f..0000000
--- a/crypto/p224.cc
+++ /dev/null
@@ -1,652 +0,0 @@
-// Copyright (c) 2011 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-// This is an implementation of the P224 elliptic curve group. It's written to
-// be short and simple rather than fast, although it's still constant-time.
-//
-// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
-
-#include "crypto/p224.h"
-
-#include <string.h>
-
-#include "build/build_config.h"
-
-// For htonl and ntohl.
-#if defined(OS_WIN)
-#include <winsock2.h>
-#else
-#include <arpa/inet.h>
-#endif
-
-namespace {
-
-// Field element functions.
-//
-// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.
-//
-// Field elements are represented by a FieldElement, which is a typedef to an
-// array of 8 uint32's. The value of a FieldElement, a, is:
-// a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
-//
-// Using 28-bit limbs means that there's only 4 bits of headroom, which is less
-// than we would really like. But it has the useful feature that we hit 2**224
-// exactly, making the reflections during a reduce much nicer.
-
-using crypto::p224::FieldElement;
-
-// Add computes *out = a+b
-//
-// a[i] + b[i] < 2**32
-void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) {
- for (int i = 0; i < 8; i++) {
- (*out)[i] = a[i] + b[i];
- }
-}
-
-static const uint32 kTwo31p3 = (1u<<31) + (1u<<3);
-static const uint32 kTwo31m3 = (1u<<31) - (1u<<3);
-static const uint32 kTwo31m15m3 = (1u<<31) - (1u<<15) - (1u<<3);
-// kZero31ModP is 0 mod p where bit 31 is set in all limbs so that we can
-// subtract smaller amounts without underflow. See the section "Subtraction" in
-// [1] for why.
-static const FieldElement kZero31ModP = {
- kTwo31p3, kTwo31m3, kTwo31m3, kTwo31m15m3,
- kTwo31m3, kTwo31m3, kTwo31m3, kTwo31m3
-};
-
-// Subtract computes *out = a-b
-//
-// a[i], b[i] < 2**30
-// out[i] < 2**32
-void Subtract(FieldElement* out, const FieldElement& a, const FieldElement& b) {
- for (int i = 0; i < 8; i++) {
- // See the section on "Subtraction" in [1] for details.
- (*out)[i] = a[i] + kZero31ModP[i] - b[i];
- }
-}
-
-static const uint64 kTwo63p35 = (1ull<<63) + (1ull<<35);
-static const uint64 kTwo63m35 = (1ull<<63) - (1ull<<35);
-static const uint64 kTwo63m35m19 = (1ull<<63) - (1ull<<35) - (1ull<<19);
-// kZero63ModP is 0 mod p where bit 63 is set in all limbs. See the section
-// "Subtraction" in [1] for why.
-static const uint64 kZero63ModP[8] = {
- kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35,
- kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35,
-};
-
-static const uint32 kBottom28Bits = 0xfffffff;
-
-// LargeFieldElement also represents an element of the field. The limbs are
-// still spaced 28-bits apart and in little-endian order. So the limbs are at
-// 0, 28, 56, ..., 392 bits, each 64-bits wide.
-typedef uint64 LargeFieldElement[15];
-
-// ReduceLarge converts a LargeFieldElement to a FieldElement.
-//
-// in[i] < 2**62
-void ReduceLarge(FieldElement* out, LargeFieldElement* inptr) {
- LargeFieldElement& in(*inptr);
-
- for (int i = 0; i < 8; i++) {
- in[i] += kZero63ModP[i];
- }
-
- // Eliminate the coefficients at 2**224 and greater while maintaining the
- // same value mod p.
- for (int i = 14; i >= 8; i--) {
- in[i-8] -= in[i]; // reflection off the "+1" term of p.
- in[i-5] += (in[i] & 0xffff) << 12; // part of the "-2**96" reflection.
- in[i-4] += in[i] >> 16; // the rest of the "-2**96" reflection.
- }
- in[8] = 0;
- // in[0..8] < 2**64
-
- // As the values become small enough, we start to store them in |out| and use
- // 32-bit operations.
- for (int i = 1; i < 8; i++) {
- in[i+1] += in[i] >> 28;
- (*out)[i] = static_cast<uint32>(in[i] & kBottom28Bits);
- }
- // Eliminate the term at 2*224 that we introduced while keeping the same
- // value mod p.
- in[0] -= in[8]; // reflection off the "+1" term of p.
- (*out)[3] += static_cast<uint32>(in[8] & 0xffff) << 12; // "-2**96" term
- (*out)[4] += static_cast<uint32>(in[8] >> 16); // rest of "-2**96" term
- // in[0] < 2**64
- // out[3] < 2**29
- // out[4] < 2**29
- // out[1,2,5..7] < 2**28
-
- (*out)[0] = static_cast<uint32>(in[0] & kBottom28Bits);
- (*out)[1] += static_cast<uint32>((in[0] >> 28) & kBottom28Bits);
- (*out)[2] += static_cast<uint32>(in[0] >> 56);
- // out[0] < 2**28
- // out[1..4] < 2**29
- // out[5..7] < 2**28
-}
-
-// Mul computes *out = a*b
-//
-// a[i] < 2**29, b[i] < 2**30 (or vice versa)
-// out[i] < 2**29
-void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) {
- LargeFieldElement tmp;
- memset(&tmp, 0, sizeof(tmp));
-
- for (int i = 0; i < 8; i++) {
- for (int j = 0; j < 8; j++) {
- tmp[i+j] += static_cast<uint64>(a[i]) * static_cast<uint64>(b[j]);
- }
- }
-
- ReduceLarge(out, &tmp);
-}
-
-// Square computes *out = a*a
-//
-// a[i] < 2**29
-// out[i] < 2**29
-void Square(FieldElement* out, const FieldElement& a) {
- LargeFieldElement tmp;
- memset(&tmp, 0, sizeof(tmp));
-
- for (int i = 0; i < 8; i++) {
- for (int j = 0; j <= i; j++) {
- uint64 r = static_cast<uint64>(a[i]) * static_cast<uint64>(a[j]);
- if (i == j) {
- tmp[i+j] += r;
- } else {
- tmp[i+j] += r << 1;
- }
- }
- }
-
- ReduceLarge(out, &tmp);
-}
-
-// Reduce reduces the coefficients of in_out to smaller bounds.
-//
-// On entry: a[i] < 2**31 + 2**30
-// On exit: a[i] < 2**29
-void Reduce(FieldElement* in_out) {
- FieldElement& a = *in_out;
-
- for (int i = 0; i < 7; i++) {
- a[i+1] += a[i] >> 28;
- a[i] &= kBottom28Bits;
- }
- uint32 top = a[7] >> 28;
- a[7] &= kBottom28Bits;
-
- // top < 2**4
- // Constant-time: mask = (top != 0) ? 0xffffffff : 0
- uint32 mask = top;
- mask |= mask >> 2;
- mask |= mask >> 1;
- mask <<= 31;
- mask = static_cast<uint32>(static_cast<int32>(mask) >> 31);
-
- // Eliminate top while maintaining the same value mod p.
- a[0] -= top;
- a[3] += top << 12;
-
- // We may have just made a[0] negative but, if we did, then we must
- // have added something to a[3], thus it's > 2**12. Therefore we can
- // carry down to a[0].
- a[3] -= 1 & mask;
- a[2] += mask & ((1<<28) - 1);
- a[1] += mask & ((1<<28) - 1);
- a[0] += mask & (1<<28);
-}
-
-// Invert calcuates *out = in**-1 by computing in**(2**224 - 2**96 - 1), i.e.
-// Fermat's little theorem.
-void Invert(FieldElement* out, const FieldElement& in) {
- FieldElement f1, f2, f3, f4;
-
- Square(&f1, in); // 2
- Mul(&f1, f1, in); // 2**2 - 1
- Square(&f1, f1); // 2**3 - 2
- Mul(&f1, f1, in); // 2**3 - 1
- Square(&f2, f1); // 2**4 - 2
- Square(&f2, f2); // 2**5 - 4
- Square(&f2, f2); // 2**6 - 8
- Mul(&f1, f1, f2); // 2**6 - 1
- Square(&f2, f1); // 2**7 - 2
- for (int i = 0; i < 5; i++) { // 2**12 - 2**6
- Square(&f2, f2);
- }
- Mul(&f2, f2, f1); // 2**12 - 1
- Square(&f3, f2); // 2**13 - 2
- for (int i = 0; i < 11; i++) { // 2**24 - 2**12
- Square(&f3, f3);
- }
- Mul(&f2, f3, f2); // 2**24 - 1
- Square(&f3, f2); // 2**25 - 2
- for (int i = 0; i < 23; i++) { // 2**48 - 2**24
- Square(&f3, f3);
- }
- Mul(&f3, f3, f2); // 2**48 - 1
- Square(&f4, f3); // 2**49 - 2
- for (int i = 0; i < 47; i++) { // 2**96 - 2**48
- Square(&f4, f4);
- }
- Mul(&f3, f3, f4); // 2**96 - 1
- Square(&f4, f3); // 2**97 - 2
- for (int i = 0; i < 23; i++) { // 2**120 - 2**24
- Square(&f4, f4);
- }
- Mul(&f2, f4, f2); // 2**120 - 1
- for (int i = 0; i < 6; i++) { // 2**126 - 2**6
- Square(&f2, f2);
- }
- Mul(&f1, f1, f2); // 2**126 - 1
- Square(&f1, f1); // 2**127 - 2
- Mul(&f1, f1, in); // 2**127 - 1
- for (int i = 0; i < 97; i++) { // 2**224 - 2**97
- Square(&f1, f1);
- }
- Mul(out, f1, f3); // 2**224 - 2**96 - 1
-}
-
-// Contract converts a FieldElement to its minimal, distinguished form.
-//
-// On entry, in[i] < 2**32
-// On exit, in[i] < 2**28
-void Contract(FieldElement* inout) {
- FieldElement& out = *inout;
-
- // Reduce the coefficients to < 2**28.
- for (int i = 0; i < 7; i++) {
- out[i+1] += out[i] >> 28;
- out[i] &= kBottom28Bits;
- }
- uint32 top = out[7] >> 28;
- out[7] &= kBottom28Bits;
-
- // Eliminate top while maintaining the same value mod p.
- out[0] -= top;
- out[3] += top << 12;
-
- // We may just have made out[0] negative. So we carry down. If we made
- // out[0] negative then we know that out[3] is sufficiently positive
- // because we just added to it.
- for (int i = 0; i < 3; i++) {
- uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31);
- out[i] += (1 << 28) & mask;
- out[i+1] -= 1 & mask;
- }
-
- // The value is < 2**224, but maybe greater than p. In order to reduce to a
- // unique, minimal value we see if the value is >= p and, if so, subtract p.
-
- // First we build a mask from the top four limbs, which must all be
- // equal to bottom28Bits if the whole value is >= p. If top4AllOnes
- // ends up with any zero bits in the bottom 28 bits, then this wasn't
- // true.
- uint32 top4AllOnes = 0xffffffffu;
- for (int i = 4; i < 8; i++) {
- top4AllOnes &= (out[i] & kBottom28Bits) - 1;
- }
- top4AllOnes |= 0xf0000000;
- // Now we replicate any zero bits to all the bits in top4AllOnes.
- top4AllOnes &= top4AllOnes >> 16;
- top4AllOnes &= top4AllOnes >> 8;
- top4AllOnes &= top4AllOnes >> 4;
- top4AllOnes &= top4AllOnes >> 2;
- top4AllOnes &= top4AllOnes >> 1;
- top4AllOnes =
- static_cast<uint32>(static_cast<int32>(top4AllOnes << 31) >> 31);
-
- // Now we test whether the bottom three limbs are non-zero.
- uint32 bottom3NonZero = out[0] | out[1] | out[2];
- bottom3NonZero |= bottom3NonZero >> 16;
- bottom3NonZero |= bottom3NonZero >> 8;
- bottom3NonZero |= bottom3NonZero >> 4;
- bottom3NonZero |= bottom3NonZero >> 2;
- bottom3NonZero |= bottom3NonZero >> 1;
- bottom3NonZero =
- static_cast<uint32>(static_cast<int32>(bottom3NonZero << 31) >> 31);
-
- // Everything depends on the value of out[3].
- // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p
- // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,
- // then the whole value is >= p
- // If it's < 0xffff000, then the whole value is < p
- uint32 n = out[3] - 0xffff000;
- uint32 out3Equal = n;
- out3Equal |= out3Equal >> 16;
- out3Equal |= out3Equal >> 8;
- out3Equal |= out3Equal >> 4;
- out3Equal |= out3Equal >> 2;
- out3Equal |= out3Equal >> 1;
- out3Equal =
- ~static_cast<uint32>(static_cast<int32>(out3Equal << 31) >> 31);
-
- // If out[3] > 0xffff000 then n's MSB will be zero.
- uint32 out3GT = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31);
-
- uint32 mask = top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT);
- out[0] -= 1 & mask;
- out[3] -= 0xffff000 & mask;
- out[4] -= 0xfffffff & mask;
- out[5] -= 0xfffffff & mask;
- out[6] -= 0xfffffff & mask;
- out[7] -= 0xfffffff & mask;
-}
-
-
-// Group element functions.
-//
-// These functions deal with group elements. The group is an elliptic curve
-// group with a = -3 defined in FIPS 186-3, section D.2.2.
-
-using crypto::p224::Point;
-
-// kP is the P224 prime.
-const FieldElement kP = {
- 1, 0, 0, 268431360,
- 268435455, 268435455, 268435455, 268435455,
-};
-
-// kB is parameter of the elliptic curve.
-const FieldElement kB = {
- 55967668, 11768882, 265861671, 185302395,
- 39211076, 180311059, 84673715, 188764328,
-};
-
-// AddJacobian computes *out = a+b where a != b.
-void AddJacobian(Point *out,
- const Point& a,
- const Point& b) {
- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
- FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v;
-
- // Z1Z1 = Z1²
- Square(&z1z1, a.z);
-
- // Z2Z2 = Z2²
- Square(&z2z2, b.z);
-
- // U1 = X1*Z2Z2
- Mul(&u1, a.x, z2z2);
-
- // U2 = X2*Z1Z1
- Mul(&u2, b.x, z1z1);
-
- // S1 = Y1*Z2*Z2Z2
- Mul(&s1, b.z, z2z2);
- Mul(&s1, a.y, s1);
-
- // S2 = Y2*Z1*Z1Z1
- Mul(&s2, a.z, z1z1);
- Mul(&s2, b.y, s2);
-
- // H = U2-U1
- Subtract(&h, u2, u1);
- Reduce(&h);
-
- // I = (2*H)²
- for (int j = 0; j < 8; j++) {
- i[j] = h[j] << 1;
- }
- Reduce(&i);
- Square(&i, i);
-
- // J = H*I
- Mul(&j, h, i);
- // r = 2*(S2-S1)
- Subtract(&r, s2, s1);
- Reduce(&r);
- for (int i = 0; i < 8; i++) {
- r[i] <<= 1;
- }
- Reduce(&r);
-
- // V = U1*I
- Mul(&v, u1, i);
-
- // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
- Add(&z1z1, z1z1, z2z2);
- Add(&z2z2, a.z, b.z);
- Reduce(&z2z2);
- Square(&z2z2, z2z2);
- Subtract(&out->z, z2z2, z1z1);
- Reduce(&out->z);
- Mul(&out->z, out->z, h);
-
- // X3 = r²-J-2*V
- for (int i = 0; i < 8; i++) {
- z1z1[i] = v[i] << 1;
- }
- Add(&z1z1, j, z1z1);
- Reduce(&z1z1);
- Square(&out->x, r);
- Subtract(&out->x, out->x, z1z1);
- Reduce(&out->x);
-
- // Y3 = r*(V-X3)-2*S1*J
- for (int i = 0; i < 8; i++) {
- s1[i] <<= 1;
- }
- Mul(&s1, s1, j);
- Subtract(&z1z1, v, out->x);
- Reduce(&z1z1);
- Mul(&z1z1, z1z1, r);
- Subtract(&out->y, z1z1, s1);
- Reduce(&out->y);
-}
-
-// DoubleJacobian computes *out = a+a.
-void DoubleJacobian(Point* out, const Point& a) {
- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
- FieldElement delta, gamma, beta, alpha, t;
-
- Square(&delta, a.z);
- Square(&gamma, a.y);
- Mul(&beta, a.x, gamma);
-
- // alpha = 3*(X1-delta)*(X1+delta)
- Add(&t, a.x, delta);
- for (int i = 0; i < 8; i++) {
- t[i] += t[i] << 1;
- }
- Reduce(&t);
- Subtract(&alpha, a.x, delta);
- Reduce(&alpha);
- Mul(&alpha, alpha, t);
-
- // Z3 = (Y1+Z1)²-gamma-delta
- Add(&out->z, a.y, a.z);
- Reduce(&out->z);
- Square(&out->z, out->z);
- Subtract(&out->z, out->z, gamma);
- Reduce(&out->z);
- Subtract(&out->z, out->z, delta);
- Reduce(&out->z);
-
- // X3 = alpha²-8*beta
- for (int i = 0; i < 8; i++) {
- delta[i] = beta[i] << 3;
- }
- Reduce(&delta);
- Square(&out->x, alpha);
- Subtract(&out->x, out->x, delta);
- Reduce(&out->x);
-
- // Y3 = alpha*(4*beta-X3)-8*gamma²
- for (int i = 0; i < 8; i++) {
- beta[i] <<= 2;
- }
- Reduce(&beta);
- Subtract(&beta, beta, out->x);
- Reduce(&beta);
- Square(&gamma, gamma);
- for (int i = 0; i < 8; i++) {
- gamma[i] <<= 3;
- }
- Reduce(&gamma);
- Mul(&out->y, alpha, beta);
- Subtract(&out->y, out->y, gamma);
- Reduce(&out->y);
-}
-
-// CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of
-// 0xffffffff.
-void CopyConditional(Point* out,
- const Point& a,
- uint32 mask) {
- for (int i = 0; i < 8; i++) {
- out->x[i] ^= mask & (a.x[i] ^ out->x[i]);
- out->y[i] ^= mask & (a.y[i] ^ out->y[i]);
- out->z[i] ^= mask & (a.z[i] ^ out->z[i]);
- }
-}
-
-// ScalarMult calculates *out = a*scalar where scalar is a big-endian number of
-// length scalar_len and != 0.
-void ScalarMult(Point* out, const Point& a,
- const uint8* scalar, size_t scalar_len) {
- memset(out, 0, sizeof(*out));
- Point tmp;
-
- uint32 first_bit = 0xffffffff;
- for (size_t i = 0; i < scalar_len; i++) {
- for (unsigned int bit_num = 0; bit_num < 8; bit_num++) {
- DoubleJacobian(out, *out);
- uint32 bit = static_cast<uint32>(static_cast<int32>(
- (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31));
- AddJacobian(&tmp, a, *out);
- CopyConditional(out, a, first_bit & bit);
- CopyConditional(out, tmp, ~first_bit & bit);
- first_bit = first_bit & ~bit;
- }
- }
-}
-
-// Get224Bits reads 7 words from in and scatters their contents in
-// little-endian form into 8 words at out, 28 bits per output word.
-void Get224Bits(uint32* out, const uint32* in) {
- out[0] = ntohl(in[6]) & kBottom28Bits;
- out[1] = ((ntohl(in[5]) << 4) | (ntohl(in[6]) >> 28)) & kBottom28Bits;
- out[2] = ((ntohl(in[4]) << 8) | (ntohl(in[5]) >> 24)) & kBottom28Bits;
- out[3] = ((ntohl(in[3]) << 12) | (ntohl(in[4]) >> 20)) & kBottom28Bits;
- out[4] = ((ntohl(in[2]) << 16) | (ntohl(in[3]) >> 16)) & kBottom28Bits;
- out[5] = ((ntohl(in[1]) << 20) | (ntohl(in[2]) >> 12)) & kBottom28Bits;
- out[6] = ((ntohl(in[0]) << 24) | (ntohl(in[1]) >> 8)) & kBottom28Bits;
- out[7] = (ntohl(in[0]) >> 4) & kBottom28Bits;
-}
-
-// Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from
-// each of 8 input words and writing them in big-endian order to 7 words at
-// out.
-void Put224Bits(uint32* out, const uint32* in) {
- out[6] = htonl((in[0] >> 0) | (in[1] << 28));
- out[5] = htonl((in[1] >> 4) | (in[2] << 24));
- out[4] = htonl((in[2] >> 8) | (in[3] << 20));
- out[3] = htonl((in[3] >> 12) | (in[4] << 16));
- out[2] = htonl((in[4] >> 16) | (in[5] << 12));
- out[1] = htonl((in[5] >> 20) | (in[6] << 8));
- out[0] = htonl((in[6] >> 24) | (in[7] << 4));
-}
-
-} // anonymous namespace
-
-namespace crypto {
-
-namespace p224 {
-
-bool Point::SetFromString(const base::StringPiece& in) {
- if (in.size() != 2*28)
- return false;
- const uint32* inwords = reinterpret_cast<const uint32*>(in.data());
- Get224Bits(x, inwords);
- Get224Bits(y, inwords + 7);
- memset(&z, 0, sizeof(z));
- z[0] = 1;
-
- // Check that the point is on the curve, i.e. that y² = x³ - 3x + b.
- FieldElement lhs;
- Square(&lhs, y);
- Contract(&lhs);
-
- FieldElement rhs;
- Square(&rhs, x);
- Mul(&rhs, x, rhs);
-
- FieldElement three_x;
- for (int i = 0; i < 8; i++) {
- three_x[i] = x[i] * 3;
- }
- Reduce(&three_x);
- Subtract(&rhs, rhs, three_x);
- Reduce(&rhs);
-
- ::Add(&rhs, rhs, kB);
- Contract(&rhs);
- return memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
-}
-
-std::string Point::ToString() const {
- FieldElement zinv, zinv_sq, x, y;
-
- Invert(&zinv, this->z);
- Square(&zinv_sq, zinv);
- Mul(&x, this->x, zinv_sq);
- Mul(&zinv_sq, zinv_sq, zinv);
- Mul(&y, this->y, zinv_sq);
-
- Contract(&x);
- Contract(&y);
-
- uint32 outwords[14];
- Put224Bits(outwords, x);
- Put224Bits(outwords + 7, y);
- return std::string(reinterpret_cast<const char*>(outwords), sizeof(outwords));
-}
-
-void ScalarMult(const Point& in, const uint8* scalar, Point* out) {
- ::ScalarMult(out, in, scalar, 28);
-}
-
-// kBasePoint is the base point (generator) of the elliptic curve group.
-static const Point kBasePoint = {
- {22813985, 52956513, 34677300, 203240812,
- 12143107, 133374265, 225162431, 191946955},
- {83918388, 223877528, 122119236, 123340192,
- 266784067, 263504429, 146143011, 198407736},
- {1, 0, 0, 0, 0, 0, 0, 0},
-};
-
-void ScalarBaseMult(const uint8* scalar, Point* out) {
- ::ScalarMult(out, kBasePoint, scalar, 28);
-}
-
-void Add(const Point& a, const Point& b, Point* out) {
- AddJacobian(out, a, b);
-}
-
-void Negate(const Point& in, Point* out) {
- // Guide to elliptic curve cryptography, page 89 suggests that (X : X+Y : Z)
- // is the negative in Jacobian coordinates, but it doesn't actually appear to
- // be true in testing so this performs the negation in affine coordinates.
- FieldElement zinv, zinv_sq, y;
- Invert(&zinv, in.z);
- Square(&zinv_sq, zinv);
- Mul(&out->x, in.x, zinv_sq);
- Mul(&zinv_sq, zinv_sq, zinv);
- Mul(&y, in.y, zinv_sq);
-
- Subtract(&out->y, kP, y);
- Reduce(&out->y);
-
- memset(&out->z, 0, sizeof(out->z));
- out->z[0] = 1;
-}
-
-} // namespace p224
-
-} // namespace crypto
diff --git a/crypto/p224.h b/crypto/p224.h
deleted file mode 100644
index 58dc0f1..0000000
--- a/crypto/p224.h
+++ /dev/null
@@ -1,56 +0,0 @@
-// Copyright (c) 2011 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef CRYPTO_P224_H_
-#define CRYPTO_P224_H_
-#pragma once
-
-#include <string>
-
-#include "base/basictypes.h"
-#include "base/string_piece.h"
-
-namespace crypto {
-
-// P224 implements an elliptic curve group, commonly known as P224 and defined
-// in FIPS 186-3, section D.2.2.
-namespace p224 {
-
-// An element of the field (ℤ/pℤ) is represented with 8, 28-bit limbs in
-// little endian order.
-typedef uint32 FieldElement[8];
-
-struct Point {
- // SetFromString the value of the point from the 56 byte, external
- // representation. The external point representation is an (x, y) pair of a
- // point on the curve. Each field element is represented as a big-endian
- // number < p.
- bool SetFromString(const base::StringPiece& in);
-
- // ToString returns an external representation of the Point.
- std::string ToString() const;
-
- // An Point is represented in Jacobian form (x/z², y/z³).
- FieldElement x, y, z;
-};
-
-// ScalarMult computes *out = in*scalar where scalar is a 28-byte, big-endian
-// number.
-void ScalarMult(const Point& in, const uint8* scalar, Point* out);
-
-// ScalarBaseMult computes *out = g*scalar where g is the base point of the
-// curve and scalar is a 28-byte, big-endian number.
-void ScalarBaseMult(const uint8* scalar, Point* out);
-
-// Add computes *out = a+b.
-void Add(const Point& a, const Point& b, Point* out);
-
-// Negate calculates out = -a;
-void Negate(const Point& a, Point* out);
-
-} // namespace p224
-
-} // namespace crypto
-
-#endif // CRYPTO_P224_H_
diff --git a/crypto/p224_unittest.cc b/crypto/p224_unittest.cc
deleted file mode 100644
index 1ab2ff7..0000000
--- a/crypto/p224_unittest.cc
+++ /dev/null
@@ -1,808 +0,0 @@
-// Copyright (c) 2011 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include <string.h>
-#include <stdio.h>
-
-#include "crypto/p224.h"
-
-#include "testing/gtest/include/gtest/gtest.h"
-
-using namespace crypto;
-using p224::Point;
-
-// kBasePointExternal is the P224 base point in external representation.
-static const uint8 kBasePointExternal[56] = {
- 0xb7, 0x0e, 0x0c, 0xbd, 0x6b, 0xb4, 0xbf, 0x7f,
- 0x32, 0x13, 0x90, 0xb9, 0x4a, 0x03, 0xc1, 0xd3,
- 0x56, 0xc2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xd6,
- 0x11, 0x5c, 0x1d, 0x21, 0xbd, 0x37, 0x63, 0x88,
- 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, 0xdf, 0xe6,
- 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
- 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34,
-};
-
-// TestVector represents a test of scalar multiplication of the base point.
-// |scalar| is a big-endian scalar and |affine| is the external representation
-// of g*scalar.
-struct TestVector {
- uint8 scalar[28];
- uint8 affine[28*2];
-};
-
-static const int kNumNISTTestVectors = 52;
-
-// kNISTTestVectors are the NIST test vectors for P224.
-static const TestVector kNISTTestVectors[kNumNISTTestVectors] = {
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x01},
- {0xb7, 0x0e, 0x0c, 0xbd, 0x6b, 0xb4, 0xbf, 0x7f,
- 0x32, 0x13, 0x90, 0xb9, 0x4a, 0x03, 0xc1, 0xd3,
- 0x56, 0xc2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xd6,
- 0x11, 0x5c, 0x1d, 0x21, 0xbd, 0x37, 0x63, 0x88,
- 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, 0xdf, 0xe6,
- 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
- 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x02, },
-
- {0x70, 0x6a, 0x46, 0xdc, 0x76, 0xdc, 0xb7, 0x67,
- 0x98, 0xe6, 0x0e, 0x6d, 0x89, 0x47, 0x47, 0x88,
- 0xd1, 0x6d, 0xc1, 0x80, 0x32, 0xd2, 0x68, 0xfd,
- 0x1a, 0x70, 0x4f, 0xa6, 0x1c, 0x2b, 0x76, 0xa7,
- 0xbc, 0x25, 0xe7, 0x70, 0x2a, 0x70, 0x4f, 0xa9,
- 0x86, 0x89, 0x28, 0x49, 0xfc, 0xa6, 0x29, 0x48,
- 0x7a, 0xcf, 0x37, 0x09, 0xd2, 0xe4, 0xe8, 0xbb,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x03, },
- {0xdf, 0x1b, 0x1d, 0x66, 0xa5, 0x51, 0xd0, 0xd3,
- 0x1e, 0xff, 0x82, 0x25, 0x58, 0xb9, 0xd2, 0xcc,
- 0x75, 0xc2, 0x18, 0x02, 0x79, 0xfe, 0x0d, 0x08,
- 0xfd, 0x89, 0x6d, 0x04, 0xa3, 0xf7, 0xf0, 0x3c,
- 0xad, 0xd0, 0xbe, 0x44, 0x4c, 0x0a, 0xa5, 0x68,
- 0x30, 0x13, 0x0d, 0xdf, 0x77, 0xd3, 0x17, 0x34,
- 0x4e, 0x1a, 0xf3, 0x59, 0x19, 0x81, 0xa9, 0x25,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x04, },
- {0xae, 0x99, 0xfe, 0xeb, 0xb5, 0xd2, 0x69, 0x45,
- 0xb5, 0x48, 0x92, 0x09, 0x2a, 0x8a, 0xee, 0x02,
- 0x91, 0x29, 0x30, 0xfa, 0x41, 0xcd, 0x11, 0x4e,
- 0x40, 0x44, 0x73, 0x01, 0x04, 0x82, 0x58, 0x0a,
- 0x0e, 0xc5, 0xbc, 0x47, 0xe8, 0x8b, 0xc8, 0xc3,
- 0x78, 0x63, 0x2c, 0xd1, 0x96, 0xcb, 0x3f, 0xa0,
- 0x58, 0xa7, 0x11, 0x4e, 0xb0, 0x30, 0x54, 0xc9,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x05, },
- {0x31, 0xc4, 0x9a, 0xe7, 0x5b, 0xce, 0x78, 0x07,
- 0xcd, 0xff, 0x22, 0x05, 0x5d, 0x94, 0xee, 0x90,
- 0x21, 0xfe, 0xdb, 0xb5, 0xab, 0x51, 0xc5, 0x75,
- 0x26, 0xf0, 0x11, 0xaa, 0x27, 0xe8, 0xbf, 0xf1,
- 0x74, 0x56, 0x35, 0xec, 0x5b, 0xa0, 0xc9, 0xf1,
- 0xc2, 0xed, 0xe1, 0x54, 0x14, 0xc6, 0x50, 0x7d,
- 0x29, 0xff, 0xe3, 0x7e, 0x79, 0x0a, 0x07, 0x9b,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x06, },
- {0x1f, 0x24, 0x83, 0xf8, 0x25, 0x72, 0x25, 0x1f,
- 0xca, 0x97, 0x5f, 0xea, 0x40, 0xdb, 0x82, 0x1d,
- 0xf8, 0xad, 0x82, 0xa3, 0xc0, 0x02, 0xee, 0x6c,
- 0x57, 0x11, 0x24, 0x08, 0x89, 0xfa, 0xf0, 0xcc,
- 0xb7, 0x50, 0xd9, 0x9b, 0x55, 0x3c, 0x57, 0x4f,
- 0xad, 0x7e, 0xcf, 0xb0, 0x43, 0x85, 0x86, 0xeb,
- 0x39, 0x52, 0xaf, 0x5b, 0x4b, 0x15, 0x3c, 0x7e,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x07, },
- {0xdb, 0x2f, 0x6b, 0xe6, 0x30, 0xe2, 0x46, 0xa5,
- 0xcf, 0x7d, 0x99, 0xb8, 0x51, 0x94, 0xb1, 0x23,
- 0xd4, 0x87, 0xe2, 0xd4, 0x66, 0xb9, 0x4b, 0x24,
- 0xa0, 0x3c, 0x3e, 0x28, 0x0f, 0x3a, 0x30, 0x08,
- 0x54, 0x97, 0xf2, 0xf6, 0x11, 0xee, 0x25, 0x17,
- 0xb1, 0x63, 0xef, 0x8c, 0x53, 0xb7, 0x15, 0xd1,
- 0x8b, 0xb4, 0xe4, 0x80, 0x8d, 0x02, 0xb9, 0x63,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x08, },
- {0x85, 0x8e, 0x6f, 0x9c, 0xc6, 0xc1, 0x2c, 0x31,
- 0xf5, 0xdf, 0x12, 0x4a, 0xa7, 0x77, 0x67, 0xb0,
- 0x5c, 0x8b, 0xc0, 0x21, 0xbd, 0x68, 0x3d, 0x2b,
- 0x55, 0x57, 0x15, 0x50, 0x04, 0x6d, 0xcd, 0x3e,
- 0xa5, 0xc4, 0x38, 0x98, 0xc5, 0xc5, 0xfc, 0x4f,
- 0xda, 0xc7, 0xdb, 0x39, 0xc2, 0xf0, 0x2e, 0xbe,
- 0xe4, 0xe3, 0x54, 0x1d, 0x1e, 0x78, 0x04, 0x7a,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x09, },
- {0x2f, 0xdc, 0xcc, 0xfe, 0xe7, 0x20, 0xa7, 0x7e,
- 0xf6, 0xcb, 0x3b, 0xfb, 0xb4, 0x47, 0xf9, 0x38,
- 0x31, 0x17, 0xe3, 0xda, 0xa4, 0xa0, 0x7e, 0x36,
- 0xed, 0x15, 0xf7, 0x8d, 0x37, 0x17, 0x32, 0xe4,
- 0xf4, 0x1b, 0xf4, 0xf7, 0x88, 0x30, 0x35, 0xe6,
- 0xa7, 0x9f, 0xce, 0xdc, 0x0e, 0x19, 0x6e, 0xb0,
- 0x7b, 0x48, 0x17, 0x16, 0x97, 0x51, 0x74, 0x63,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x0a, },
- {0xae, 0xa9, 0xe1, 0x7a, 0x30, 0x65, 0x17, 0xeb,
- 0x89, 0x15, 0x2a, 0xa7, 0x09, 0x6d, 0x2c, 0x38,
- 0x1e, 0xc8, 0x13, 0xc5, 0x1a, 0xa8, 0x80, 0xe7,
- 0xbe, 0xe2, 0xc0, 0xfd, 0x39, 0xbb, 0x30, 0xea,
- 0xb3, 0x37, 0xe0, 0xa5, 0x21, 0xb6, 0xcb, 0xa1,
- 0xab, 0xe4, 0xb2, 0xb3, 0xa3, 0xe5, 0x24, 0xc1,
- 0x4a, 0x3f, 0xe3, 0xeb, 0x11, 0x6b, 0x65, 0x5f,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x0b, },
- {0xef, 0x53, 0xb6, 0x29, 0x4a, 0xca, 0x43, 0x1f,
- 0x0f, 0x3c, 0x22, 0xdc, 0x82, 0xeb, 0x90, 0x50,
- 0x32, 0x4f, 0x1d, 0x88, 0xd3, 0x77, 0xe7, 0x16,
- 0x44, 0x8e, 0x50, 0x7c, 0x20, 0xb5, 0x10, 0x00,
- 0x40, 0x92, 0xe9, 0x66, 0x36, 0xcf, 0xb7, 0xe3,
- 0x2e, 0xfd, 0xed, 0x82, 0x65, 0xc2, 0x66, 0xdf,
- 0xb7, 0x54, 0xfa, 0x6d, 0x64, 0x91, 0xa6, 0xda,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x0c, },
- {0x6e, 0x31, 0xee, 0x1d, 0xc1, 0x37, 0xf8, 0x1b,
- 0x05, 0x67, 0x52, 0xe4, 0xde, 0xab, 0x14, 0x43,
- 0xa4, 0x81, 0x03, 0x3e, 0x9b, 0x4c, 0x93, 0xa3,
- 0x04, 0x4f, 0x4f, 0x7a, 0x20, 0x7d, 0xdd, 0xf0,
- 0x38, 0x5b, 0xfd, 0xea, 0xb6, 0xe9, 0xac, 0xda,
- 0x8d, 0xa0, 0x6b, 0x3b, 0xbe, 0xf2, 0x24, 0xa9,
- 0x3a, 0xb1, 0xe9, 0xe0, 0x36, 0x10, 0x9d, 0x13,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x0d, },
- {0x34, 0xe8, 0xe1, 0x7a, 0x43, 0x0e, 0x43, 0x28,
- 0x97, 0x93, 0xc3, 0x83, 0xfa, 0xc9, 0x77, 0x42,
- 0x47, 0xb4, 0x0e, 0x9e, 0xbd, 0x33, 0x66, 0x98,
- 0x1f, 0xcf, 0xae, 0xca, 0x25, 0x28, 0x19, 0xf7,
- 0x1c, 0x7f, 0xb7, 0xfb, 0xcb, 0x15, 0x9b, 0xe3,
- 0x37, 0xd3, 0x7d, 0x33, 0x36, 0xd7, 0xfe, 0xb9,
- 0x63, 0x72, 0x4f, 0xdf, 0xb0, 0xec, 0xb7, 0x67,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x0e, },
- {0xa5, 0x36, 0x40, 0xc8, 0x3d, 0xc2, 0x08, 0x60,
- 0x3d, 0xed, 0x83, 0xe4, 0xec, 0xf7, 0x58, 0xf2,
- 0x4c, 0x35, 0x7d, 0x7c, 0xf4, 0x80, 0x88, 0xb2,
- 0xce, 0x01, 0xe9, 0xfa, 0xd5, 0x81, 0x4c, 0xd7,
- 0x24, 0x19, 0x9c, 0x4a, 0x5b, 0x97, 0x4a, 0x43,
- 0x68, 0x5f, 0xbf, 0x5b, 0x8b, 0xac, 0x69, 0x45,
- 0x9c, 0x94, 0x69, 0xbc, 0x8f, 0x23, 0xcc, 0xaf,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x0f, },
- {0xba, 0xa4, 0xd8, 0x63, 0x55, 0x11, 0xa7, 0xd2,
- 0x88, 0xae, 0xbe, 0xed, 0xd1, 0x2c, 0xe5, 0x29,
- 0xff, 0x10, 0x2c, 0x91, 0xf9, 0x7f, 0x86, 0x7e,
- 0x21, 0x91, 0x6b, 0xf9, 0x97, 0x9a, 0x5f, 0x47,
- 0x59, 0xf8, 0x0f, 0x4f, 0xb4, 0xec, 0x2e, 0x34,
- 0xf5, 0x56, 0x6d, 0x59, 0x56, 0x80, 0xa1, 0x17,
- 0x35, 0xe7, 0xb6, 0x10, 0x46, 0x12, 0x79, 0x89,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x10, },
- {0x0b, 0x6e, 0xc4, 0xfe, 0x17, 0x77, 0x38, 0x24,
- 0x04, 0xef, 0x67, 0x99, 0x97, 0xba, 0x8d, 0x1c,
- 0xc5, 0xcd, 0x8e, 0x85, 0x34, 0x92, 0x59, 0xf5,
- 0x90, 0xc4, 0xc6, 0x6d, 0x33, 0x99, 0xd4, 0x64,
- 0x34, 0x59, 0x06, 0xb1, 0x1b, 0x00, 0xe3, 0x63,
- 0xef, 0x42, 0x92, 0x21, 0xf2, 0xec, 0x72, 0x0d,
- 0x2f, 0x66, 0x5d, 0x7d, 0xea, 0xd5, 0xb4, 0x82,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x11, },
- {0xb8, 0x35, 0x7c, 0x3a, 0x6c, 0xee, 0xf2, 0x88,
- 0x31, 0x0e, 0x17, 0xb8, 0xbf, 0xef, 0xf9, 0x20,
- 0x08, 0x46, 0xca, 0x8c, 0x19, 0x42, 0x49, 0x7c,
- 0x48, 0x44, 0x03, 0xbc, 0xff, 0x14, 0x9e, 0xfa,
- 0x66, 0x06, 0xa6, 0xbd, 0x20, 0xef, 0x7d, 0x1b,
- 0x06, 0xbd, 0x92, 0xf6, 0x90, 0x46, 0x39, 0xdc,
- 0xe5, 0x17, 0x4d, 0xb6, 0xcc, 0x55, 0x4a, 0x26,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x12, },
- {0xc9, 0xff, 0x61, 0xb0, 0x40, 0x87, 0x4c, 0x05,
- 0x68, 0x47, 0x92, 0x16, 0x82, 0x4a, 0x15, 0xea,
- 0xb1, 0xa8, 0x38, 0xa7, 0x97, 0xd1, 0x89, 0x74,
- 0x62, 0x26, 0xe4, 0xcc, 0xea, 0x98, 0xd6, 0x0e,
- 0x5f, 0xfc, 0x9b, 0x8f, 0xcf, 0x99, 0x9f, 0xab,
- 0x1d, 0xf7, 0xe7, 0xef, 0x70, 0x84, 0xf2, 0x0d,
- 0xdb, 0x61, 0xbb, 0x04, 0x5a, 0x6c, 0xe0, 0x02,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x13, },
- {0xa1, 0xe8, 0x1c, 0x04, 0xf3, 0x0c, 0xe2, 0x01,
- 0xc7, 0xc9, 0xac, 0xe7, 0x85, 0xed, 0x44, 0xcc,
- 0x33, 0xb4, 0x55, 0xa0, 0x22, 0xf2, 0xac, 0xdb,
- 0xc6, 0xca, 0xe8, 0x3c, 0xdc, 0xf1, 0xf6, 0xc3,
- 0xdb, 0x09, 0xc7, 0x0a, 0xcc, 0x25, 0x39, 0x1d,
- 0x49, 0x2f, 0xe2, 0x5b, 0x4a, 0x18, 0x0b, 0xab,
- 0xd6, 0xce, 0xa3, 0x56, 0xc0, 0x47, 0x19, 0xcd,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x14, },
- {0xfc, 0xc7, 0xf2, 0xb4, 0x5d, 0xf1, 0xcd, 0x5a,
- 0x3c, 0x0c, 0x07, 0x31, 0xca, 0x47, 0xa8, 0xaf,
- 0x75, 0xcf, 0xb0, 0x34, 0x7e, 0x83, 0x54, 0xee,
- 0xfe, 0x78, 0x24, 0x55, 0x0d, 0x5d, 0x71, 0x10,
- 0x27, 0x4c, 0xba, 0x7c, 0xde, 0xe9, 0x0e, 0x1a,
- 0x8b, 0x0d, 0x39, 0x4c, 0x37, 0x6a, 0x55, 0x73,
- 0xdb, 0x6b, 0xe0, 0xbf, 0x27, 0x47, 0xf5, 0x30,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x01, 0x8e, 0xbb, 0xb9,
- 0x5e, 0xed, 0x0e, 0x13, },
- {0x61, 0xf0, 0x77, 0xc6, 0xf6, 0x2e, 0xd8, 0x02,
- 0xda, 0xd7, 0xc2, 0xf3, 0x8f, 0x5c, 0x67, 0xf2,
- 0xcc, 0x45, 0x36, 0x01, 0xe6, 0x1b, 0xd0, 0x76,
- 0xbb, 0x46, 0x17, 0x9e, 0x22, 0x72, 0xf9, 0xe9,
- 0xf5, 0x93, 0x3e, 0x70, 0x38, 0x8e, 0xe6, 0x52,
- 0x51, 0x34, 0x43, 0xb5, 0xe2, 0x89, 0xdd, 0x13,
- 0x5d, 0xcc, 0x0d, 0x02, 0x99, 0xb2, 0x25, 0xe4,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x15, 0x9d, 0x89,
- 0x3d, 0x4c, 0xdd, 0x74, 0x72, 0x46, 0xcd, 0xca,
- 0x43, 0x59, 0x0e, 0x13, },
- {0x02, 0x98, 0x95, 0xf0, 0xaf, 0x49, 0x6b, 0xfc,
- 0x62, 0xb6, 0xef, 0x8d, 0x8a, 0x65, 0xc8, 0x8c,
- 0x61, 0x39, 0x49, 0xb0, 0x36, 0x68, 0xaa, 0xb4,
- 0xf0, 0x42, 0x9e, 0x35, 0x3e, 0xa6, 0xe5, 0x3f,
- 0x9a, 0x84, 0x1f, 0x20, 0x19, 0xec, 0x24, 0xbd,
- 0xe1, 0xa7, 0x56, 0x77, 0xaa, 0x9b, 0x59, 0x02,
- 0xe6, 0x10, 0x81, 0xc0, 0x10, 0x64, 0xde, 0x93,
- },
- },
- {
- {0x41, 0xff, 0xc1, 0xff, 0xff, 0xfe, 0x01, 0xff,
- 0xfc, 0x00, 0x03, 0xff, 0xfe, 0x00, 0x07, 0xc0,
- 0x01, 0xff, 0xf0, 0x00, 0x03, 0xff, 0xf0, 0x7f,
- 0xfe, 0x00, 0x07, 0xc0, },
- {0xab, 0x68, 0x99, 0x30, 0xbc, 0xae, 0x4a, 0x4a,
- 0xa5, 0xf5, 0xcb, 0x08, 0x5e, 0x82, 0x3e, 0x8a,
- 0xe3, 0x0f, 0xd3, 0x65, 0xeb, 0x1d, 0xa4, 0xab,
- 0xa9, 0xcf, 0x03, 0x79, 0x33, 0x45, 0xa1, 0x21,
- 0xbb, 0xd2, 0x33, 0x54, 0x8a, 0xf0, 0xd2, 0x10,
- 0x65, 0x4e, 0xb4, 0x0b, 0xab, 0x78, 0x8a, 0x03,
- 0x66, 0x64, 0x19, 0xbe, 0x6f, 0xbd, 0x34, 0xe7,
- },
- },
- {
- {0x7f, 0xff, 0xff, 0xc0, 0x3f, 0xff, 0xc0, 0x03,
- 0xff, 0xff, 0xfc, 0x00, 0x7f, 0xff, 0x00, 0x00,
- 0x00, 0x00, 0x07, 0x00, 0x00, 0x10, 0x00, 0x00,
- 0x00, 0x0e, 0x00, 0xff, },
- {0xbd, 0xb6, 0xa8, 0x81, 0x7c, 0x1f, 0x89, 0xda,
- 0x1c, 0x2f, 0x3d, 0xd8, 0xe9, 0x7f, 0xeb, 0x44,
- 0x94, 0xf2, 0xed, 0x30, 0x2a, 0x4c, 0xe2, 0xbc,
- 0x7f, 0x5f, 0x40, 0x25, 0x4c, 0x70, 0x20, 0xd5,
- 0x7c, 0x00, 0x41, 0x18, 0x89, 0x46, 0x2d, 0x77,
- 0xa5, 0x43, 0x8b, 0xb4, 0xe9, 0x7d, 0x17, 0x77,
- 0x00, 0xbf, 0x72, 0x43, 0xa0, 0x7f, 0x16, 0x80,
- },
- },
- {
- {0x7f, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00,
- 0xff, 0xff, 0xf0, 0x1f, 0xff, 0xf8, 0xff, 0xff,
- 0xc0, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xc0, 0x00,
- 0x00, 0x0f, 0xff, 0xff, },
- {0xd5, 0x8b, 0x61, 0xaa, 0x41, 0xc3, 0x2d, 0xd5,
- 0xeb, 0xa4, 0x62, 0x64, 0x7d, 0xba, 0x75, 0xc5,
- 0xd6, 0x7c, 0x83, 0x60, 0x6c, 0x0a, 0xf2, 0xbd,
- 0x92, 0x84, 0x46, 0xa9, 0xd2, 0x4b, 0xa6, 0xa8,
- 0x37, 0xbe, 0x04, 0x60, 0xdd, 0x10, 0x7a, 0xe7,
- 0x77, 0x25, 0x69, 0x6d, 0x21, 0x14, 0x46, 0xc5,
- 0x60, 0x9b, 0x45, 0x95, 0x97, 0x6b, 0x16, 0xbd,
- },
- },
- {
- {0x7f, 0xff, 0xff, 0xc0, 0x00, 0xff, 0xfe, 0x3f,
- 0xff, 0xfc, 0x10, 0x00, 0x00, 0x20, 0x00, 0x3f,
- 0xff, 0xff, 0x00, 0x00, 0x00, 0xfc, 0x00, 0x00,
- 0x3f, 0xff, 0xff, 0xff, },
- {0xdc, 0x9f, 0xa7, 0x79, 0x78, 0xa0, 0x05, 0x51,
- 0x09, 0x80, 0xe9, 0x29, 0xa1, 0x48, 0x5f, 0x63,
- 0x71, 0x6d, 0xf6, 0x95, 0xd7, 0xa0, 0xc1, 0x8b,
- 0xb5, 0x18, 0xdf, 0x03, 0xed, 0xe2, 0xb0, 0x16,
- 0xf2, 0xdd, 0xff, 0xc2, 0xa8, 0xc0, 0x15, 0xb1,
- 0x34, 0x92, 0x82, 0x75, 0xce, 0x09, 0xe5, 0x66,
- 0x1b, 0x7a, 0xb1, 0x4c, 0xe0, 0xd1, 0xd4, 0x03,
- },
- },
- {
- {0x70, 0x01, 0xf0, 0x00, 0x1c, 0x00, 0x01, 0xc0,
- 0x00, 0x00, 0x1f, 0xff, 0xff, 0xfc, 0x00, 0x00,
- 0x1f, 0xff, 0xff, 0xf8, 0x00, 0x0f, 0xc0, 0x00,
- 0x00, 0x01, 0xfc, 0x00, },
- {0x49, 0x9d, 0x8b, 0x28, 0x29, 0xcf, 0xb8, 0x79,
- 0xc9, 0x01, 0xf7, 0xd8, 0x5d, 0x35, 0x70, 0x45,
- 0xed, 0xab, 0x55, 0x02, 0x88, 0x24, 0xd0, 0xf0,
- 0x5b, 0xa2, 0x79, 0xba, 0xbf, 0x92, 0x95, 0x37,
- 0xb0, 0x6e, 0x40, 0x15, 0x91, 0x96, 0x39, 0xd9,
- 0x4f, 0x57, 0x83, 0x8f, 0xa3, 0x3f, 0xc3, 0xd9,
- 0x52, 0x59, 0x8d, 0xcd, 0xbb, 0x44, 0xd6, 0x38,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x00, 0x1f, 0xfc, 0x00, 0x00,
- 0x00, 0xff, 0xf0, 0x30, 0x00, 0x1f, 0x00, 0x00,
- 0xff, 0xff, 0xf0, 0x00, 0x00, 0x38, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x02, },
- {0x82, 0x46, 0xc9, 0x99, 0x13, 0x71, 0x86, 0x63,
- 0x2c, 0x5f, 0x9e, 0xdd, 0xf3, 0xb1, 0xb0, 0xe1,
- 0x76, 0x4c, 0x5e, 0x8b, 0xd0, 0xe0, 0xd8, 0xa5,
- 0x54, 0xb9, 0xcb, 0x77, 0xe8, 0x0e, 0xd8, 0x66,
- 0x0b, 0xc1, 0xcb, 0x17, 0xac, 0x7d, 0x84, 0x5b,
- 0xe4, 0x0a, 0x7a, 0x02, 0x2d, 0x33, 0x06, 0xf1,
- 0x16, 0xae, 0x9f, 0x81, 0xfe, 0xa6, 0x59, 0x47,
- },
- },
- {
- {0x7f, 0xff, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x07, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0xff, 0xfe, 0x08, 0x00, 0x00, 0x1f,
- 0xf0, 0x00, 0x1f, 0xff, },
- {0x66, 0x70, 0xc2, 0x0a, 0xfc, 0xce, 0xae, 0xa6,
- 0x72, 0xc9, 0x7f, 0x75, 0xe2, 0xe9, 0xdd, 0x5c,
- 0x84, 0x60, 0xe5, 0x4b, 0xb3, 0x85, 0x38, 0xeb,
- 0xb4, 0xbd, 0x30, 0xeb, 0xf2, 0x80, 0xd8, 0x00,
- 0x8d, 0x07, 0xa4, 0xca, 0xf5, 0x42, 0x71, 0xf9,
- 0x93, 0x52, 0x7d, 0x46, 0xff, 0x3f, 0xf4, 0x6f,
- 0xd1, 0x19, 0x0a, 0x3f, 0x1f, 0xaa, 0x4f, 0x74,
- },
- },
- {
- {0x00, 0x00, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xc0, 0x00, 0x07, 0xff, 0xff, 0xe0, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xf8, 0x00, 0xff,
- 0xff, 0xff, 0xff, 0xff, },
- {0x00, 0x0e, 0xca, 0x93, 0x42, 0x47, 0x42, 0x5c,
- 0xfd, 0x94, 0x9b, 0x79, 0x5c, 0xb5, 0xce, 0x1e,
- 0xff, 0x40, 0x15, 0x50, 0x38, 0x6e, 0x28, 0xd1,
- 0xa4, 0xc5, 0xa8, 0xeb, 0xd4, 0xc0, 0x10, 0x40,
- 0xdb, 0xa1, 0x96, 0x28, 0x93, 0x1b, 0xc8, 0x85,
- 0x53, 0x70, 0x31, 0x7c, 0x72, 0x2c, 0xbd, 0x9c,
- 0xa6, 0x15, 0x69, 0x85, 0xf1, 0xc2, 0xe9, 0xce,
- },
- },
- {
- {0x7f, 0xff, 0xfc, 0x03, 0xff, 0x80, 0x7f, 0xff,
- 0xe0, 0x00, 0x1f, 0xff, 0xff, 0x80, 0x0f, 0xff,
- 0x80, 0x00, 0x01, 0xff, 0xff, 0x00, 0x01, 0xff,
- 0xff, 0xfe, 0x00, 0x1f, },
- {0xef, 0x35, 0x3b, 0xf5, 0xc7, 0x3c, 0xd5, 0x51,
- 0xb9, 0x6d, 0x59, 0x6f, 0xbc, 0x9a, 0x67, 0xf1,
- 0x6d, 0x61, 0xdd, 0x9f, 0xe5, 0x6a, 0xf1, 0x9d,
- 0xe1, 0xfb, 0xa9, 0xcd, 0x21, 0x77, 0x1b, 0x9c,
- 0xdc, 0xe3, 0xe8, 0x43, 0x0c, 0x09, 0xb3, 0x83,
- 0x8b, 0xe7, 0x0b, 0x48, 0xc2, 0x1e, 0x15, 0xbc,
- 0x09, 0xee, 0x1f, 0x2d, 0x79, 0x45, 0xb9, 0x1f,
- },
- },
- {
- {0x00, 0x00, 0x00, 0x07, 0xff, 0xc0, 0x7f, 0xff,
- 0xff, 0xff, 0x01, 0xff, 0xfe, 0x03, 0xff, 0xfe,
- 0x40, 0x00, 0x38, 0x00, 0x07, 0xe0, 0x00, 0x3f,
- 0xfe, 0x00, 0x00, 0x00, },
- {0x40, 0x36, 0x05, 0x2a, 0x30, 0x91, 0xeb, 0x48,
- 0x10, 0x46, 0xad, 0x32, 0x89, 0xc9, 0x5d, 0x3a,
- 0xc9, 0x05, 0xca, 0x00, 0x23, 0xde, 0x2c, 0x03,
- 0xec, 0xd4, 0x51, 0xcf, 0xd7, 0x68, 0x16, 0x5a,
- 0x38, 0xa2, 0xb9, 0x6f, 0x81, 0x25, 0x86, 0xa9,
- 0xd5, 0x9d, 0x41, 0x36, 0x03, 0x5d, 0x9c, 0x85,
- 0x3a, 0x5b, 0xf2, 0xe1, 0xc8, 0x6a, 0x49, 0x93,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x29, },
- {0xfc, 0xc7, 0xf2, 0xb4, 0x5d, 0xf1, 0xcd, 0x5a,
- 0x3c, 0x0c, 0x07, 0x31, 0xca, 0x47, 0xa8, 0xaf,
- 0x75, 0xcf, 0xb0, 0x34, 0x7e, 0x83, 0x54, 0xee,
- 0xfe, 0x78, 0x24, 0x55, 0xf2, 0xa2, 0x8e, 0xef,
- 0xd8, 0xb3, 0x45, 0x83, 0x21, 0x16, 0xf1, 0xe5,
- 0x74, 0xf2, 0xc6, 0xb2, 0xc8, 0x95, 0xaa, 0x8c,
- 0x24, 0x94, 0x1f, 0x40, 0xd8, 0xb8, 0x0a, 0xd1,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x2a, },
- {0xa1, 0xe8, 0x1c, 0x04, 0xf3, 0x0c, 0xe2, 0x01,
- 0xc7, 0xc9, 0xac, 0xe7, 0x85, 0xed, 0x44, 0xcc,
- 0x33, 0xb4, 0x55, 0xa0, 0x22, 0xf2, 0xac, 0xdb,
- 0xc6, 0xca, 0xe8, 0x3c, 0x23, 0x0e, 0x09, 0x3c,
- 0x24, 0xf6, 0x38, 0xf5, 0x33, 0xda, 0xc6, 0xe2,
- 0xb6, 0xd0, 0x1d, 0xa3, 0xb5, 0xe7, 0xf4, 0x54,
- 0x29, 0x31, 0x5c, 0xa9, 0x3f, 0xb8, 0xe6, 0x34,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x2b, },
- {0xc9, 0xff, 0x61, 0xb0, 0x40, 0x87, 0x4c, 0x05,
- 0x68, 0x47, 0x92, 0x16, 0x82, 0x4a, 0x15, 0xea,
- 0xb1, 0xa8, 0x38, 0xa7, 0x97, 0xd1, 0x89, 0x74,
- 0x62, 0x26, 0xe4, 0xcc, 0x15, 0x67, 0x29, 0xf1,
- 0xa0, 0x03, 0x64, 0x70, 0x30, 0x66, 0x60, 0x54,
- 0xe2, 0x08, 0x18, 0x0f, 0x8f, 0x7b, 0x0d, 0xf2,
- 0x24, 0x9e, 0x44, 0xfb, 0xa5, 0x93, 0x1f, 0xff,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x2c, },
- {0xb8, 0x35, 0x7c, 0x3a, 0x6c, 0xee, 0xf2, 0x88,
- 0x31, 0x0e, 0x17, 0xb8, 0xbf, 0xef, 0xf9, 0x20,
- 0x08, 0x46, 0xca, 0x8c, 0x19, 0x42, 0x49, 0x7c,
- 0x48, 0x44, 0x03, 0xbc, 0x00, 0xeb, 0x61, 0x05,
- 0x99, 0xf9, 0x59, 0x42, 0xdf, 0x10, 0x82, 0xe4,
- 0xf9, 0x42, 0x6d, 0x08, 0x6f, 0xb9, 0xc6, 0x23,
- 0x1a, 0xe8, 0xb2, 0x49, 0x33, 0xaa, 0xb5, 0xdb,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x2d, },
- {0x0b, 0x6e, 0xc4, 0xfe, 0x17, 0x77, 0x38, 0x24,
- 0x04, 0xef, 0x67, 0x99, 0x97, 0xba, 0x8d, 0x1c,
- 0xc5, 0xcd, 0x8e, 0x85, 0x34, 0x92, 0x59, 0xf5,
- 0x90, 0xc4, 0xc6, 0x6d, 0xcc, 0x66, 0x2b, 0x9b,
- 0xcb, 0xa6, 0xf9, 0x4e, 0xe4, 0xff, 0x1c, 0x9c,
- 0x10, 0xbd, 0x6d, 0xdd, 0x0d, 0x13, 0x8d, 0xf2,
- 0xd0, 0x99, 0xa2, 0x82, 0x15, 0x2a, 0x4b, 0x7f,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x2e, },
- {0xba, 0xa4, 0xd8, 0x63, 0x55, 0x11, 0xa7, 0xd2,
- 0x88, 0xae, 0xbe, 0xed, 0xd1, 0x2c, 0xe5, 0x29,
- 0xff, 0x10, 0x2c, 0x91, 0xf9, 0x7f, 0x86, 0x7e,
- 0x21, 0x91, 0x6b, 0xf9, 0x68, 0x65, 0xa0, 0xb8,
- 0xa6, 0x07, 0xf0, 0xb0, 0x4b, 0x13, 0xd1, 0xcb,
- 0x0a, 0xa9, 0x92, 0xa5, 0xa9, 0x7f, 0x5e, 0xe8,
- 0xca, 0x18, 0x49, 0xef, 0xb9, 0xed, 0x86, 0x78,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x2f, },
- {0xa5, 0x36, 0x40, 0xc8, 0x3d, 0xc2, 0x08, 0x60,
- 0x3d, 0xed, 0x83, 0xe4, 0xec, 0xf7, 0x58, 0xf2,
- 0x4c, 0x35, 0x7d, 0x7c, 0xf4, 0x80, 0x88, 0xb2,
- 0xce, 0x01, 0xe9, 0xfa, 0x2a, 0x7e, 0xb3, 0x28,
- 0xdb, 0xe6, 0x63, 0xb5, 0xa4, 0x68, 0xb5, 0xbc,
- 0x97, 0xa0, 0x40, 0xa3, 0x74, 0x53, 0x96, 0xba,
- 0x63, 0x6b, 0x96, 0x43, 0x70, 0xdc, 0x33, 0x52,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x30, },
- {0x34, 0xe8, 0xe1, 0x7a, 0x43, 0x0e, 0x43, 0x28,
- 0x97, 0x93, 0xc3, 0x83, 0xfa, 0xc9, 0x77, 0x42,
- 0x47, 0xb4, 0x0e, 0x9e, 0xbd, 0x33, 0x66, 0x98,
- 0x1f, 0xcf, 0xae, 0xca, 0xda, 0xd7, 0xe6, 0x08,
- 0xe3, 0x80, 0x48, 0x04, 0x34, 0xea, 0x64, 0x1c,
- 0xc8, 0x2c, 0x82, 0xcb, 0xc9, 0x28, 0x01, 0x46,
- 0x9c, 0x8d, 0xb0, 0x20, 0x4f, 0x13, 0x48, 0x9a,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x31, },
- {0x6e, 0x31, 0xee, 0x1d, 0xc1, 0x37, 0xf8, 0x1b,
- 0x05, 0x67, 0x52, 0xe4, 0xde, 0xab, 0x14, 0x43,
- 0xa4, 0x81, 0x03, 0x3e, 0x9b, 0x4c, 0x93, 0xa3,
- 0x04, 0x4f, 0x4f, 0x7a, 0xdf, 0x82, 0x22, 0x0f,
- 0xc7, 0xa4, 0x02, 0x15, 0x49, 0x16, 0x53, 0x25,
- 0x72, 0x5f, 0x94, 0xc3, 0x41, 0x0d, 0xdb, 0x56,
- 0xc5, 0x4e, 0x16, 0x1f, 0xc9, 0xef, 0x62, 0xee,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x32, },
- {0xef, 0x53, 0xb6, 0x29, 0x4a, 0xca, 0x43, 0x1f,
- 0x0f, 0x3c, 0x22, 0xdc, 0x82, 0xeb, 0x90, 0x50,
- 0x32, 0x4f, 0x1d, 0x88, 0xd3, 0x77, 0xe7, 0x16,
- 0x44, 0x8e, 0x50, 0x7c, 0xdf, 0x4a, 0xef, 0xff,
- 0xbf, 0x6d, 0x16, 0x99, 0xc9, 0x30, 0x48, 0x1c,
- 0xd1, 0x02, 0x12, 0x7c, 0x9a, 0x3d, 0x99, 0x20,
- 0x48, 0xab, 0x05, 0x92, 0x9b, 0x6e, 0x59, 0x27,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x33, },
- {0xae, 0xa9, 0xe1, 0x7a, 0x30, 0x65, 0x17, 0xeb,
- 0x89, 0x15, 0x2a, 0xa7, 0x09, 0x6d, 0x2c, 0x38,
- 0x1e, 0xc8, 0x13, 0xc5, 0x1a, 0xa8, 0x80, 0xe7,
- 0xbe, 0xe2, 0xc0, 0xfd, 0xc6, 0x44, 0xcf, 0x15,
- 0x4c, 0xc8, 0x1f, 0x5a, 0xde, 0x49, 0x34, 0x5e,
- 0x54, 0x1b, 0x4d, 0x4b, 0x5c, 0x1a, 0xdb, 0x3e,
- 0xb5, 0xc0, 0x1c, 0x14, 0xee, 0x94, 0x9a, 0xa2,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x34, },
- {0x2f, 0xdc, 0xcc, 0xfe, 0xe7, 0x20, 0xa7, 0x7e,
- 0xf6, 0xcb, 0x3b, 0xfb, 0xb4, 0x47, 0xf9, 0x38,
- 0x31, 0x17, 0xe3, 0xda, 0xa4, 0xa0, 0x7e, 0x36,
- 0xed, 0x15, 0xf7, 0x8d, 0xc8, 0xe8, 0xcd, 0x1b,
- 0x0b, 0xe4, 0x0b, 0x08, 0x77, 0xcf, 0xca, 0x19,
- 0x58, 0x60, 0x31, 0x22, 0xf1, 0xe6, 0x91, 0x4f,
- 0x84, 0xb7, 0xe8, 0xe9, 0x68, 0xae, 0x8b, 0x9e,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x35, },
- {0x85, 0x8e, 0x6f, 0x9c, 0xc6, 0xc1, 0x2c, 0x31,
- 0xf5, 0xdf, 0x12, 0x4a, 0xa7, 0x77, 0x67, 0xb0,
- 0x5c, 0x8b, 0xc0, 0x21, 0xbd, 0x68, 0x3d, 0x2b,
- 0x55, 0x57, 0x15, 0x50, 0xfb, 0x92, 0x32, 0xc1,
- 0x5a, 0x3b, 0xc7, 0x67, 0x3a, 0x3a, 0x03, 0xb0,
- 0x25, 0x38, 0x24, 0xc5, 0x3d, 0x0f, 0xd1, 0x41,
- 0x1b, 0x1c, 0xab, 0xe2, 0xe1, 0x87, 0xfb, 0x87,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x36, },
- {0xdb, 0x2f, 0x6b, 0xe6, 0x30, 0xe2, 0x46, 0xa5,
- 0xcf, 0x7d, 0x99, 0xb8, 0x51, 0x94, 0xb1, 0x23,
- 0xd4, 0x87, 0xe2, 0xd4, 0x66, 0xb9, 0x4b, 0x24,
- 0xa0, 0x3c, 0x3e, 0x28, 0xf0, 0xc5, 0xcf, 0xf7,
- 0xab, 0x68, 0x0d, 0x09, 0xee, 0x11, 0xda, 0xe8,
- 0x4e, 0x9c, 0x10, 0x72, 0xac, 0x48, 0xea, 0x2e,
- 0x74, 0x4b, 0x1b, 0x7f, 0x72, 0xfd, 0x46, 0x9e,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x37, },
- {0x1f, 0x24, 0x83, 0xf8, 0x25, 0x72, 0x25, 0x1f,
- 0xca, 0x97, 0x5f, 0xea, 0x40, 0xdb, 0x82, 0x1d,
- 0xf8, 0xad, 0x82, 0xa3, 0xc0, 0x02, 0xee, 0x6c,
- 0x57, 0x11, 0x24, 0x08, 0x76, 0x05, 0x0f, 0x33,
- 0x48, 0xaf, 0x26, 0x64, 0xaa, 0xc3, 0xa8, 0xb0,
- 0x52, 0x81, 0x30, 0x4e, 0xbc, 0x7a, 0x79, 0x14,
- 0xc6, 0xad, 0x50, 0xa4, 0xb4, 0xea, 0xc3, 0x83,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x38, },
- {0x31, 0xc4, 0x9a, 0xe7, 0x5b, 0xce, 0x78, 0x07,
- 0xcd, 0xff, 0x22, 0x05, 0x5d, 0x94, 0xee, 0x90,
- 0x21, 0xfe, 0xdb, 0xb5, 0xab, 0x51, 0xc5, 0x75,
- 0x26, 0xf0, 0x11, 0xaa, 0xd8, 0x17, 0x40, 0x0e,
- 0x8b, 0xa9, 0xca, 0x13, 0xa4, 0x5f, 0x36, 0x0e,
- 0x3d, 0x12, 0x1e, 0xaa, 0xeb, 0x39, 0xaf, 0x82,
- 0xd6, 0x00, 0x1c, 0x81, 0x86, 0xf5, 0xf8, 0x66,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x39, },
- {0xae, 0x99, 0xfe, 0xeb, 0xb5, 0xd2, 0x69, 0x45,
- 0xb5, 0x48, 0x92, 0x09, 0x2a, 0x8a, 0xee, 0x02,
- 0x91, 0x29, 0x30, 0xfa, 0x41, 0xcd, 0x11, 0x4e,
- 0x40, 0x44, 0x73, 0x01, 0xfb, 0x7d, 0xa7, 0xf5,
- 0xf1, 0x3a, 0x43, 0xb8, 0x17, 0x74, 0x37, 0x3c,
- 0x87, 0x9c, 0xd3, 0x2d, 0x69, 0x34, 0xc0, 0x5f,
- 0xa7, 0x58, 0xee, 0xb1, 0x4f, 0xcf, 0xab, 0x38,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x3a, },
- {0xdf, 0x1b, 0x1d, 0x66, 0xa5, 0x51, 0xd0, 0xd3,
- 0x1e, 0xff, 0x82, 0x25, 0x58, 0xb9, 0xd2, 0xcc,
- 0x75, 0xc2, 0x18, 0x02, 0x79, 0xfe, 0x0d, 0x08,
- 0xfd, 0x89, 0x6d, 0x04, 0x5c, 0x08, 0x0f, 0xc3,
- 0x52, 0x2f, 0x41, 0xbb, 0xb3, 0xf5, 0x5a, 0x97,
- 0xcf, 0xec, 0xf2, 0x1f, 0x88, 0x2c, 0xe8, 0xcb,
- 0xb1, 0xe5, 0x0c, 0xa6, 0xe6, 0x7e, 0x56, 0xdc,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x3b, },
- {0x70, 0x6a, 0x46, 0xdc, 0x76, 0xdc, 0xb7, 0x67,
- 0x98, 0xe6, 0x0e, 0x6d, 0x89, 0x47, 0x47, 0x88,
- 0xd1, 0x6d, 0xc1, 0x80, 0x32, 0xd2, 0x68, 0xfd,
- 0x1a, 0x70, 0x4f, 0xa6, 0xe3, 0xd4, 0x89, 0x58,
- 0x43, 0xda, 0x18, 0x8f, 0xd5, 0x8f, 0xb0, 0x56,
- 0x79, 0x76, 0xd7, 0xb5, 0x03, 0x59, 0xd6, 0xb7,
- 0x85, 0x30, 0xc8, 0xf6, 0x2d, 0x1b, 0x17, 0x46,
- },
- },
- {
- {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
- 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x16, 0xa2,
- 0xe0, 0xb8, 0xf0, 0x3e, 0x13, 0xdd, 0x29, 0x45,
- 0x5c, 0x5c, 0x2a, 0x3c, },
- {0xb7, 0x0e, 0x0c, 0xbd, 0x6b, 0xb4, 0xbf, 0x7f,
- 0x32, 0x13, 0x90, 0xb9, 0x4a, 0x03, 0xc1, 0xd3,
- 0x56, 0xc2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xd6,
- 0x11, 0x5c, 0x1d, 0x21, 0x42, 0xc8, 0x9c, 0x77,
- 0x4a, 0x08, 0xdc, 0x04, 0xb3, 0xdd, 0x20, 0x19,
- 0x32, 0xbc, 0x8a, 0x5e, 0xa5, 0xf8, 0xb8, 0x9b,
- 0xbb, 0x2a, 0x7e, 0x66, 0x7a, 0xff, 0x81, 0xcd,
- },
- },
-};
-
-TEST(P224, ExternalToInternalAndBack) {
- Point point;
-
- EXPECT_TRUE(point.SetFromString(base::StringPiece(
- reinterpret_cast<const char *>(kBasePointExternal),
- sizeof(kBasePointExternal))));
-
- const std::string external = point.ToString();
-
- ASSERT_EQ(external.size(), 56u);
- EXPECT_TRUE(memcmp(external.data(), kBasePointExternal,
- sizeof(kBasePointExternal)) == 0);
-}
-
-TEST(P224, ScalarBaseMult) {
- Point point;
-
- for (size_t i = 0; i < arraysize(kNISTTestVectors); i++) {
- p224::ScalarBaseMult(kNISTTestVectors[i].scalar, &point);
- const std::string external = point.ToString();
- ASSERT_EQ(external.size(), 56u);
- EXPECT_TRUE(memcmp(external.data(), kNISTTestVectors[i].affine,
- external.size()) == 0);
- }
-}
-
-TEST(P224, Addition) {
- Point a, b, minus_b, sum, a_again;
-
- ASSERT_TRUE(a.SetFromString(base::StringPiece(
- reinterpret_cast<const char *>(kNISTTestVectors[10].affine), 56)));
- ASSERT_TRUE(b.SetFromString(base::StringPiece(
- reinterpret_cast<const char *>(kNISTTestVectors[11].affine), 56)));
-
- p224::Negate(b, &minus_b);
- p224::Add(a, b, &sum);
- EXPECT_TRUE(memcmp(&sum, &a, sizeof(sum) != 0));
- p224::Add(minus_b, sum, &a_again);
- EXPECT_TRUE(a_again.ToString() == a.ToString());
-}